mirror of https://github.com/opencv/opencv.git
parent
d068e27420
commit
3250f11f0c
5 changed files with 292 additions and 56 deletions
@ -0,0 +1,73 @@ |
||||
/** |
||||
* @file LaplaceDemo.java |
||||
* @brief Sample code showing how to detect edges using the Laplace operator |
||||
*/ |
||||
|
||||
import org.opencv.core.*; |
||||
import org.opencv.highgui.HighGui; |
||||
import org.opencv.imgcodecs.Imgcodecs; |
||||
import org.opencv.imgproc.Imgproc; |
||||
|
||||
class LaplaceDemoRun { |
||||
|
||||
public void run(String[] args) { |
||||
//! [variables]
|
||||
// Declare the variables we are going to use
|
||||
Mat src, src_gray = new Mat(), dst = new Mat(); |
||||
int kernel_size = 3; |
||||
int scale = 1; |
||||
int delta = 0; |
||||
int ddepth = CvType.CV_16S; |
||||
String window_name = "Laplace Demo"; |
||||
//! [variables]
|
||||
|
||||
//! [load]
|
||||
String imageName = ((args.length > 0) ? args[0] : "../data/lena.jpg"); |
||||
|
||||
src = Imgcodecs.imread(imageName, Imgcodecs.IMREAD_COLOR); // Load an image
|
||||
|
||||
// Check if image is loaded fine
|
||||
if( src.empty() ) { |
||||
System.out.println("Error opening image"); |
||||
System.out.println("Program Arguments: [image_name -- default ../data/lena.jpg] \n"); |
||||
System.exit(-1); |
||||
} |
||||
//! [load]
|
||||
|
||||
//! [reduce_noise]
|
||||
// Reduce noise by blurring with a Gaussian filter ( kernel size = 3 )
|
||||
Imgproc.GaussianBlur( src, src, new Size(3, 3), 0, 0, Core.BORDER_DEFAULT ); |
||||
//! [reduce_noise]
|
||||
|
||||
//! [convert_to_gray]
|
||||
// Convert the image to grayscale
|
||||
Imgproc.cvtColor( src, src_gray, Imgproc.COLOR_RGB2GRAY ); |
||||
//! [convert_to_gray]
|
||||
|
||||
/// Apply Laplace function
|
||||
Mat abs_dst = new Mat(); |
||||
//! [laplacian]
|
||||
Imgproc.Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, Core.BORDER_DEFAULT ); |
||||
//! [laplacian]
|
||||
|
||||
//! [convert]
|
||||
// converting back to CV_8U
|
||||
Core.convertScaleAbs( dst, abs_dst ); |
||||
//! [convert]
|
||||
|
||||
//! [display]
|
||||
HighGui.imshow( window_name, abs_dst ); |
||||
HighGui.waitKey(0); |
||||
//! [display]
|
||||
|
||||
System.exit(0); |
||||
} |
||||
} |
||||
|
||||
public class LaplaceDemo { |
||||
public static void main(String[] args) { |
||||
// Load the native library.
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME); |
||||
new LaplaceDemoRun().run(args); |
||||
} |
||||
} |
@ -0,0 +1,59 @@ |
||||
""" |
||||
@file laplace_demo.py |
||||
@brief Sample code showing how to detect edges using the Laplace operator |
||||
""" |
||||
import sys |
||||
import cv2 |
||||
|
||||
def main(argv): |
||||
# [variables] |
||||
# Declare the variables we are going to use |
||||
ddepth = cv2.CV_16S |
||||
kernel_size = 3 |
||||
window_name = "Laplace Demo" |
||||
# [variables] |
||||
|
||||
# [load] |
||||
imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg" |
||||
|
||||
src = cv2.imread(imageName, cv2.IMREAD_COLOR) # Load an image |
||||
|
||||
# Check if image is loaded fine |
||||
if src is None: |
||||
print ('Error opening image') |
||||
print ('Program Arguments: [image_name -- default ../data/lena.jpg]') |
||||
return -1 |
||||
# [load] |
||||
|
||||
# [reduce_noise] |
||||
# Remove noise by blurring with a Gaussian filter |
||||
src = cv2.GaussianBlur(src, (3, 3), 0) |
||||
# [reduce_noise] |
||||
|
||||
# [convert_to_gray] |
||||
# Convert the image to grayscale |
||||
src_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) |
||||
# [convert_to_gray] |
||||
|
||||
# Create Window |
||||
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE) |
||||
|
||||
# [laplacian] |
||||
# Apply Laplace function |
||||
dst = cv2.Laplacian(src_gray, ddepth, kernel_size) |
||||
# [laplacian] |
||||
|
||||
# [convert] |
||||
# converting back to uint8 |
||||
abs_dst = cv2.convertScaleAbs(dst) |
||||
# [convert] |
||||
|
||||
# [display] |
||||
cv2.imshow(window_name, abs_dst) |
||||
cv2.waitKey(0) |
||||
# [display] |
||||
|
||||
return 0 |
||||
|
||||
if __name__ == "__main__": |
||||
main(sys.argv[1:]) |
Loading…
Reference in new issue