converted Haar cascades to the new format; now they are handled with C++ code.

pull/2020/head
Vadim Pisarevsky 11 years ago
parent fdf1996e2e
commit 302a5adcc2
  1. 27570
      data/haarcascades/haarcascade_eye.xml
  2. 55682
      data/haarcascades/haarcascade_eye_tree_eyeglasses.xml
  3. 50416
      data/haarcascades/haarcascade_frontalface_alt.xml
  4. 44174
      data/haarcascades/haarcascade_frontalface_alt2.xml
  5. 199880
      data/haarcascades/haarcascade_frontalface_alt_tree.xml
  6. 68931
      data/haarcascades/haarcascade_frontalface_default.xml
  7. 34865
      data/haarcascades/haarcascade_fullbody.xml
  8. 17096
      data/haarcascades/haarcascade_lefteye_2splits.xml
  9. 28858
      data/haarcascades/haarcascade_lowerbody.xml
  10. 19545
      data/haarcascades/haarcascade_mcs_eyepair_big.xml
  11. 22467
      data/haarcascades/haarcascade_mcs_eyepair_small.xml
  12. 16768
      data/haarcascades/haarcascade_mcs_leftear.xml
  13. 42790
      data/haarcascades/haarcascade_mcs_lefteye.xml
  14. 39460
      data/haarcascades/haarcascade_mcs_mouth.xml
  15. 87555
      data/haarcascades/haarcascade_mcs_nose.xml
  16. 17414
      data/haarcascades/haarcascade_mcs_rightear.xml
  17. 76147
      data/haarcascades/haarcascade_mcs_righteye.xml
  18. 83439
      data/haarcascades/haarcascade_mcs_upperbody.xml
  19. 61525
      data/haarcascades/haarcascade_profileface.xml
  20. 17143
      data/haarcascades/haarcascade_righteye_2splits.xml
  21. 15083
      data/haarcascades/haarcascade_smile.xml
  22. 57618
      data/haarcascades/haarcascade_upperbody.xml
  23. 19
      modules/objdetect/src/cascadedetect.cpp
  24. 73
      modules/objdetect/src/cascadedetect.hpp
  25. 9
      modules/objdetect/src/cascadedetect_convert.cpp
  26. 1835
      modules/objdetect/src/cascadedetect_ocl.cpp
  27. 596
      modules/objdetect/src/opencl/haarobjectdetect.cl
  28. 323
      modules/objdetect/src/opencl/haarobjectdetect_scaled2.cl
  29. 2
      samples/cpp/ufacedetect.cpp

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -474,16 +474,18 @@ HaarEvaluator::~HaarEvaluator()
bool HaarEvaluator::read(const FileNode& node)
{
features->resize(node.size());
featuresPtr = &(*features)[0];
FileNodeIterator it = node.begin(), it_end = node.end();
size_t i, n = node.size();
CV_Assert(n > 0);
features.resize(n);
featuresPtr = &features[0];
FileNodeIterator it = node.begin();
hasTiltedFeatures = false;
for(int i = 0; it != it_end; ++it, i++)
for(i = 0; i < n; i++, ++it)
{
if(!featuresPtr[i].read(*it))
if(!features[i].read(*it))
return false;
if( featuresPtr[i].tilted )
if( features[i].tilted )
hasTiltedFeatures = true;
}
return true;
@ -494,7 +496,6 @@ Ptr<FeatureEvaluator> HaarEvaluator::clone() const
Ptr<HaarEvaluator> ret = makePtr<HaarEvaluator>();
ret->origWinSize = origWinSize;
ret->features = features;
ret->featuresPtr = &(*ret->features)[0];
ret->hasTiltedFeatures = hasTiltedFeatures;
ret->sum0 = sum0, ret->sqsum0 = sqsum0, ret->tilted0 = tilted0;
ret->sum = sum, ret->sqsum = sqsum, ret->tilted = tilted;
@ -540,10 +541,10 @@ bool HaarEvaluator::setImage( const Mat &image, Size _origWinSize )
CV_SUM_PTRS( p[0], p[1], p[2], p[3], sdata, normrect, sumStep );
CV_SUM_PTRS( pq[0], pq[1], pq[2], pq[3], sqdata, normrect, sqsumStep );
size_t fi, nfeatures = features->size();
size_t fi, nfeatures = features.size();
for( fi = 0; fi < nfeatures; fi++ )
featuresPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted );
optfeaturesPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted );
return true;
}

@ -186,6 +186,32 @@ protected:
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)
#define CV_SUM_OFS( p0, p1, p2, p3, sum, rect, step ) \
/* (x, y) */ \
(p0) = sum + (rect).x + (step) * (rect).y, \
/* (x + w, y) */ \
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
