mirror of https://github.com/opencv/opencv.git
Merge pull request #24283 from fengyuentau:halide_tests
dnn: merge tests from test_halide_layers to test_backends #24283 Context: https://github.com/opencv/opencv/pull/24231#pullrequestreview-1628649980 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMakepull/24337/head
parent
2b6d0f36f0
commit
307324f4ac
2 changed files with 933 additions and 999 deletions
@ -1,999 +0,0 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017-2019, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
// This tests doesn't require any external data. They just compare outputs of
|
||||
// layers using different computation backends. Input and parameters are random.
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
namespace opencv_test { namespace { |
||||
|
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
using namespace testing; |
||||
|
||||
static void test(Mat& input, Net& net, Backend backendId, Target targetId, bool skipCheck = false, bool randInput = true, double l1 = 0.0, double lInf = 0.0) |
||||
{ |
||||
DNNTestLayer::checkBackend(backendId, targetId); |
||||
if (randInput) |
||||
randu(input, -1.0f, 1.0f); |
||||
|
||||
net.setInput(input); |
||||
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
||||
Mat outputDefault = net.forward().clone(); |
||||
|
||||
net.setPreferableBackend(backendId); |
||||
net.setPreferableTarget(targetId); |
||||
Mat outputHalide = net.forward().clone(); |
||||
|
||||
if (skipCheck) |
||||
return; |
||||
|
||||
double default_l1, default_lInf; |
||||
DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf); |
||||
if (l1 == 0.0) |
||||
l1 = default_l1; |
||||
if (lInf == 0.0) |
||||
lInf = default_lInf; |
||||
normAssert(outputDefault, outputHalide, "", l1, lInf); |
||||
if (cvtest::debugLevel > 0 || testing::Test::HasFailure()) |
||||
{ |
||||
std::cout << "l1=" << l1 << " lInf=" << lInf << std::endl; |
||||
std::cout << outputDefault.reshape(1, outputDefault.total()).t() << std::endl; |
||||
std::cout << outputHalide.reshape(1, outputDefault.total()).t() << std::endl; |
||||
} |
||||
} |
||||
|
||||
static void test(LayerParams& params, Mat& input, Backend backendId, Target targetId, bool skipCheck = false, double l1 = 0.0, double lInf = 0.0) |
||||
{ |
||||
Net net; |
||||
net.addLayerToPrev(params.name, params.type, params); |
||||
test(input, net, backendId, targetId, skipCheck, true, l1, lInf); |
||||
} |
||||
|
||||
static inline testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsWithHalide() |
||||
{ |
||||
return dnnBackendsAndTargets(true, true, false); // OpenCV/CPU is used as reference
|
||||
} |
||||
|
||||
class Test_Halide_layers : public DNNTestLayer {}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Padding
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
TEST_P(Test_Halide_layers, Padding) |
||||
{ |
||||
static const int kNumRuns = 10; |
||||
std::vector<int> paddings(8); |
||||
cv::RNG& rng = cv::theRNG(); |
||||
for (int t = 0; t < kNumRuns; ++t) |
||||
{ |
||||
for (int i = 0; i < paddings.size(); ++i) |
||||
paddings[i] = rng(5); |
||||
|
||||
LayerParams lp; |
||||
lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size())); |
||||
lp.type = "Padding"; |
||||
lp.name = "testLayer"; |
||||
|
||||
int sz[] = {1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10)}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
test(lp, input, backend, target); |
||||
} |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Convolution
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<Backend, Target> > > Convolution; |
||||
TEST_P(Convolution, Accuracy) |
||||
{ |
||||
int inChannels = get<0>(GetParam())[0]; |
||||
int outChannels = get<0>(GetParam())[1]; |
||||
int group = get<0>(GetParam())[2]; |
||||
Size inSize = get<1>(GetParam()); |
||||
Size kernel = get<2>(GetParam()); |
||||
Size stride = get<3>(GetParam()); |
