|
|
|
@ -121,4 +121,180 @@ TEST_P(KNN, Accuracy) |
|
|
|
|
} |
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)), |
|
|
|
|
Values(4, 3), Values(false, true))); |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
|
|
|
|
////////////////////////////////SVM/////////////////////////////////////////////////
|
|
|
|
|
PARAM_TEST_CASE(SVM_OCL, int, int, int) |
|
|
|
|
{ |
|
|
|
|
cv::Size size; |
|
|
|
|
int kernel_type; |
|
|
|
|
int svm_type; |
|
|
|
|
Mat src, labels, samples, labels_predict; |
|
|
|
|
int K; |
|
|
|
|
cv::RNG rng ; |
|
|
|
|
|
|
|
|
|
virtual void SetUp() |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
kernel_type = GET_PARAM(0); |
|
|
|
|
svm_type = GET_PARAM(1); |
|
|
|
|
K = GET_PARAM(2); |
|
|
|
|
rng = TS::ptr()->get_rng(); |
|
|
|
|
cv::Size size = cv::Size(MWIDTH, MHEIGHT); |
|
|
|
|
src.create(size, CV_32FC1); |
|
|
|
|
labels.create(1, size.height, CV_32SC1); |
|
|
|
|
int row_idx = 0; |
|
|
|
|
const int max_number = size.height / K - 1; |
|
|
|
|
CV_Assert(K <= size.height); |
|
|
|
|
for(int i = 0; i < K; i++ ) |
|
|
|
|
{ |
|
|
|
|
Mat center_row_header = src.row(row_idx); |
|
|
|
|
center_row_header.setTo(0); |
|
|
|
|
int nchannel = center_row_header.channels(); |
|
|
|
|
for(int j = 0; j < nchannel; j++) |
|
|
|
|
{ |
|
|
|
|
center_row_header.at<float>(0, i * nchannel + j) = 500.0; |
|
|
|
|
} |
|
|
|
|
labels.at<int>(0, row_idx) = i; |
|
|
|
|
for(int j = 0; (j < max_number) || |
|
|
|
|
(i == K - 1 && j < max_number + size.height % K); j ++) |
|
|
|
|
{ |
|
|
|
|
Mat cur_row_header = src.row(row_idx + 1 + j); |
|
|
|
|
center_row_header.copyTo(cur_row_header); |
|
|
|
|
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false); |
|
|
|
|
cur_row_header += tmpmat; |
|
|
|
|
labels.at<int>(0, row_idx + 1 + j) = i; |
|
|
|
|
} |
|
|
|
|
row_idx += 1 + max_number; |
|
|
|
|
} |
|
|
|
|
labels.convertTo(labels, CV_32FC1); |
|
|
|
|
cv::Size test_size = cv::Size(MWIDTH, 100); |
|
|
|
|
samples.create(test_size, CV_32FC1); |
|
|
|
|
labels_predict.create(1, test_size.height, CV_32SC1); |
|
|
|
|
const int max_number_test = test_size.height / K - 1; |
|
|
|
|
row_idx = 0; |
|
|
|
|
for(int i = 0; i < K; i++ ) |
|
|
|
|
{ |
|
|
|
|
Mat center_row_header = samples.row(row_idx); |
|
|
|
|
center_row_header.setTo(0); |
|
|
|
|
int nchannel = center_row_header.channels(); |
|
|
|
|
for(int j = 0; j < nchannel; j++) |
|
|
|
|
{ |
|
|
|
|
center_row_header.at<float>(0, i * nchannel + j) = 500.0; |
|
|
|
|
} |
|
|
|
|
labels_predict.at<int>(0, row_idx) = i; |
|
|
|
|
for(int j = 0; (j < max_number_test) || |
|
|
|
|
(i == K - 1 && j < max_number_test + test_size.height % K); j ++) |
|
|
|
|
{ |
|
|
|
|
Mat cur_row_header = samples.row(row_idx + 1 + j); |
|
|
|
|
center_row_header.copyTo(cur_row_header); |
|
|
|
|
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false); |
|
|
|
|
cur_row_header += tmpmat; |
|
|
|
|
labels_predict.at<int>(0, row_idx + 1 + j) = i; |
|
|
|
|
} |
|
|
|
|
row_idx += 1 + max_number_test; |
|
|
|
|
} |
|
|
|
|
labels_predict.convertTo(labels_predict, CV_32FC1); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
TEST_P(SVM_OCL, Accuracy) |
|
|
|
|
{ |
|
|
|
|
CvSVMParams params; |
