mirror of https://github.com/opencv/opencv.git
parent
fdf1996e2e
commit
302a5adcc2
29 changed files with 503139 additions and 584144 deletions
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,596 @@ |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Niko Li, newlife20080214@gmail.com |
||||
// Wang Weiyan, wangweiyanster@gmail.com |
||||
// Jia Haipeng, jiahaipeng95@gmail.com |
||||
// Nathan, liujun@multicorewareinc.com |
||||
// Peng Xiao, pengxiao@outlook.com |
||||
// Erping Pang, erping@multicorewareinc.com |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
// |
||||
|
||||
#define CV_HAAR_FEATURE_MAX 3 |
||||
|
||||
#define calc_sum(rect,offset) (sum[(rect).p0+offset] - sum[(rect).p1+offset] - sum[(rect).p2+offset] + sum[(rect).p3+offset]) |
||||
#define calc_sum1(rect,offset,i) (sum[(rect).p0[i]+offset] - sum[(rect).p1[i]+offset] - sum[(rect).p2[i]+offset] + sum[(rect).p3[i]+offset]) |
||||
|
||||
typedef int sumtype; |
||||
typedef float sqsumtype; |
||||
|
||||
#ifndef STUMP_BASED |
||||
#define STUMP_BASED 1 |
||||
#endif |
||||
|
||||
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode |
||||
{ |
||||
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64))); |
||||
float weight[CV_HAAR_FEATURE_MAX]; |
||||
float threshold; |
||||
float alpha[3] __attribute__((aligned (16))); |
||||
int left __attribute__((aligned (4))); |
||||
int right __attribute__((aligned (4))); |
||||
} |
||||
GpuHidHaarTreeNode; |
||||
|
||||
|
||||
//typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier |
||||
//{ |
||||
// int count __attribute__((aligned (4))); |
||||
// GpuHidHaarTreeNode* node __attribute__((aligned (8))); |
||||
// float* alpha __attribute__((aligned (8))); |
||||
//} |
||||
//GpuHidHaarClassifier; |
||||
|
||||
|
||||
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier |
||||
{ |
||||
int count __attribute__((aligned (4))); |
||||
float threshold __attribute__((aligned (4))); |
||||
int two_rects __attribute__((aligned (4))); |
||||
int reserved0 __attribute__((aligned (8))); |
||||
int reserved1 __attribute__((aligned (8))); |
||||
int reserved2 __attribute__((aligned (8))); |
||||
int reserved3 __attribute__((aligned (8))); |
||||
} |
||||
GpuHidHaarStageClassifier; |
||||
|
||||
|
||||
//typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade |
||||
//{ |
||||
// int count __attribute__((aligned (4))); |
||||
// int is_stump_based __attribute__((aligned (4))); |
||||
// int has_tilted_features __attribute__((aligned (4))); |
||||
// int is_tree __attribute__((aligned (4))); |
||||
// int pq0 __attribute__((aligned (4))); |
||||
// int pq1 __attribute__((aligned (4))); |
||||
// int pq2 __attribute__((aligned (4))); |
||||
// int pq3 __attribute__((aligned (4))); |
||||
// int p0 __attribute__((aligned (4))); |
||||
// int p1 __attribute__((aligned (4))); |
||||
// int p2 __attribute__((aligned (4))); |
||||
// int p3 __attribute__((aligned (4))); |
||||
// float inv_window_area __attribute__((aligned (4))); |
||||
//} GpuHidHaarClassifierCascade; |
||||
|
||||
|
||||
#ifdef PACKED_CLASSIFIER |
||||
// this code is scalar, one pixel -> one workitem |
||||
__kernel void gpuRunHaarClassifierCascadePacked( |
||||
global const GpuHidHaarStageClassifier * stagecascadeptr, |
||||
global const int4 * info, |
||||
global const GpuHidHaarTreeNode * nodeptr, |
||||
global const int * restrict sum, |
||||
global const float * restrict sqsum, |
||||
volatile global int4 * candidate, |
||||
const int pixelstep, |
||||
const int loopcount, |
||||
const int start_stage, |
||||
const int split_stage, |
||||
const int end_stage, |
||||
const int startnode, |
||||
const int splitnode, |
||||
const int4 p, |
||||
const int4 pq, |
||||
const float correction, |
||||
global const int* pNodesPK, |
||||
global const int4* pWGInfo |
||||
) |
||||
|
||||
{ |
||||
// this version used information provided for each workgroup |