||||
Size pad = get<4>(GetParam()); |
||||
Size dilation = get<5>(GetParam()); |
||||
bool hasBias = get<6>(GetParam()); |
||||
Backend backendId = get<0>(get<7>(GetParam())); |
||||
Target targetId = get<1>(get<7>(GetParam())); |
||||
|
||||
bool skipCheck = false; |
||||
|
||||
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; |
||||
Mat weights(4, &sz[0], CV_32F); |
||||
randu(weights, -1.0f, 1.0f); |
||||
|
||||
LayerParams lp; |
||||
lp.set("kernel_w", kernel.width); |
||||
lp.set("kernel_h", kernel.height); |
||||
lp.set("pad_w", pad.width); |
||||
lp.set("pad_h", pad.height); |
||||
lp.set("stride_w", stride.width); |
||||
lp.set("stride_h", stride.height); |
||||
lp.set("dilation_w", dilation.width); |
||||
lp.set("dilation_h", dilation.height); |
||||
lp.set("num_output", outChannels); |
||||
lp.set("group", group); |
||||
lp.set("bias_term", hasBias); |
||||
lp.type = "Convolution"; |
||||
lp.name = "testLayer"; |
||||
lp.blobs.push_back(weights); |
||||
if (hasBias) |
||||
{ |
||||
Mat bias(1, outChannels, CV_32F); |
||||
randu(bias, -1.0f, 1.0f); |
||||
lp.blobs.push_back(bias); |
||||
} |
||||
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
||||
Mat input(4, &inpSz[0], CV_32F); |
||||
test(lp, input, backendId, targetId, skipCheck); |
||||
if (skipCheck) |
||||
throw SkipTestException("Skip checks in unstable test"); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine( |
||||
/*in channels, out channels, group*/ |
||||
Values(Vec3i(6, 4, 1), Vec3i(6, 9, 1), |
||||
Vec3i(6, 4, 2), Vec3i(6, 9, 3)), |
||||
/*in size*/ Values(Size(5, 6)), |
||||
/*kernel*/ Values(Size(3, 1), Size(1, 3)), |
||||
/*stride*/ Values(Size(1, 1), Size(2, 2)), |
||||
/*pad*/ Values(Size(1, 0), Size(0, 1)), |
||||
/*dilation*/ Values(Size(1, 1), Size(2, 2)), |
||||
/*has bias*/ Bool(), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Deconvolution
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<Backend, Target> > > Deconvolution; |
||||
TEST_P(Deconvolution, Accuracy) |
||||
{ |
||||
int inChannels = get<0>(GetParam())[0]; |
||||
int outChannels = get<0>(GetParam())[1]; |
||||
int group = get<0>(GetParam())[2]; |
||||
Size inSize = get<1>(GetParam()); |
||||
Size kernel = get<2>(GetParam()); |
||||
Size pad = get<3>(GetParam()); |
||||
Size dilation = get<4>(GetParam()); |
||||
Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]); |
||||
Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]); |
||||
bool hasBias = get<6>(GetParam()); |
||||
Backend backendId = get<0>(get<7>(GetParam())); |
||||
Target targetId = get<1>(get<7>(GetParam())); |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) |
||||
&& inChannels == 6 && outChannels == 4 && group == 1 |
||||
&& kernel == Size(3, 1) && pad == Size(0, 1) |
||||
&& stride == Size(1, 1) && dilation == Size(1, 1)) |
||||
applyTestTag(targetId == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, |
||||
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION |
||||
); |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) |
||||
&& inChannels == 6 && outChannels == 4 && group == 1 |
||||
&& kernel == Size(1, 3) && pad == Size(1, 0) |
||||
&& stride == Size(1, 1) && dilation == Size(1, 1)) |
||||
applyTestTag(targetId == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, |
||||
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION |
||||
); |
||||
#endif |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
||||
&& inChannels == 6 && outChannels == 4 && group == 1 |
||||
&& kernel == Size(1, 3) && pad == Size(1, 0) |
||||
&& stride == Size(1, 1) && dilation == Size(1, 1)) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
||||
#endif |
||||
|
||||
if (targetId == DNN_TARGET_CUDA_FP16) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); |
||||
|
||||
int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width}; |
||||
Mat weights(4, &sz[0], CV_32F); |
