|
|
|
@ -1,6 +1,36 @@ |
|
|
|
|
\ifCpp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{Initalization and Info} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\cvCppFunc{gpu::hasNativeDoubleSupport} |
|
|
|
|
Returns true if current GPU has native double support, false otherwise. |
|
|
|
|
|
|
|
|
|
\cvdefCpp{bool hasNativeDoubleSupport(int device);} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\cvCppFunc{gpu::hasAtomicsSupport} |
|
|
|
|
Returns true if current GPU has atomics support, false otherwise. |
|
|
|
|
|
|
|
|
|
\cvdefCpp{bool hasAtomicsSupport(int device);} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{Data Structures} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\cvCppFunc{gpu::createContinuous} |
|
|
|
|
Creates continuous matrix in GPU memory. |
|
|
|
|
|
|
|
|
|
\cvdefCpp{void createContinuous(int rows, int cols, int type, GpuMat\& m);} |
|
|
|
|
\begin{description} |
|
|
|
|
\cvarg{rows}{Row count.} |
|
|
|
|
\cvarg{cols}{Column count.} |
|
|
|
|
\cvarg{type}{Type of the matrix.} |
|
|
|
|
\cvarg{m}{Destionation matrix. Will do only reshape if \texttt{m} has proper type and area ($rows \times cols$).} |
|
|
|
|
\end{description} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{Per-element Operations} |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -312,6 +342,49 @@ Construct empty buffer which will be properly resized after first call of the co |
|
|
|
|
Construct buffer for the convolve function with respectively arguments. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\cvCppFunc{gpu::matchTemplate} |
|
|
|
|
Computes the proximity map for the raster template and the image where the template is searched for. |
|
|
|
|
|
|
|
|
|
\cvdefCpp{void matchTemplate(const GpuMat\& image, const GpuMat\& templ,\par |
|
|
|
|
GpuMat\& result, int method);} |
|
|
|
|
|
|
|
|
|
\begin{description} |
|
|
|
|
\cvarg{image}{Source image. 32F and 8U images (1..4 channels) are supported for now.} |
|
|
|
|
\cvarg{templ}{Template image. Must have the same size and type as \texttt{image}.} |
|
|
|
|
\cvarg{result}{A map of comparison results (32FC1). If \texttt{image} is $W \times H$ and |
|
|
|
|
\texttt{templ} is $w \times h$ then \texttt{result} must be $(W-w+1) \times (H-h+1)$.} |
|
|
|
|
\cvarg{method}{Specifies the way the template must be compared with the image.} |
|
|
|
|
\end{description} |
|
|
|
|
|
|
|
|
|
Following methods are supported for 8U images for now: |
|
|
|
|
\begin{itemize} |
|
|
|
|
\item CV\_TM\_SQDIFF \item CV\_TM\_SQDIFF\_NORMED \item CV\_TM\_CCORR \item CV\_TM\_CCORR\_NORMED \item CV\_TM\_CCOEFF \item CV\_TM\_CCOEFF\_NORMED |
|
|
|
|
\end{itemize}\par |
|
|
|
|
Following methods are supported for 32F images for now: |
|
|
|
|
\begin{itemize} |
|
|
|
|
\item CV\_TM\_SQDIFF \item CV\_TM\_CCORR |
|
|
|
|
\end{itemize} |
|
|
|
|
|
|
|
|
|
See also: \cvCppCross{matchTemplate}. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{Matrix Reductions} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\cvCppFunc{gpu::sum} |
|
|
|
|
Computes sum of array elements. |
|
|
|
|
|
|
|
|
|
\cvdefCpp{Scalar sum(const GpuMat\& src);\newline |
|
|
|
|
Scalar sum(const GpuMat\& src, GpuMat\& buf);} |
|
|
|
|
|
|
|
|
|
\begin{description} |
|
|
|
|
\cvarg{src}{Source image of any depth excepting 64F, single-channel.} |
|
|
|
|
\cvarg{buf}{Optional buffer. It's resized automatically.} |
|
|
|
|
\end{description} |
|
|
|
|
|
|
|
|
|
See also: \cvCppCross{sum}. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{Object Detection} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|