/* (x + w, y) */ \
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
/* (x + w, y + h) */ \
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
#define CV_TILTED_OFS( p0, p1, p2, p3, tilted, rect, step ) \
/* (x, y) */ \
(p0) = tilted + (rect).x + (step) * (rect).y, \
/* (x - h, y + h) */ \
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
/* (x + w, y + w) */ \
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
/* (x + w - h, y + w + h) */ \
(p3) = tilted + (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height)
#define CALC_SUM_(p0, p1, p2, p3, offset) \
((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)
//---------------------------------------------- HaarEvaluator ---------------------------------------
class HaarEvaluator : public FeatureEvaluator
@ -195,8 +221,6 @@ public:
{
Feature();
float calc( int offset ) const;
void updatePtrs( const Mat& sum );
bool read( const FileNode& node );
bool tilted;
@ -208,8 +232,19 @@ public:
Rect r;
float weight;
} rect[RECT_NUM];
};
struct OptFeature
{
OptFeature();
const int* p[RECT_NUM][4];
enum { RECT_NUM = Feature::RECT_NUM };
float calc( const int* pwin ) const;
void setPtrs( const Mat& sum, const Feature& f );
int ofs[RECT_NUM][4];
float weight[RECT_NUM];
};
HaarEvaluator();
@ -223,23 +258,26 @@ public:
virtual bool setWindow(Point pt);
double operator()(int featureIdx) const
{ return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; }
{ return optfeaturesPtr[featureIdx].calc(pwin) * varianceNormFactor; }
virtual double calcOrd(int featureIdx) const
{ return (*this)(featureIdx); }
protected:
Size origWinSize;
Ptr<std::vector<Feature> > features;
Feature* featuresPtr; // optimization
std::vector<Feature> features;
std::vector<OptFeature> optfeatures;
OptFeature* optfeaturesPtr; // optimization
bool hasTiltedFeatures;
Mat sum0, sqsum0, tilted0;
Mat sum, sqsum, tilted;
Rect normrect;
const int *p[4];
const double *pq[4];
int p[4];
int pq[4];
const int* pwin;
const double* pqwin;
int offset;
double varianceNormFactor;
};
@ -249,12 +287,18 @@ inline HaarEvaluator::Feature :: Feature()
tilted = false;
rect[0].r = rect[1].r = rect[2].r = Rect();
rect[0].weight = rect[1].weight = rect[2].weight = 0;
p[0][0] = p[0][1] = p[0][2] = p[0][3] =
p[1][0] = p[1][1] = p[1][2] = p[1][3] =
p[2][0] = p[2][1] = p[2][2] = p[2][3] = 0;
}
inline float HaarEvaluator::Feature :: calc( int _offset ) const
inline HaarEvaluator::OptFeature :: OptFeature()
{
weight[0] = weight[1] = weight[2] = 0.f;
ofs[0][0] = ofs[0][1] = ofs[0][2] = ofs[0][3] =
ofs[1][0] = ofs[1][1] = ofs[1][2] = ofs[1][3] =
ofs[2][0] = ofs[2][1] = ofs[2][2] = ofs[2][3] = 0;
}
/*inline float HaarEvaluator::Feature :: calc( int _offset ) const
{
float ret = rect[0].weight * CALC_SUM(p[0], _offset) + rect[1].weight * CALC_SUM(p[1], _offset);
@ -262,12 +306,13 @@ inline float HaarEvaluator::Feature :: calc( int _offset ) const
ret += rect[2].weight * CALC_SUM(p[2], _offset);
return ret;
}
}*/
inline void HaarEvaluator::Feature :: updatePtrs( const Mat& _sum )
inline void HaarEvaluator::OptFeature :: setPtrs( const Mat& _sum, const Feature& _f )
{
const int* ptr = (const int*)_sum.data;
size_t step = _sum.step/sizeof(ptr[0]);
size_t tiltedofs =
if (tilted)
{
CV_TILTED_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step );

@ -203,7 +203,8 @@ static bool convert(const String& oldcascade, const String& newcascade)
for( i = 0; i < nstages; i++ )
maxWeakCount = std::max(maxWeakCount, stages[i].weaks.size());
newfs << "stageType" << "BOOST"
newfs << "cascade" << "{:opencv-cascade-classifier"
<< "stageType" << "BOOST"
<< "featureType" << "HAAR"
<< "height" << cascadesize.width
<< "width" << cascadesize.height
@ -250,8 +251,8 @@ static bool convert(const String& oldcascade, const String& newcascade)
{
if( j >= 2 && fabs(f.rect[j].weight) < FLT_EPSILON )