||||
// no empty WG |
||||
int gid = (int)get_group_id(0); |
||||
int lid_x = (int)get_local_id(0); |
||||
int lid_y = (int)get_local_id(1); |
||||
int lid = lid_y*LSx+lid_x; |
||||
int4 WGInfo = pWGInfo[gid]; |
||||
int GroupX = (WGInfo.y >> 16)&0xFFFF; |
||||
int GroupY = (WGInfo.y >> 0 )& 0xFFFF; |
||||
int Width = (WGInfo.x >> 16)&0xFFFF; |
||||
int Height = (WGInfo.x >> 0 )& 0xFFFF; |
||||
int ImgOffset = WGInfo.z; |
||||
float ScaleFactor = as_float(WGInfo.w); |
||||
|
||||
#define DATA_SIZE_X (LSx+WND_SIZE_X) |
||||
#define DATA_SIZE_Y (LSy+WND_SIZE_Y) |
||||
#define DATA_SIZE (DATA_SIZE_X*DATA_SIZE_Y) |
||||
|
||||
local int SumL[DATA_SIZE]; |
||||
|
||||
// read input data window into local mem |
||||
for(int i = 0; i<DATA_SIZE; i+=(LSx*LSy)) |
||||
{ |
||||
int index = i+lid; // index in shared local memory |
||||
if(index<DATA_SIZE) |
||||
{// calc global x,y coordinat and read data from there |
||||
int x = min(GroupX + (index % (DATA_SIZE_X)),Width-1); |
||||
int y = min(GroupY + (index / (DATA_SIZE_X)),Height-1); |
||||
SumL[index] = sum[ImgOffset+y*pixelstep+x]; |
||||
} |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
|
||||
// calc variance_norm_factor for all stages |
||||
float variance_norm_factor; |
||||
int nodecounter= startnode; |
||||
int4 info1 = p; |
||||
int4 info2 = pq; |
||||
|
||||
{ |
||||
int xl = lid_x; |
||||
int yl = lid_y; |
||||
int OffsetLocal = yl * DATA_SIZE_X + xl; |
||||
int OffsetGlobal = (GroupY+yl)* pixelstep + (GroupX+xl); |
||||
|
||||
// add shift to get position on scaled image |
||||
OffsetGlobal += ImgOffset; |
||||
|
||||
float mean = |
||||
SumL[info1.y*DATA_SIZE_X+info1.x+OffsetLocal] - |
||||
SumL[info1.y*DATA_SIZE_X+info1.z+OffsetLocal] - |
||||
SumL[info1.w*DATA_SIZE_X+info1.x+OffsetLocal] + |
||||
SumL[info1.w*DATA_SIZE_X+info1.z+OffsetLocal]; |
||||
float sq = |
||||
sqsum[info2.y*pixelstep+info2.x+OffsetGlobal] - |
||||
sqsum[info2.y*pixelstep+info2.z+OffsetGlobal] - |
||||
sqsum[info2.w*pixelstep+info2.x+OffsetGlobal] + |
||||
sqsum[info2.w*pixelstep+info2.z+OffsetGlobal]; |
||||
|
||||
mean *= correction; |
||||
sq *= correction; |
||||
|
||||
variance_norm_factor = sq - mean * mean; |
||||
variance_norm_factor = (variance_norm_factor >=0.f) ? sqrt(variance_norm_factor) : 1.f; |
||||
}// end calc variance_norm_factor for all stages |
||||
|
||||
int result = (1.0f>0.0f); |
||||
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ ) |
||||
{// iterate until candidate is exist |
||||
float stage_sum = 0.0f; |
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) |
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier)); |
||||
int stagecount = stageinfo->count; |
||||
float stagethreshold = stageinfo->threshold; |
||||
int lcl_off = (lid_y*DATA_SIZE_X)+(lid_x); |
||||
for(int nodeloop = 0; nodeloop < stagecount; nodecounter++,nodeloop++ ) |
||||
{ |
||||
// simple macro to extract shorts from int |
||||
#define M0(_t) ((_t)&0xFFFF) |
||||
#define M1(_t) (((_t)>>16)&0xFFFF) |
||||
// load packed node data from global memory (L3) into registers |
||||
global const int4* pN = (__global int4*)(pNodesPK+nodecounter*NODE_SIZE); |
||||
int4 n0 = pN[0]; |
||||
int4 n1 = pN[1]; |
||||
int4 n2 = pN[2]; |
||||
float nodethreshold = as_float(n2.y) * variance_norm_factor; |
||||
// calc sum of intensity pixels according to node information |
||||
float classsum = |
||||
(SumL[M0(n0.x)+lcl_off] - SumL[M1(n0.x)+lcl_off] - SumL[M0(n0.y)+lcl_off] + SumL[M1(n0.y)+lcl_off]) * as_float(n1.z) + |
||||
(SumL[M0(n0.z)+lcl_off] - SumL[M1(n0.z)+lcl_off] - SumL[M0(n0.w)+lcl_off] + SumL[M1(n0.w)+lcl_off]) * as_float(n1.w) + |
||||
(SumL[M0(n1.x)+lcl_off] - SumL[M1(n1.x)+lcl_off] - SumL[M0(n1.y)+lcl_off] + SumL[M1(n1.y)+lcl_off]) * as_float(n2.x); |
||||
//accumulate stage responce |
||||
stage_sum += (classsum >= nodethreshold) ? as_float(n2.w) : as_float(n2.z); |
||||
} |
||||