|
|
|
|
params.degree = 0.4; |
|
|
|
|
params.gamma = 1; |
|
|
|
|
params.coef0 = 1; |
|
|
|
|
params.C = 1; |
|
|
|
|
params.nu = 0.5; |
|
|
|
|
params.p = 1; |
|
|
|
|
params.svm_type = svm_type; |
|
|
|
|
params.kernel_type = kernel_type; |
|
|
|
|
|
|
|
|
|
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.001); |
|
|
|
|
|
|
|
|
|
CvSVM SVM; |
|
|
|
|
SVM.train(src, labels, Mat(), Mat(), params); |
|
|
|
|
|
|
|
|
|
cv::ocl::CvSVM_OCL SVM_OCL; |
|
|
|
|
SVM_OCL.train(src, labels, Mat(), Mat(), params); |
|
|
|
|
|
|
|
|
|
int c = SVM.get_support_vector_count(); |
|
|
|
|
int c1 = SVM_OCL.get_support_vector_count(); |
|
|
|
|
|
|
|
|
|
Mat sv(c, MHEIGHT, CV_32FC1); |
|
|
|
|
Mat sv_ocl(c1, MHEIGHT, CV_32FC1); |
|
|
|
|
for(int i = 0; i < c; i++) |
|
|
|
|
{ |
|
|
|
|
const float* v = SVM.get_support_vector(i); |
|
|
|
|
|
|
|
|
|
for(int j = 0; j < MHEIGHT; j++) |
|
|
|
|
{ |
|
|
|
|
sv.at<float>(i, j) = v[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
for(int i = 0; i < c1; i++) |
|
|
|
|
{ |
|
|
|
|
const float* v_ocl = SVM_OCL.get_support_vector(i); |
|
|
|
|
|
|
|
|
|
for(int j = 0; j < MHEIGHT; j++) |
|
|
|
|
{ |
|
|
|
|
sv_ocl.at<float>(i, j) = v_ocl[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
cv::BFMatcher matcher(cv::NORM_L2); |
|
|
|
|
std::vector<cv::DMatch> matches; |
|
|
|
|
matcher.match(sv, sv_ocl, matches); |
|
|
|
|
int count = 0; |
|
|
|
|
|
|
|
|
|
for(std::vector<cv::DMatch>::iterator itr = matches.begin(); itr != matches.end(); itr++) |
|
|
|
|
{ |
|
|
|
|
if((*itr).distance < 0.1) |
|
|
|
|
{ |
|
|
|
|
count ++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if(c != 0) |
|
|
|
|
{ |
|
|
|
|
float matchedRatio = (float)count / c; |
|
|
|
|
EXPECT_GT(matchedRatio, 0.95); |
|
|
|
|
} |
|
|
|
|
if(c != 0) |
|
|
|
|
{ |
|
|
|
|
CvMat *result = cvCreateMat(1, samples.rows, CV_32FC1); |
|
|
|
|
CvMat test_samples = samples; |
|
|
|
|
|
|
|
|
|
CvMat *result_ocl = cvCreateMat(1, samples.rows, CV_32FC1); |
|
|
|
|
|
|
|
|
|
SVM.predict(&test_samples, result); |
|
|
|
|
|
|
|
|
|
SVM_OCL.predict(&test_samples, result_ocl); |
|
|
|
|
|
|
|
|
|
int true_resp = 0, true_resp_ocl = 0; |
|
|
|
|
for (int i = 0; i < samples.rows; i++) |
|
|
|
|
{ |
|
|
|
|
if (result->data.fl[i] == labels_predict.at<float>(0, i)) |
|
|
|
|
{ |
|
|
|
|
true_resp++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
float matchedRatio = (float)true_resp / samples.rows; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < samples.rows; i++) |
|
|
|
|
{ |
|
|
|
|
if (result_ocl->data.fl[i] == labels_predict.at<float>(0, i)) |
|
|
|
|
{ |
|
|
|
|
true_resp_ocl++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
float matchedRatio_ocl = (float)true_resp_ocl / samples.rows; |
|
|
|
|
|
|
|
|
|
if(matchedRatio != 0 && true_resp_ocl < true_resp) |
|
|
|
|
{ |
|
|
|
|
EXPECT_NEAR(matchedRatio_ocl, matchedRatio, 0.03); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine( |
|
|
|
|
Values(CvSVM::LINEAR, CvSVM::POLY, CvSVM::RBF, CvSVM::SIGMOID), |
|
|
|
|
Values(CvSVM::C_SVC, CvSVM::NU_SVC, CvSVM::ONE_CLASS, CvSVM::EPS_SVR, CvSVM::NU_SVR), |
|
|
|
|
Values(2, 3, 4) |
|
|
|
|
)); |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|