break;
newfs << f.rect[j].r.x << f.rect[j].r.y <<
f.rect[j].r.width << f.rect[j].r.height << f.rect[j].weight;
newfs << "[" << f.rect[j].r.x << f.rect[j].r.y <<
f.rect[j].r.width << f.rect[j].r.height << f.rect[j].weight << "]";
}
newfs << "]";
if( f.tilted )
@ -259,7 +260,7 @@ static bool convert(const String& oldcascade, const String& newcascade)
newfs << "}";
}
newfs << "]";
newfs << "]" << "}";
return true;
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,596 @@
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Wang Weiyan, wangweiyanster@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Nathan, liujun@multicorewareinc.com
// Peng Xiao, pengxiao@outlook.com
// Erping Pang, erping@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
#define CV_HAAR_FEATURE_MAX 3
#define calc_sum(rect,offset) (sum[(rect).p0+offset] - sum[(rect).p1+offset] - sum[(rect).p2+offset] + sum[(rect).p3+offset])
#define calc_sum1(rect,offset,i) (sum[(rect).p0[i]+offset] - sum[(rect).p1[i]+offset] - sum[(rect).p2[i]+offset] + sum[(rect).p3[i]+offset])
typedef int sumtype;
typedef float sqsumtype;
#ifndef STUMP_BASED
#define STUMP_BASED 1
#endif
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
{
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
float weight[CV_HAAR_FEATURE_MAX];
float threshold;
float alpha[3] __attribute__((aligned (16)));
int left __attribute__((aligned (4)));
int right __attribute__((aligned (4)));
}
GpuHidHaarTreeNode;
//typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
//{
// int count __attribute__((aligned (4)));
// GpuHidHaarTreeNode* node __attribute__((aligned (8)));
// float* alpha __attribute__((aligned (8)));
//}
//GpuHidHaarClassifier;
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
{
int count __attribute__((aligned (4)));
float threshold __attribute__((aligned (4)));
int two_rects __attribute__((aligned (4)));
int reserved0 __attribute__((aligned (8)));
int reserved1 __attribute__((aligned (8)));
int reserved2 __attribute__((aligned (8)));
int reserved3 __attribute__((aligned (8)));
}
GpuHidHaarStageClassifier;
//typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
//{
// int count __attribute__((aligned (4)));
// int is_stump_based __attribute__((aligned (4)));
// int has_tilted_features __attribute__((aligned (4)));
// int is_tree __attribute__((aligned (4)));
// int pq0 __attribute__((aligned (4)));
// int pq1 __attribute__((aligned (4)));
// int pq2 __attribute__((aligned (4)));
// int pq3 __attribute__((aligned (4)));
// int p0 __attribute__((aligned (4)));
// int p1 __attribute__((aligned (4)));
// int p2 __attribute__((aligned (4)));
// int p3 __attribute__((aligned (4)));
// float inv_window_area __attribute__((aligned (4)));
//} GpuHidHaarClassifierCascade;
#ifdef PACKED_CLASSIFIER
// this code is scalar, one pixel -> one workitem
__kernel void gpuRunHaarClassifierCascadePacked(
global const GpuHidHaarStageClassifier * stagecascadeptr,
global const int4 * info,
global const GpuHidHaarTreeNode * nodeptr,
global const int * restrict sum,
global const float * restrict sqsum,
volatile global int4 * candidate,
const int pixelstep,
const int loopcount,
const int start_stage,
const int split_stage,
const int end_stage,
const int startnode,
const int splitnode,
const int4 p,
const int4 pq,
const float correction,
global const int* pNodesPK,
global const int4* pWGInfo
)
{
// this version used information provided for each workgroup
// no empty WG
int gid = (int)get_group_id(0);
int lid_x = (int)get_local_id(0);
int lid_y = (int)get_local_id(1);
int lid = lid_y*LSx+lid_x;
int4 WGInfo = pWGInfo[gid];
int GroupX = (WGInfo.y >> 16)&0xFFFF;
int GroupY = (WGInfo.y >> 0 )& 0xFFFF;
int Width = (WGInfo.x >> 16)&0xFFFF;
int Height = (WGInfo.x >> 0 )& 0xFFFF;
int ImgOffset = WGInfo.z;
float ScaleFactor = as_float(WGInfo.w);
