@ -30,7 +30,7 @@ Two of the most basic morphological operations are dilation and erosion. Dilatio
![Dilation on a Grayscale Image](images/morph6.gif)
- __Erosion__: The vise versa applies for the erosion operation. The value of the output pixel is the <b><em>minimum</em></b> value of all the pixels that fall within the structuring element's size and shape. Look the at the example figures below:
- __Erosion__: The vice versa applies for the erosion operation. The value of the output pixel is the <b><em>minimum</em></b> value of all the pixels that fall within the structuring element's size and shape. Look the at the example figures below:
All specialized `ocl` implemetations has been hidden behind general C++ algorithm interface. Now the function execution path can be selected dynamically at runtime: CPU or OpenCL; this mechanism is also called "Transparent API".
All specialized `ocl` implementations has been hidden behind general C++ algorithm interface. Now the function execution path can be selected dynamically at runtime: CPU or OpenCL; this mechanism is also called "Transparent API".
New class cv::UMat is intended to hide data exchange with OpenCL device in a convenient way.
@ -67,7 +67,7 @@ You need to prepare 2 LMDB databases: one for training images, one for validatio
3. Train your detector
For training you need to have 3 files: train.prototxt, test.prototxt and solver.prototxt. You can find these files in the same directory as for this readme.
Also you need to edit train.prototxt and test.prototxt to replace paths for your LMDB databases to actual databases you've crated in step 2.
Also you need to edit train.prototxt and test.prototxt to replace paths for your LMDB databases to actual databases you've created in step 2.