result = (stage_sum >= stagethreshold); |
||||
}// next stage if needed |
||||
|
||||
if(result) |
||||
{// all stages will be passed and there is a detected face on the tested position |
||||
int index = 1+atomic_inc((volatile global int*)candidate); //get index to write global data with face info |
||||
if(index<OUTPUTSZ) |
||||
{ |
||||
int x = GroupX+lid_x; |
||||
int y = GroupY+lid_y; |
||||
int4 candidate_result; |
||||
candidate_result.x = convert_int_rtn(x*ScaleFactor); |
||||
candidate_result.y = convert_int_rtn(y*ScaleFactor); |
||||
candidate_result.z = convert_int_rtn(ScaleFactor*WND_SIZE_X); |
||||
candidate_result.w = convert_int_rtn(ScaleFactor*WND_SIZE_Y); |
||||
candidate[index] = candidate_result; |
||||
} |
||||
} |
||||
}//end gpuRunHaarClassifierCascade |
||||
#else |
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade( |
||||
global GpuHidHaarStageClassifier * stagecascadeptr, |
||||
global int4 * info, |
||||
global GpuHidHaarTreeNode * nodeptr, |
||||
global const int * restrict sum1, |
||||
global const float * restrict sqsum1, |
||||
global int4 * candidate, |
||||
const int pixelstep, |
||||
const int loopcount, |
||||
const int start_stage, |
||||
const int split_stage, |
||||
const int end_stage, |
||||
const int startnode, |
||||
const int splitnode, |
||||
const int4 p, |
||||
const int4 pq, |
||||
const float correction) |
||||
{ |
||||
int grpszx = get_local_size(0); |
||||
int grpszy = get_local_size(1); |
||||
int grpnumx = get_num_groups(0); |
||||
int grpidx = get_group_id(0); |
||||
int lclidx = get_local_id(0); |
||||
int lclidy = get_local_id(1); |
||||
|
||||
int lcl_sz = mul24(grpszx,grpszy); |
||||
int lcl_id = mad24(lclidy,grpszx,lclidx); |
||||
|
||||
__local int lclshare[1024]; |
||||
__local int* lcldata = lclshare;//for save win data |
||||
__local int* glboutindex = lcldata + 28*28;//for save global out index |
||||
__local int* lclcount = glboutindex + 1;//for save the numuber of temp pass pixel |
||||
__local int* lcloutindex = lclcount + 1;//for save info of temp pass pixel |
||||
__local float* partialsum = (__local float*)(lcloutindex + (lcl_sz<<1)); |
||||
glboutindex[0]=0; |
||||
int outputoff = mul24(grpidx,256); |
||||
|
||||
//assume window size is 20X20 |
||||
#define WINDOWSIZE 20+1 |
||||
//make sure readwidth is the multiple of 4 |
||||
//ystep =1, from host code |
||||
int readwidth = ((grpszx-1 + WINDOWSIZE+3)>>2)<<2; |
||||
int readheight = grpszy-1+WINDOWSIZE; |
||||
int read_horiz_cnt = readwidth >> 2;//each read int4 |
||||
int total_read = mul24(read_horiz_cnt,readheight); |
||||
int read_loop = (total_read + lcl_sz - 1) >> 6; |
||||
candidate[outputoff+(lcl_id<<2)] = (int4)0; |
||||
candidate[outputoff+(lcl_id<<2)+1] = (int4)0; |
||||
candidate[outputoff+(lcl_id<<2)+2] = (int4)0; |
||||
candidate[outputoff+(lcl_id<<2)+3] = (int4)0; |
||||
for(int scalei = 0; scalei <loopcount; scalei++) |
||||
{ |
||||
int4 scaleinfo1= info[scalei]; |
||||
int height = scaleinfo1.x & 0xffff; |
||||
int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16; |
||||
int totalgrp = scaleinfo1.y & 0xffff; |
||||
int imgoff = scaleinfo1.z; |
||||
float factor = as_float(scaleinfo1.w); |
||||
|
||||
__global const int * sum = sum1 + imgoff; |
||||
__global const float * sqsum = sqsum1 + imgoff; |
||||
for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx) |
||||
{ |
||||
int grpidy = grploop / grpnumperline; |
||||
int grpidx = grploop - mul24(grpidy, grpnumperline); |
||||
int x = mad24(grpidx,grpszx,lclidx); |
||||
int y = mad24(grpidy,grpszy,lclidy); |
||||
int grpoffx = x-lclidx; |
||||
int grpoffy = y-lclidy; |
||||
|
||||
for(int i=0; i<read_loop; i++) |
||||
{ |
||||
int pos_id = mad24(i,lcl_sz,lcl_id); |
||||
pos_id = pos_id < total_read ? pos_id : 0; |
||||
|
||||
int lcl_y = pos_id / read_horiz_cnt; |
||||
int lcl_x = pos_id - mul24(lcl_y, read_horiz_cnt); |
||||
|
||||