#define DATA_SIZE_X (LSx+WND_SIZE_X)
#define DATA_SIZE_Y (LSy+WND_SIZE_Y)
#define DATA_SIZE (DATA_SIZE_X*DATA_SIZE_Y)
local int SumL[DATA_SIZE];
// read input data window into local mem
for(int i = 0; i<DATA_SIZE; i+=(LSx*LSy))
{
int index = i+lid; // index in shared local memory
if(index<DATA_SIZE)
{// calc global x,y coordinat and read data from there
int x = min(GroupX + (index % (DATA_SIZE_X)),Width-1);
int y = min(GroupY + (index / (DATA_SIZE_X)),Height-1);
SumL[index] = sum[ImgOffset+y*pixelstep+x];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// calc variance_norm_factor for all stages
float variance_norm_factor;
int nodecounter= startnode;
int4 info1 = p;
int4 info2 = pq;
{
int xl = lid_x;
int yl = lid_y;
int OffsetLocal = yl * DATA_SIZE_X + xl;
int OffsetGlobal = (GroupY+yl)* pixelstep + (GroupX+xl);
// add shift to get position on scaled image
OffsetGlobal += ImgOffset;
float mean =
SumL[info1.y*DATA_SIZE_X+info1.x+OffsetLocal] -
SumL[info1.y*DATA_SIZE_X+info1.z+OffsetLocal] -
SumL[info1.w*DATA_SIZE_X+info1.x+OffsetLocal] +
SumL[info1.w*DATA_SIZE_X+info1.z+OffsetLocal];
float sq =
sqsum[info2.y*pixelstep+info2.x+OffsetGlobal] -
sqsum[info2.y*pixelstep+info2.z+OffsetGlobal] -
sqsum[info2.w*pixelstep+info2.x+OffsetGlobal] +
sqsum[info2.w*pixelstep+info2.z+OffsetGlobal];
mean *= correction;
sq *= correction;
variance_norm_factor = sq - mean * mean;
variance_norm_factor = (variance_norm_factor >=0.f) ? sqrt(variance_norm_factor) : 1.f;
}// end calc variance_norm_factor for all stages
int result = (1.0f>0.0f);
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
{// iterate until candidate is exist
float stage_sum = 0.0f;
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
int stagecount = stageinfo->count;
float stagethreshold = stageinfo->threshold;
int lcl_off = (lid_y*DATA_SIZE_X)+(lid_x);
for(int nodeloop = 0; nodeloop < stagecount; nodecounter++,nodeloop++ )
{
// simple macro to extract shorts from int
#define M0(_t) ((_t)&0xFFFF)
#define M1(_t) (((_t)>>16)&0xFFFF)
// load packed node data from global memory (L3) into registers
global const int4* pN = (__global int4*)(pNodesPK+nodecounter*NODE_SIZE);
int4 n0 = pN[0];
int4 n1 = pN[1];
int4 n2 = pN[2];
float nodethreshold = as_float(n2.y) * variance_norm_factor;
// calc sum of intensity pixels according to node information
float classsum =
(SumL[M0(n0.x)+lcl_off] - SumL[M1(n0.x)+lcl_off] - SumL[M0(n0.y)+lcl_off] + SumL[M1(n0.y)+lcl_off]) * as_float(n1.z) +
(SumL[M0(n0.z)+lcl_off] - SumL[M1(n0.z)+lcl_off] - SumL[M0(n0.w)+lcl_off] + SumL[M1(n0.w)+lcl_off]) * as_float(n1.w) +
(SumL[M0(n1.x)+lcl_off] - SumL[M1(n1.x)+lcl_off] - SumL[M0(n1.y)+lcl_off] + SumL[M1(n1.y)+lcl_off]) * as_float(n2.x);
//accumulate stage responce
stage_sum += (classsum >= nodethreshold) ? as_float(n2.w) : as_float(n2.z);
}
result = (stage_sum >= stagethreshold);
}// next stage if needed
if(result)
{// all stages will be passed and there is a detected face on the tested position
int index = 1+atomic_inc((volatile global int*)candidate); //get index to write global data with face info
if(index<OUTPUTSZ)
{
int x = GroupX+lid_x;
int y = GroupY+lid_y;
int4 candidate_result;
candidate_result.x = convert_int_rtn(x*ScaleFactor);
candidate_result.y = convert_int_rtn(y*ScaleFactor);
candidate_result.z = convert_int_rtn(ScaleFactor*WND_SIZE_X);
candidate_result.w = convert_int_rtn(ScaleFactor*WND_SIZE_Y);
candidate[index] = candidate_result;
}
}
}//end gpuRunHaarClassifierCascade
#else
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(
global GpuHidHaarStageClassifier * stagecascadeptr,
global int4 * info,
global GpuHidHaarTreeNode * nodeptr,
global const int * restrict sum1,
global const float * restrict sqsum1,
global int4 * candidate,
const int pixelstep,
const int loopcount,
const int start_stage,