||||
randu(weights, -1.0f, 1.0f); |
||||
|
||||
LayerParams lp; |
||||
lp.set("kernel_w", kernel.width); |
||||
lp.set("kernel_h", kernel.height); |
||||
lp.set("pad_w", pad.width); |
||||
lp.set("pad_h", pad.height); |
||||
lp.set("stride_w", stride.width); |
||||
lp.set("stride_h", stride.height); |
||||
lp.set("dilation_w", dilation.width); |
||||
lp.set("dilation_h", dilation.height); |
||||
lp.set("adj_w", adjPad.width); |
||||
lp.set("adj_h", adjPad.height); |
||||
lp.set("num_output", outChannels); |
||||
lp.set("group", group); |
||||
lp.set("bias_term", hasBias); |
||||
lp.type = "Deconvolution"; |
||||
lp.name = "testLayer"; |
||||
lp.blobs.push_back(weights); |
||||
if (hasBias) |
||||
{ |
||||
Mat bias(1, outChannels, CV_32F); |
||||
randu(bias, -1.0f, 1.0f); |
||||
lp.blobs.push_back(bias); |
||||
} |
||||
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
||||
Mat input(4, &inpSz[0], CV_32F); |
||||
test(lp, input, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine( |
||||
/*in channels, out channels, group*/ |
||||
Values(Vec3i(6, 4, 1), Vec3i(6, 9, 3)), |
||||
/*in size*/ Values(Size(5, 6)), |
||||
/*kernel*/ Values(Size(3, 1), Size(1, 3)), |
||||
/*pad*/ Values(Size(1, 0), Size(0, 1)), |
||||
/*dilation*/ Values(Size(1, 1)), |
||||
/*stride, adj. pad*/ Values(Vec4i(1,1, 0,0), Vec4i(2,2, 1,0), Vec4i(1,2, 0,1)), |
||||
/*has bias*/ Bool(), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// LRN
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<Backend, Target> > > LRN; |
||||
TEST_P(LRN, Accuracy) |
||||
{ |
||||
int inChannels = get<0>(GetParam())[0]; |
||||
Size inSize = Size(get<0>(GetParam())[1], get<0>(GetParam())[2]); |
||||
int localSize = get<1>(GetParam()); |
||||
float alpha = get<2>(GetParam())[0]; |
||||
float beta = get<2>(GetParam())[1]; |
||||
float bias = get<2>(GetParam())[2]; |
||||
bool normBySize = get<3>(GetParam()); |
||||
std::string nrmType = get<4>(GetParam()); |
||||
Backend backendId = get<0>(get<5>(GetParam())); |
||||
Target targetId = get<1>(get<5>(GetParam())); |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) |
||||
if ((inSize.width == 5 || inSize.height == 5) && targetId == DNN_TARGET_MYRIAD && |
||||
nrmType == "ACROSS_CHANNELS") |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
||||
#endif |
||||
|
||||
LayerParams lp; |
||||
lp.set("norm_region", nrmType); |
||||
lp.set("local_size", localSize); |
||||
lp.set("alpha", alpha); |
||||
lp.set("beta", beta); |
||||
lp.set("bias", bias); |
||||
lp.set("norm_by_size", normBySize); |
||||
lp.type = "LRN"; |
||||
lp.name = "testLayer"; |
||||
|
||||
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
|
||||
double l1 = 0.0, lInf = 0.0; |
||||
// The OpenCL kernels use the native_ math functions which have
|
||||
// implementation defined accuracy, so we use relaxed thresholds. See
|
||||
// https://github.com/opencv/opencv/issues/9821 for more details.
|
||||
if (targetId == DNN_TARGET_OPENCL) |
||||
{ |
||||
l1 = 0.01; |
||||
lInf = 0.01; |
||||
} |
||||
test(lp, input, backendId, targetId, false, l1, lInf); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine( |
||||
/*input ch,w,h*/ Values(Vec3i(6, 5, 8), Vec3i(7, 11, 6)), |
||||
/*local size*/ Values(3, 5), |
||||
Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), |
||||
/*alpha, beta, bias*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), |
||||
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), |
||||
/*norm_by_size*/ Bool(), |
||||
/*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Average pooling
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
typedef TestWithParam<tuple<int, Size, Size, Size, tuple<Backend, Target> > > AvePooling; |
||||
TEST_P(AvePooling, Accuracy) |
||||
{ |
||||
int inChannels = get<0>(GetParam()); |
||||
Size outSize = get<1>(GetParam());; // Input size will be computed from parameters.