int glb_x = grpoffx + (lcl_x<<2); |
||||
int glb_y = grpoffy + lcl_y; |
||||
|
||||
int glb_off = mad24(min(glb_y, height + WINDOWSIZE - 1),pixelstep,glb_x); |
||||
int4 data = *(__global int4*)&sum[glb_off]; |
||||
int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2); |
||||
|
||||
vstore4(data, 0, &lcldata[lcl_off]); |
||||
} |
||||
|
||||
lcloutindex[lcl_id] = 0; |
||||
lclcount[0] = 0; |
||||
int result = 1; |
||||
int nodecounter= startnode; |
||||
float mean, variance_norm_factor; |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
|
||||
int lcl_off = mad24(lclidy,readwidth,lclidx); |
||||
int4 cascadeinfo1, cascadeinfo2; |
||||
cascadeinfo1 = p; |
||||
cascadeinfo2 = pq; |
||||
|
||||
cascadeinfo1.x +=lcl_off; |
||||
cascadeinfo1.z +=lcl_off; |
||||
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] - |
||||
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)]) |
||||
*correction; |
||||
|
||||
int p_offset = mad24(y, pixelstep, x); |
||||
|
||||
cascadeinfo2.x +=p_offset; |
||||
cascadeinfo2.z +=p_offset; |
||||
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] - |
||||
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)]; |
||||
|
||||
variance_norm_factor = variance_norm_factor * correction - mean * mean; |
||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f; |
||||
|
||||
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ ) |
||||
{ |
||||
float stage_sum = 0.f; |
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) |
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier)); |
||||
int stagecount = stageinfo->count; |
||||
float stagethreshold = stageinfo->threshold; |
||||
for(int nodeloop = 0; nodeloop < stagecount; ) |
||||
{ |
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*) |
||||
(((__global uchar*)nodeptr) + nodecounter * sizeof(GpuHidHaarTreeNode)); |
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0])); |
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); |
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0])); |
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0])); |
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0])); |
||||
|
||||
float nodethreshold = w.w * variance_norm_factor; |
||||
|
||||
info1.x +=lcl_off; |
||||
info1.z +=lcl_off; |
||||
info2.x +=lcl_off; |
||||
info2.z +=lcl_off; |
||||
|
||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] - |
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x; |
||||
|
||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] - |
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y; |
||||
|
||||
info3.x +=lcl_off; |
||||
info3.z +=lcl_off; |
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] - |
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z; |
||||
|
||||
bool passThres = classsum >= nodethreshold; |
||||
#if STUMP_BASED |
||||
stage_sum += passThres ? alpha3.y : alpha3.x; |
||||
nodecounter++; |
||||
nodeloop++; |
||||
#else |
||||
bool isRootNode = (nodecounter & 1) == 0; |
||||
if(isRootNode) |
||||
{ |
||||
if( (passThres && currentnodeptr->right) || |
||||
(!passThres && currentnodeptr->left)) |
||||
{ |
||||
nodecounter ++; |
||||
} |
||||
else |
||||
{ |
||||
stage_sum += alpha3.x; |
||||
nodecounter += 2; |
||||
nodeloop ++; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
stage_sum += passThres ? alpha3.z : alpha3.y; |
||||
nodecounter ++; |
||||
nodeloop ++; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
result = (stage_sum >= stagethreshold) ? 1 : 0; |
||||
} |
||||
if(factor < 2) |
||||
{ |
||||
if(result && lclidx %2 ==0 && lclidy %2 ==0 ) |
||||
{ |
||||
int queueindex = atomic_inc(lclcount); |
||||
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx; |
||||
lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
if(result) |
||||
{ |
||||
int queueindex = atomic_inc(lclcount); |
||||
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx; |
||||
lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor); |
||||
} |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
int queuecount = lclcount[0]; |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
nodecounter = splitnode; |
||||
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++) |
||||
{ |
||||
lclcount[0]=0; |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
|
||||
//int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop); |
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) |
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier)); |
||||
int stagecount = stageinfo->count; |
||||
float stagethreshold = stageinfo->threshold; |
||||
|
||||
int perfscale = queuecount > 4 ? 3 : 2; |
||||
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale; |
||||
int lcl_compute_win = lcl_sz >> perfscale; |
||||
int lcl_compute_win_id = (lcl_id >>(6-perfscale)); |
||||
int lcl_loops = (stagecount + lcl_compute_win -1) >> (6-perfscale); |
||||
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale)); |
||||
for(int queueloop=0; queueloop<queuecount_loop; queueloop++) |
||||
{ |
||||
float stage_sum = 0.f; |
||||
int temp_coord = lcloutindex[lcl_compute_win_id<<1]; |
||||
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]); |
||||
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff); |
||||
|
||||
if(lcl_compute_win_id < queuecount) |
||||
{ |
||||
int tempnodecounter = lcl_compute_id; |
||||
float part_sum = 0.f; |
||||
const int stump_factor = STUMP_BASED ? 1 : 2; |
||||
int root_offset = 0; |
||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stagecount;) |
||||
{ |
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*) |
||||
(((__global uchar*)nodeptr) + sizeof(GpuHidHaarTreeNode) * ((nodecounter + tempnodecounter) * stump_factor + root_offset)); |
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0])); |
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); |
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0])); |
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0])); |
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0])); |
||||
float nodethreshold = w.w * variance_norm_factor; |
||||
|
||||
info1.x +=queue_pixel; |
||||
info1.z +=queue_pixel; |
||||
info2.x +=queue_pixel; |
||||
info2.z +=queue_pixel; |
||||
|
||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] - |
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x; |
||||
|
||||
|
||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] - |
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y; |
||||
|
||||
info3.x +=queue_pixel; |
||||
info3.z +=queue_pixel; |
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] - |
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z; |
||||
|
||||
bool passThres = classsum >= nodethreshold; |
||||
#if STUMP_BASED |
||||
part_sum += passThres ? alpha3.y : alpha3.x; |
||||
tempnodecounter += lcl_compute_win; |
||||
lcl_loop++; |
||||
#else |
||||
if(root_offset == 0) |
||||
{ |
||||
if( (passThres && currentnodeptr->right) || |
||||
(!passThres && currentnodeptr->left)) |
||||
{ |
||||
root_offset = 1; |
||||
} |
||||
else |
||||
{ |
||||
part_sum += alpha3.x; |
||||
tempnodecounter += lcl_compute_win; |
||||
lcl_loop++; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
part_sum += passThres ? alpha3.z : alpha3.y; |
||||
tempnodecounter += lcl_compute_win; |
||||
lcl_loop++; |
||||
root_offset = 0; |
||||
} |
||||
#endif |
||||
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++) |
||||
partialsum[lcl_id]=part_sum; |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
if(lcl_compute_win_id < queuecount) |
||||
{ |
||||
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++) |
||||
{ |
||||
stage_sum += partialsum[lcl_id+i]; |
||||
} |
||||
if(stage_sum >= stagethreshold && (lcl_compute_id==0)) |
||||
{ |
||||
int queueindex = atomic_inc(lclcount); |
||||