|
||||
Size kernel = get<2>(GetParam()); |
||||
Size stride = get<3>(GetParam()); |
||||
Backend backendId = get<0>(get<4>(GetParam())); |
||||
Target targetId = get<1>(get<4>(GetParam())); |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
||||
&& kernel == Size(1, 1) && (stride == Size(1, 1) || stride == Size(2, 2))) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
||||
#endif |
||||
|
||||
const int inWidth = (outSize.width - 1) * stride.width + kernel.width; |
||||
const int inHeight = (outSize.height - 1) * stride.height + kernel.height; |
||||
|
||||
LayerParams lp; |
||||
lp.set("pool", "ave"); |
||||
lp.set("kernel_w", kernel.width); |
||||
lp.set("kernel_h", kernel.height); |
||||
lp.set("stride_w", stride.width); |
||||
lp.set("stride_h", stride.height); |
||||
lp.type = "Pooling"; |
||||
lp.name = "testLayer"; |
||||
|
||||
int sz[] = {1, inChannels, inHeight, inWidth}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
test(lp, input, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, AvePooling, Combine( |
||||
/*in channels*/ Values(3, 4), |
||||
/*out size*/ Values(Size(1, 1), Size(2, 2), Size(3, 2), Size(4, 7)), |
||||
/*kernel*/ Values(Size(1, 1), Size(2, 2), Size(3, 3), Size(3, 2)), |
||||
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Maximum pooling
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<Backend, Target> > > MaxPooling; |
||||
TEST_P(MaxPooling, Accuracy) |
||||
{ |
||||
int inChannels = get<0>(GetParam()); |
||||
Size inSize = get<1>(GetParam()); |
||||
Size kernel = get<2>(GetParam()); |
||||
Size stride = get<3>(GetParam()); |
||||
Size pad = get<4>(GetParam()); |
||||
Backend backendId = get<0>(get<5>(GetParam())); |
||||
Target targetId = get<1>(get<5>(GetParam())); |
||||
|
||||
// https://github.com/openvinotoolkit/openvino/issues/18731
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && stride != Size(1, 1)) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
||||
&& (stride == Size(1, 1) || stride == Size(2, 2)) |
||||
&& (pad == Size(0, 1) || pad == Size(1, 1)) |
||||
) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
#endif |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_MYRIAD) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
#endif |
||||
|
||||
LayerParams lp; |
||||
lp.set("pool", "max"); |
||||
lp.set("kernel_w", kernel.width); |
||||
lp.set("kernel_h", kernel.height); |
||||
lp.set("stride_w", stride.width); |
||||
lp.set("stride_h", stride.height); |
||||
lp.set("pad_w", pad.width); |
||||
lp.set("pad_h", pad.height); |
||||
lp.type = "Pooling"; |
||||
lp.name = "testLayer"; |
||||
|
||||
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
test(lp, input, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine( |
||||
/*in channels*/ Values(3, 4), |
||||
/*in size*/ Values(Size(5, 5), Size(7, 6)), |
||||
/*kernel*/ Values(Size(2, 2), Size(3, 3), Size(3, 2)), |
||||
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), |
||||
/*pad*/ Values(Size(0, 0), Size(1, 1), Size(0, 1)), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Fully-connected
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
typedef TestWithParam<tuple<int, int, Size, int, bool, tuple<Backend, Target> > > FullyConnected; |
||||
TEST_P(FullyConnected, Accuracy) |
||||
{ |
||||
int batch = get<0>(GetParam()); |
||||
int inChannels = get<1>(GetParam()); |
||||
Size inSize = get<2>(GetParam()); |
||||
int outChannels = get<3>(GetParam()); |
||||
bool hasBias = get<4>(GetParam()); |
||||
Backend backendId = get<0>(get<5>(GetParam())); |
||||
Target targetId = get<1>(get<5>(GetParam())); |
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) |
||||
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || |
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (targetId == DNN_TARGET_OPENCL_FP16 || |
||||
(targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X))) { |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
||||
} |
||||
#endif |
||||
// https://github.com/openvinotoolkit/openvino/issues/19436
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16 && batch == 16) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2023000000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL && batch == 16) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); |
||||
#endif |
||||
|
||||
Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F); |
||||
randu(weights, -1.0f, 1.0f); |
||||
|
||||
Mat bias(1, outChannels, CV_32F); |
||||
randu(bias, -1.0f, 1.0f); |
||||
|
||||
LayerParams lp; |
||||
lp.set("num_output", outChannels); |
||||
lp.set("bias_term", hasBias); |
||||
lp.blobs.push_back(weights); |
||||
lp.blobs.push_back(bias); |
||||
lp.type = "InnerProduct"; |
||||
lp.name = "testLayer"; |
||||
|
||||
int sz[] = {batch, inChannels, inSize.height, inSize.width}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
|
||||
double l1 = 0.0; |
||||
double lInf = 0.0; |
||||
#if defined(INF_ENGINE_RELEASE) |
||||
if (targetId == DNN_TARGET_MYRIAD) |
||||
{ |
||||
l1 = 0.015; |
||||
lInf = 0.025; |
||||
} |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16) |
||||
{ |
||||
l1 = 0.01; |
||||
if (INF_ENGINE_VER_MAJOR_GE(2023000000)) |
||||
lInf = 0.016; |
||||
} |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL) |
||||
{ |
||||
l1 = 5e-3; |
||||
lInf = INF_ENGINE_VER_MAJOR_GE(2023000000) ? 0.016 : 7e-3; |
||||
} |
||||
#endif |
||||
if (targetId == DNN_TARGET_CUDA_FP16) |
||||
l1 = 0.015; |
||||
|
||||
test(lp, input, backendId, targetId, false, l1, lInf); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, FullyConnected, Combine( |
||||
/*batch*/ Values(1, 2, 4, 8, 16), |
||||
/*in channels*/ Values(3, 4), |
||||
/*in size*/ Values(Size(5, 4), Size(4, 5), Size(1, 1)), |
||||
/*out channels*/ Values(3, 4), |
||||
/*has bias*/ Bool(), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// SoftMax
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
typedef TestWithParam<tuple<int, tuple<Backend, Target> > > SoftMax; |
||||
TEST_P(SoftMax, Accuracy) |
||||
{ |
||||
int inChannels = get<0>(GetParam()); |
||||
Backend backendId = get<0>(get<1>(GetParam())); |
||||
Target targetId = get<1>(get<1>(GetParam())); |
||||
LayerParams lp; |
||||
lp.type = "Softmax"; |
||||
lp.name = "testLayer"; |
||||
|
||||
int sz[] = {1, inChannels, 1, 1}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
test(lp, input, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Combine( |
||||
Values(3, 4, 5, 1024), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Max pooling - unpooling
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
TEST_P(Test_Halide_layers, MaxPoolUnpool) |
||||
{ |
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
||||
|
||||
LayerParams pool; |
||||
pool.set("pool", "max"); |
||||
pool.set("kernel_w", 2); |
||||
pool.set("kernel_h", 2); |
||||
pool.set("stride_w", 2); |
||||
pool.set("stride_h", 2); |
||||
pool.set("pad_w", 0); |
||||
pool.set("pad_h", 0); |
||||
pool.type = "Pooling"; |
||||
pool.name = "testPool"; |
||||
|
||||
LayerParams unpool; |
||||
unpool.set("pool_k_w", 2); |
||||
unpool.set("pool_k_h", 2); |
||||
unpool.set("pool_stride_w", 2); |
||||
unpool.set("pool_stride_h", 2); |
||||
unpool.set("pool_pad_w", 0); |
||||
unpool.set("pool_pad_h", 0); |
||||
unpool.type = "MaxUnpool"; |
||||
unpool.name = "testUnpool"; |
||||
|
||||
Net net; |
||||
int poolId = net.addLayer(pool.name, pool.type, pool); |
||||
net.connect(0, 0, poolId, 0); |
||||
|
||||
int unpoolId = net.addLayer(unpool.name, unpool.type, unpool); |
||||
net.connect(poolId, 0, unpoolId, 0); |
||||
net.connect(poolId, 1, unpoolId, 1); |
||||
|
||||
int sz[] = {1, 1, 4, 4}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
test(input, net, backend, target); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// AvePooling + in-place layers
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
static const int kNumChannels = 3; |
||||
|
||||
void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId, double l1 = 0.0, double lInf = 0.0) |
||||
{ |
||||
EXPECT_FALSE(lp.name.empty()); |
||||
|
||||
LayerParams pool; |
||||
pool.set("pool", "ave"); |
||||
pool.set("kernel_w", 2); |
||||
pool.set("kernel_h", 2); |
||||
pool.set("stride_w", 2); |
||||
pool.set("stride_h", 2); |
||||
pool.type = "Pooling"; |
||||
pool.name = "ave_pool"; |
||||
|
||||
Net net; |
||||
int poolId = net.addLayer(pool.name, pool.type, pool); |
||||
net.connect(0, 0, poolId, 0); |
||||
net.addLayerToPrev(lp.name, lp.type, lp); |
||||
|
||||
int sz[] = {1, kNumChannels, 10, 10}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
test(input, net, backendId, targetId, false, true, l1, lInf); |
||||
} |
||||
|
||||
typedef TestWithParam<tuple<bool, bool, float, tuple<Backend, Target> > > BatchNorm; |
||||
TEST_P(BatchNorm, Accuracy) |
||||
{ |
||||
bool hasWeights = get<0>(GetParam()); |
||||
bool hasBias = get<1>(GetParam()); |
||||