lcloutindex[queueindex<<1] = temp_coord; |
||||
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor); |
||||
} |
||||
lcl_compute_win_id +=(1<<perfscale); |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++) |
||||
|
||||
queuecount = lclcount[0]; |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
nodecounter += stagecount; |
||||
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++) |
||||
|
||||
if(lcl_id<queuecount) |
||||
{ |
||||
int temp = lcloutindex[lcl_id<<1]; |
||||
int x = mad24(grpidx,grpszx,temp & 0xffff); |
||||
int y = mad24(grpidy,grpszy,((temp & (int)0xffff0000) >> 16)); |
||||
temp = glboutindex[0]; |
||||
int4 candidate_result; |
||||
candidate_result.zw = (int2)convert_int_rte(factor*20.f); |
||||
candidate_result.x = convert_int_rte(x*factor); |
||||
candidate_result.y = convert_int_rte(y*factor); |
||||
atomic_inc(glboutindex); |
||||
|
||||
int i = outputoff+temp+lcl_id; |
||||
if(candidate[i].z == 0) |
||||
{ |
||||
candidate[i] = candidate_result; |
||||
} |
||||
else |
||||
{ |
||||
for(i=i+1;;i++) |
||||
{ |
||||
if(candidate[i].z == 0) |
||||
{ |
||||
candidate[i] = candidate_result; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
}//end for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx) |
||||
}//end for(int scalei = 0; scalei <loopcount; scalei++) |
||||
} |
||||
#endif |
@ -0,0 +1,323 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Wu Xinglong, wxl370@126.com |
||||
// Sen Liu, swjtuls1987@126.com |
||||
// Peng Xiao, pengxiao@outlook.com |
||||
// Erping Pang, erping@multicorewareinc.com |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#define CV_HAAR_FEATURE_MAX 3 |
||||
typedef int sumtype; |
||||
typedef float sqsumtype; |
||||
|
||||
typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode |
||||
{ |
||||
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64))); |
||||
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/; |
||||
float threshold /*__attribute__((aligned (4)))*/; |
||||
float alpha[3] __attribute__((aligned(16))); |
||||
int left __attribute__((aligned(4))); |
||||
int right __attribute__((aligned(4))); |
||||
} |
||||
GpuHidHaarTreeNode; |
||||
//typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier |
||||
//{ |
||||
// int count __attribute__((aligned(4))); |
||||
// GpuHidHaarTreeNode *node __attribute__((aligned(8))); |
||||
// float *alpha __attribute__((aligned(8))); |
||||
//} |
||||
//GpuHidHaarClassifier; |
||||
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier |
||||
{ |
||||
int count __attribute__((aligned(4))); |
||||
float threshold __attribute__((aligned(4))); |
||||
int two_rects __attribute__((aligned(4))); |
||||
int reserved0 __attribute__((aligned(8))); |
||||
int reserved1 __attribute__((aligned(8))); |
||||
int reserved2 __attribute__((aligned(8))); |
||||
int reserved3 __attribute__((aligned(8))); |
||||
} |
||||
GpuHidHaarStageClassifier; |
||||
//typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade |
||||
//{ |
||||
// int count __attribute__((aligned(4))); |
||||
// int is_stump_based __attribute__((aligned(4))); |
||||
// int has_tilted_features __attribute__((aligned(4))); |
||||
// int is_tree __attribute__((aligned(4))); |
||||
// int pq0 __attribute__((aligned(4))); |
||||
// int pq1 __attribute__((aligned(4))); |
||||
// int pq2 __attribute__((aligned(4))); |
||||
// int pq3 __attribute__((aligned(4))); |
||||
// int p0 __attribute__((aligned(4))); |
||||
// int p1 __attribute__((aligned(4))); |
||||
// int p2 __attribute__((aligned(4))); |
||||
// int p3 __attribute__((aligned(4))); |
||||
// float inv_window_area __attribute__((aligned(4))); |
||||
//} GpuHidHaarClassifierCascade; |
||||
|
||||
__kernel void gpuRunHaarClassifierCascade_scaled2( |
||||
global GpuHidHaarStageClassifier *stagecascadeptr_, |
||||
global int4 *info, |
||||
global GpuHidHaarTreeNode *nodeptr_, |
||||
global const int *restrict sum, |