float epsilon = get<2>(GetParam()); |
||||
Backend backendId = get<0>(get<3>(GetParam())); |
||||
Target targetId = get<1>(get<3>(GetParam())); |
||||
|
||||
LayerParams lp; |
||||
lp.set("has_weight", hasWeights); |
||||
lp.set("has_bias", hasBias); |
||||
lp.set("eps", epsilon); |
||||
lp.type = "BatchNorm"; |
||||
lp.name = "testLayer"; |
||||
|
||||
lp.blobs.reserve(4); |
||||
for (int i = 0; i < 3; ++i) |
||||
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
||||
if (hasBias || hasWeights) |
||||
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
||||
|
||||
for (int i = 0; i < lp.blobs.size(); ++i) |
||||
randu(lp.blobs[i], 0.0f, 1.0f); |
||||
|
||||
testInPlaceActivation(lp, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, BatchNorm, Combine( |
||||
/*has weights*/ Bool(), |
||||
/*has bias*/ Bool(), |
||||
/*epsilon*/ Values(1e-3f, 1e-5f), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU; |
||||
TEST_P(ReLU, Accuracy) |
||||
{ |
||||
float negativeSlope = get<0>(GetParam()); |
||||
Backend backendId = get<0>(get<1>(GetParam())); |
||||
Target targetId = get<1>(get<1>(GetParam())); |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && negativeSlope < 0) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
#endif |
||||
|
||||
LayerParams lp; |
||||
lp.set("negative_slope", negativeSlope); |
||||
lp.type = "ReLU"; |
||||
lp.name = "testLayer"; |
||||
testInPlaceActivation(lp, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine( |
||||
/*negative slope*/ Values(2.0f, 0.3f, -0.1f, 0.0f), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation; |
||||
TEST_P(NoParamActivation, Accuracy) |
||||
{ |
||||
Backend backendId = get<0>(get<1>(GetParam())); |
||||
Target targetId = get<1>(get<1>(GetParam())); |
||||
std::string layer_type = get<0>(GetParam()); |
||||
|
||||
LayerParams lp; |
||||
lp.type = layer_type; |
||||
lp.name = "testLayer"; |
||||
testInPlaceActivation(lp, backendId, targetId); |
||||
} |
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Combine( |
||||
/*type*/ Values("TanH", "Sigmoid", "AbsVal", "BNLL", "Swish", "Mish"), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Power; |
||||
TEST_P(Power, Accuracy) |
||||
{ |
||||
float power = get<0>(GetParam())[0]; |
||||
float scale = get<0>(GetParam())[1]; |
||||
float shift = get<0>(GetParam())[2]; |
||||
Backend backendId = get<0>(get<1>(GetParam())); |
||||
Target targetId = get<1>(get<1>(GetParam())); |
||||
|
||||
LayerParams lp; |
||||
lp.set("power", power); |
||||
lp.set("scale", scale); |
||||
lp.set("shift", shift); |
||||
lp.type = "Power"; |
||||
lp.name = "testLayer"; |
||||
testInPlaceActivation(lp, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Power, Combine( |
||||
/*power, scale, shift*/ Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), |
||||
Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), |
||||
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Exp; |
||||
TEST_P(Exp, Accuracy) |
||||
{ |
||||
float base = get<0>(GetParam())[0]; |
||||
float scale = get<0>(GetParam())[1]; |
||||
float shift = get<0>(GetParam())[2]; |
||||
Backend backendId = get<0>(get<1>(GetParam())); |
||||
Target targetId = get<1>(get<1>(GetParam())); |
||||
|
||||
LayerParams lp; |
||||
lp.set("base", base); |
||||
lp.set("scale", scale); |
||||
lp.set("shift", shift); |
||||
lp.type = "Exp"; |
||||
lp.name = "testLayer"; |
||||
testInPlaceActivation(lp, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Exp, Combine( |
||||
/*base, scale, shift*/ Values(Vec3f(0.9f, -1.0f, 1.1f), Vec3f(0.9f, 1.1f, -1.0f), |
||||
Vec3f(-1.0f, 0.9f, 1.1f), Vec3f(-1.0f, 1.1f, 0.9f), |
||||
Vec3f(1.1f, 0.9f, -1.0f), Vec3f(1.1f, -1.0f, 0.9f)), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
TEST_P(Test_Halide_layers, ChannelsPReLU) |
||||
{ |
||||
LayerParams lp; |
||||
lp.type = "ChannelsPReLU"; |
||||
lp.name = "testLayer"; |
||||
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
||||
randu(lp.blobs[0], -1.0f, 1.0f); |
||||
|
||||
testInPlaceActivation(lp, backend, target); |
||||
} |
||||
|
||||
typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale; |
||||
TEST_P(Scale, Accuracy) |
||||
{ |
||||
bool hasBias = get<0>(GetParam()); |
||||
Backend backendId = get<0>(get<1>(GetParam())); |
||||
Target targetId = get<1>(get<1>(GetParam())); |
||||
|
||||
LayerParams lp; |
||||
lp.set("bias_term", hasBias); |
||||
lp.type = "Scale"; |
||||
lp.name = "testLayer"; |
||||
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
||||
randu(lp.blobs[0], -1.0f, 1.0f); |
||||
if (hasBias) |
||||
{ |
||||
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
||||
randu(lp.blobs[1], -1.0f, 1.0f); |
||||
} |
||||
testInPlaceActivation(lp, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Combine( |
||||
Bool(), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Concat layer
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// input --- conv --- concat --- output
|
||||
// `--- conv ----^ ^ ^
|
||||
// `---- ... ------' '
|
||||
// `-----------------'
|
||||
typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<Backend, Target> > > Concat; |
||||
TEST_P(Concat, Accuracy) |
||||
{ |
||||
Vec3i inSize = get<0>(GetParam()); |
||||
Vec3i numChannels = get<1>(GetParam()); |
||||
Backend backendId = get<0>(get<2>(GetParam())); |
||||
Target targetId = get<1>(get<2>(GetParam())); |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
||||
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) |
||||
) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // crash
|
||||
#endif |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_CPU |
||||
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) |
||||
) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // TODO: IE_CPU
|
||||
#endif |
||||
|
||||
Net net; |
||||
|
||||
std::vector<int> convLayerIds; |
||||
convLayerIds.reserve(numChannels.channels); |
||||
for (int i = 0, n = numChannels.channels; i < n; ++i) |
||||
{ |
||||
if (!numChannels[i]) |
||||
break; |
||||
|
||||
int sz[] = {numChannels[i], inSize[0], 1, 1}; |
||||
Mat weights(4, &sz[0], CV_32F); |
||||
randu(weights, -1.0f, 1.0f); |
||||
|
||||
LayerParams convParam; |
||||
convParam.set("kernel_w", 1); |
||||
convParam.set("kernel_h", 1); |
||||
convParam.set("num_output", numChannels[i]); |
||||
convParam.set("bias_term", false); |
||||
convParam.type = "Convolution"; |
||||
std::ostringstream ss; |
||||
ss << "convLayer" << i; |
||||
convParam.name = ss.str(); |
||||
convParam.blobs.push_back(weights); |
||||
|
||||
int layerId = net.addLayer(convParam.name, convParam.type, convParam); |
||||
convLayerIds.push_back(layerId); |
||||
net.connect(0, 0, layerId, 0); |
||||
} |
||||
|
||||
LayerParams concatParam; |
||||
concatParam.type = "Concat"; |
||||
concatParam.name = "testLayer"; |
||||
int concatId = net.addLayer(concatParam.name, concatParam.type, concatParam); |
||||
net.connect(0, 0, concatId, 0); |
||||
for (int i = 0; i < convLayerIds.size(); ++i) |
||||
{ |
||||
net.connect(convLayerIds[i], 0, concatId, i + 1); |
||||
} |
||||
|
||||
int sz[] = {1, inSize[0], inSize[1], inSize[2]}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
test(input, net, backendId, targetId); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine( |
||||
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), |
||||
/*channels*/ Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Element-wise layers
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// input --- conv --- eltwise --- output
|
||||
// `--- conv ----^ ^ ^
|
||||
// `---- ... ------' '
|
||||
// `-----------------'
|
||||
typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<Backend, Target> > > Eltwise; |
||||
TEST_P(Eltwise, Accuracy) |
||||
{ |
||||
Vec3i inSize = get<0>(GetParam()); |
||||
std::string op = get<1>(GetParam()); |
||||
int numConv = get<2>(GetParam()); |
||||
bool weighted = get<3>(GetParam()); |
||||
Backend backendId = get<0>(get<4>(GetParam())); |
||||
Target targetId = get<1>(get<4>(GetParam())); |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) |
||||
// accuracy
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL && |
||||
inSize == Vec3i(1, 4, 5) && op == "sum" && numConv == 1 && !weighted) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL && |
||||
inSize == Vec3i(2, 8, 6) && op == "sum" && numConv == 1 && !weighted) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
#endif |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && |
||||
inSize == Vec3i(1, 4, 5)) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
#endif |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2021040000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && numConv > 1) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
#endif |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_OPENCL && |
||||
op == "sum" && numConv == 1 && !weighted) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