||||
global const float *restrict sqsum, |
||||
global int4 *candidate, |
||||
const int rows, |
||||
const int cols, |
||||
const int step, |
||||
const int loopcount, |
||||
const int start_stage, |
||||
const int split_stage, |
||||
const int end_stage, |
||||
const int startnode, |
||||
global int4 *p, |
||||
global float *correction, |
||||
const int nodecount) |
||||
{ |
||||
int grpszx = get_local_size(0); |
||||
int grpszy = get_local_size(1); |
||||
int grpnumx = get_num_groups(0); |
||||
int grpidx = get_group_id(0); |
||||
int lclidx = get_local_id(0); |
||||
int lclidy = get_local_id(1); |
||||
int lcl_id = mad24(lclidy, grpszx, lclidx); |
||||
__local int glboutindex[1]; |
||||
__local int lclcount[1]; |
||||
__local int lcloutindex[64]; |
||||
glboutindex[0] = 0; |
||||
int outputoff = mul24(grpidx, 256); |
||||
candidate[outputoff + (lcl_id << 2)] = (int4)0; |
||||
candidate[outputoff + (lcl_id << 2) + 1] = (int4)0; |
||||
candidate[outputoff + (lcl_id << 2) + 2] = (int4)0; |
||||
candidate[outputoff + (lcl_id << 2) + 3] = (int4)0; |
||||
int max_idx = rows * cols - 1; |
||||
for (int scalei = 0; scalei < loopcount; scalei++) |
||||
{ |
||||
int4 scaleinfo1 = info[scalei]; |
||||
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16; |
||||
int totalgrp = scaleinfo1.y & 0xffff; |
||||
float factor = as_float(scaleinfo1.w); |
||||
float correction_t = correction[scalei]; |
||||
float ystep = max(2.0f, factor); |
||||
|
||||
for (int grploop = get_group_id(0); grploop < totalgrp; grploop += grpnumx) |
||||
{ |
||||
int4 cascadeinfo = p[scalei]; |
||||
int grpidy = grploop / grpnumperline; |
||||
int grpidx = grploop - mul24(grpidy, grpnumperline); |
||||
int ix = mad24(grpidx, grpszx, lclidx); |
||||
int iy = mad24(grpidy, grpszy, lclidy); |
||||
int x = round(ix * ystep); |
||||
int y = round(iy * ystep); |
||||
lcloutindex[lcl_id] = 0; |
||||
lclcount[0] = 0; |
||||
int nodecounter; |
||||
float mean, variance_norm_factor; |
||||
//if((ix < width) && (iy < height)) |
||||
{ |
||||
const int p_offset = mad24(y, step, x); |
||||
cascadeinfo.x += p_offset; |
||||
cascadeinfo.z += p_offset; |
||||
mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] |
||||
- sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - |
||||
sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] |
||||
+ sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]) |
||||
* correction_t; |
||||
variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] |
||||
- sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - |
||||
sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] |
||||
+ sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]; |
||||
variance_norm_factor = variance_norm_factor * correction_t - mean * mean; |
||||
variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f; |
||||
bool result = true; |
||||
nodecounter = startnode + nodecount * scalei; |
||||
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++) |
||||
{ |
||||
float stage_sum = 0.f; |
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) |
||||
(((__global uchar*)stagecascadeptr_)+stageloop*sizeof(GpuHidHaarStageClassifier)); |
||||
int stagecount = stageinfo->count; |
||||
for (int nodeloop = 0; nodeloop < stagecount;) |
||||
{ |
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*) |
||||
(((__global uchar*)nodeptr_) + nodecounter * sizeof(GpuHidHaarTreeNode)); |
||||
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0])); |
||||
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0])); |
||||
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0])); |
||||
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0])); |
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0])); |
||||
float nodethreshold = w.w * variance_norm_factor; |
||||
|
||||
info1.x += p_offset; |
||||
info1.z += p_offset; |
||||
info2.x += p_offset; |
||||
info2.z += p_offset; |
||||
info3.x += p_offset; |
||||
info3.z += p_offset; |
||||
float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)] |
||||
- sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] - |
||||
sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)] |
||||
+ sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x; |
||||
classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)] |
||||
- sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] - |
||||
sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)] |
||||
+ sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y; |
||||
classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)] |
||||
- sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] - |
||||
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] |
||||
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z; |
||||
|
||||
bool passThres = (classsum >= nodethreshold) ? 1 : 0; |
||||
|
||||
#if STUMP_BASED |
||||
stage_sum += passThres ? alpha3.y : alpha3.x; |
||||
nodecounter++; |
||||
nodeloop++; |
||||
#else |
||||
bool isRootNode = (nodecounter & 1) == 0; |
||||
if(isRootNode) |
||||
{ |
||||
if( (passThres && currentnodeptr->right) || |
||||
(!passThres && currentnodeptr->left)) |
||||
{ |
||||
nodecounter ++; |
||||
} |
||||
else |
||||
{ |
||||
stage_sum += alpha3.x; |
||||
nodecounter += 2; |
||||
nodeloop ++; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
stage_sum += (passThres ? alpha3.z : alpha3.y); |
||||
nodecounter ++; |
||||
nodeloop ++; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
result = (stage_sum >= stageinfo->threshold) ? 1 : 0; |
||||
} |
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
|
||||
if (result) |
||||
{ |
||||
int queueindex = atomic_inc(lclcount); |
||||
lcloutindex[queueindex] = (y << 16) | x; |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
int queuecount = lclcount[0]; |
||||
|
||||
if (lcl_id < queuecount) |
||||
{ |
||||
int temp = lcloutindex[lcl_id]; |
||||
int x = temp & 0xffff; |
||||
int y = (temp & (int)0xffff0000) >> 16; |
||||
temp = atomic_inc(glboutindex); |
||||
int4 candidate_result; |
||||
candidate_result.zw = (int2)convert_int_rte(factor * 20.f); |
||||
candidate_result.x = x; |
||||
candidate_result.y = y; |
||||
|
||||
int i = outputoff+temp+lcl_id; |
||||
if(candidate[i].z == 0) |
||||
{ |
||||
candidate[i] = candidate_result; |
||||
} |
||||
else |
||||
{ |
||||
for(i=i+1;;i++) |
||||
{ |
||||
if(candidate[i].z == 0) |
||||
{ |
||||
candidate[i] = candidate_result; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, const int nodenum) |
||||
{ |
||||
const int counter = get_global_id(0); |
||||
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0; |
||||
GpuHidHaarTreeNode t1 = *(__global GpuHidHaarTreeNode*) |
||||
(((__global uchar*)orinode) + counter * sizeof(GpuHidHaarTreeNode)); |
||||
__global GpuHidHaarTreeNode* pNew = (__global GpuHidHaarTreeNode*) |
||||
(((__global uchar*)newnode) + (counter + nodenum) * sizeof(GpuHidHaarTreeNode)); |
||||
|
||||
#pragma unroll |
||||
for (i = 0; i < 3; i++) |
||||
{ |
||||
tr_x[i] = (int)(t1.p[i][0] * scale + 0.5f); |
||||
tr_y[i] = (int)(t1.p[i][1] * scale + 0.5f); |
||||
tr_w[i] = (int)(t1.p[i][2] * scale + 0.5f); |
||||
tr_h[i] = (int)(t1.p[i][3] * scale + 0.5f); |
||||
} |
||||
|
||||
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]); |
||||
|
||||
#pragma unroll |
||||
for (i = 0; i < 3; i++) |
||||
{ |
||||
pNew->p[i][0] = tr_x[i]; |
||||
pNew->p[i][1] = tr_y[i]; |
||||
pNew->p[i][2] = tr_x[i] + tr_w[i]; |
||||
pNew->p[i][3] = tr_y[i] + tr_h[i]; |
||||
pNew->weight[i] = t1.weight[i] * weight_scale; |
||||
} |
||||
|
||||
pNew->left = t1.left; |
||||
pNew->right = t1.right; |
||||
pNew->threshold = t1.threshold; |
||||
pNew->alpha[0] = t1.alpha[0]; |
||||
pNew->alpha[1] = t1.alpha[1]; |
||||
pNew->alpha[2] = t1.alpha[2]; |
||||
} |
Loading…
Reference in new issue