||||
#endif |
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) |
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && numConv > 1) |
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
||||
#endif |
||||
|
||||
bool convInputShift = 1; |
||||
int numEltwiseInputs = numConv; |
||||
if (op == "div") |
||||
{ |
||||
numConv = 1; |
||||
convInputShift = 0; // first input is convolution
|
||||
} |
||||
|
||||
Net net; |
||||
|
||||
std::vector<int> convLayerIds(numConv); |
||||
for (int i = 0; i < numConv; ++i) |
||||
{ |
||||
int sz[] = {inSize[0], inSize[0], 1, 1}; |
||||
Mat weights(4, &sz[0], CV_32F); |
||||
randu(weights, -1.0f, 1.0f); |
||||
|
||||
LayerParams convParam; |
||||
convParam.set("kernel_w", 1); |
||||
convParam.set("kernel_h", 1); |
||||
convParam.set("num_output", inSize[0]); |
||||
convParam.set("bias_term", false); |
||||
convParam.type = "Convolution"; |
||||
std::ostringstream ss; |
||||
ss << "convLayer" << i; |
||||
convParam.name = ss.str(); |
||||
convParam.blobs.push_back(weights); |
||||
|
||||
convLayerIds[i] = net.addLayer(convParam.name, convParam.type, convParam); |
||||
net.connect(0, 0, convLayerIds[i], 0); |
||||
} |
||||
|
||||
LayerParams eltwiseParam; |
||||
eltwiseParam.set("operation", op); |
||||
if (op == "sum" && weighted) |
||||
{ |
||||
RNG& rng = cv::theRNG(); |
||||
std::vector<float> coeff(1 + numConv); |
||||
for (int i = 0; i < coeff.size(); ++i) |
||||
{ |
||||
coeff[i] = rng.uniform(-2.0f, 2.0f); |
||||
} |
||||
eltwiseParam.set("coeff", DictValue::arrayReal<float*>(&coeff[0], coeff.size())); |
||||
} |
||||
eltwiseParam.type = "Eltwise"; |
||||
eltwiseParam.name = "testLayer"; |
||||
int eltwiseId = net.addLayer(eltwiseParam.name, eltwiseParam.type, eltwiseParam); |
||||
if (convInputShift == 1) |
||||
net.connect(0, 0, eltwiseId, 0); |
||||
for (int i = 0; i < numConv; ++i) |
||||
{ |
||||
net.connect(convLayerIds[i], 0, eltwiseId, i + convInputShift); |
||||
} |
||||
if (convInputShift == 0) |
||||
net.connect(0, 0, eltwiseId, numConv); |
||||
for (int i = numConv; i < numEltwiseInputs; ++i) |
||||
{ |
||||
net.connect(0, 0, eltwiseId, i + 1); |
||||
} |
||||
|
||||
int sz[] = {1, inSize[0], inSize[1], inSize[2]}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
if (op == "div") |
||||
randu(input, 1.0f, 1.0f); // ensure no divisor value has absouluate value of less than 0.5
|
||||
test(input, net, backendId, targetId, /*skipCheck*/false, (op == "div") ? false : true); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Eltwise, Combine( |
||||
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), |
||||
/*operation*/ Values("prod", "sum", "div", "max", "min"), |
||||
/*num convs*/ Values(1, 2, 3), |
||||
/*weighted(for sum only)*/ Bool(), |
||||
dnnBackendsAndTargetsWithHalide() |
||||
)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Mixed backends
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef HAVE_HALIDE |
||||
TEST(MixedBackends_Halide_Default_Halide, Accuracy) |
||||
{ |
||||
// Just a layer that supports Halide backend.
|
||||
LayerParams lrn; |
||||
lrn.type = "LRN"; |
||||
lrn.name = "testLRN"; |
||||
|
||||
// Some of layers that doesn't supports Halide backend yet.
|
||||
LayerParams mvn; |
||||
mvn.type = "MVN"; |
||||
mvn.name = "testMVN"; |
||||
|
||||
// Halide layer again.
|
||||
LayerParams lrn2; |
||||
lrn2.type = "LRN"; |
||||
lrn2.name = "testLRN2"; |
||||
|
||||
Net net; |
||||
int lrnId = net.addLayer(lrn.name, lrn.type, lrn); |
||||
net.connect(0, 0, lrnId, 0); |
||||
net.addLayerToPrev(mvn.name, mvn.type, mvn); |
||||
net.addLayerToPrev(lrn2.name, lrn2.type, lrn2); |
||||
|
||||
int sz[] = {4, 3, 5, 6}; |
||||
Mat input(4, &sz[0], CV_32F); |
||||
randu(input, -1.0f, 1.0f); |
||||
net.setInput(input); |
||||
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
||||
Mat outputDefault = net.forward().clone(); |
||||
|
||||
net.setPreferableBackend(DNN_BACKEND_HALIDE); |
||||
net.setInput(input); |
||||
Mat outputHalide = net.forward().clone(); |
||||
normAssert(outputDefault, outputHalide); |
||||
|
||||
net.setPreferableTarget(DNN_TARGET_OPENCL); |
||||
net.setInput(input); |
||||
outputHalide = net.forward().clone(); |
||||
normAssert(outputDefault, outputHalide); |
||||
} |
||||
#endif // HAVE_HALIDE
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Halide_layers, dnnBackendsAndTargetsWithHalide()); |
||||
|
||||
}} // namespace
|
Loading…
Reference in new issue