const int split_stage,
const int end_stage,
const int startnode,
const int splitnode,
const int4 p,
const int4 pq,
const float correction)
{
int grpszx = get_local_size(0);
int grpszy = get_local_size(1);
int grpnumx = get_num_groups(0);
int grpidx = get_group_id(0);
int lclidx = get_local_id(0);
int lclidy = get_local_id(1);
int lcl_sz = mul24(grpszx,grpszy);
int lcl_id = mad24(lclidy,grpszx,lclidx);
__local int lclshare[1024];
__local int* lcldata = lclshare;//for save win data
__local int* glboutindex = lcldata + 28*28;//for save global out index
__local int* lclcount = glboutindex + 1;//for save the numuber of temp pass pixel
__local int* lcloutindex = lclcount + 1;//for save info of temp pass pixel
__local float* partialsum = (__local float*)(lcloutindex + (lcl_sz<<1));
glboutindex[0]=0;
int outputoff = mul24(grpidx,256);
//assume window size is 20X20
#define WINDOWSIZE 20+1
//make sure readwidth is the multiple of 4
//ystep =1, from host code
int readwidth = ((grpszx-1 + WINDOWSIZE+3)>>2)<<2;
int readheight = grpszy-1+WINDOWSIZE;
int read_horiz_cnt = readwidth >> 2;//each read int4
int total_read = mul24(read_horiz_cnt,readheight);
int read_loop = (total_read + lcl_sz - 1) >> 6;
candidate[outputoff+(lcl_id<<2)] = (int4)0;
candidate[outputoff+(lcl_id<<2)+1] = (int4)0;
candidate[outputoff+(lcl_id<<2)+2] = (int4)0;
candidate[outputoff+(lcl_id<<2)+3] = (int4)0;
for(int scalei = 0; scalei <loopcount; scalei++)
{
int4 scaleinfo1= info[scalei];
int height = scaleinfo1.x & 0xffff;
int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16;
int totalgrp = scaleinfo1.y & 0xffff;
int imgoff = scaleinfo1.z;
float factor = as_float(scaleinfo1.w);
__global const int * sum = sum1 + imgoff;
__global const float * sqsum = sqsum1 + imgoff;
for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
{
int grpidy = grploop / grpnumperline;
int grpidx = grploop - mul24(grpidy, grpnumperline);
int x = mad24(grpidx,grpszx,lclidx);
int y = mad24(grpidy,grpszy,lclidy);
int grpoffx = x-lclidx;
int grpoffy = y-lclidy;
for(int i=0; i<read_loop; i++)
{
int pos_id = mad24(i,lcl_sz,lcl_id);
pos_id = pos_id < total_read ? pos_id : 0;
int lcl_y = pos_id / read_horiz_cnt;
int lcl_x = pos_id - mul24(lcl_y, read_horiz_cnt);
int glb_x = grpoffx + (lcl_x<<2);
int glb_y = grpoffy + lcl_y;
int glb_off = mad24(min(glb_y, height + WINDOWSIZE - 1),pixelstep,glb_x);
int4 data = *(__global int4*)&sum[glb_off];
int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2);
vstore4(data, 0, &lcldata[lcl_off]);
}
lcloutindex[lcl_id] = 0;
lclcount[0] = 0;
int result = 1;
int nodecounter= startnode;
float mean, variance_norm_factor;
barrier(CLK_LOCAL_MEM_FENCE);
int lcl_off = mad24(lclidy,readwidth,lclidx);
int4 cascadeinfo1, cascadeinfo2;
cascadeinfo1 = p;
cascadeinfo2 = pq;
cascadeinfo1.x +=lcl_off;
cascadeinfo1.z +=lcl_off;
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
*correction;
int p_offset = mad24(y, pixelstep, x);
cascadeinfo2.x +=p_offset;
cascadeinfo2.z +=p_offset;
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
variance_norm_factor = variance_norm_factor * correction - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
{
float stage_sum = 0.f;
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
int stagecount = stageinfo->count;
float stagethreshold = stageinfo->threshold;
for(int nodeloop = 0; nodeloop < stagecount; )
{
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
(((__global uchar*)nodeptr) + nodecounter * sizeof(GpuHidHaarTreeNode));
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x +=lcl_off;
info1.z +=lcl_off;
info2.x +=lcl_off;
info2.z +=lcl_off;
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
info3.x +=lcl_off;
info3.z +=lcl_off;
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
stage_sum += passThres ? alpha3.y : alpha3.x;
nodecounter++;
nodeloop++;
#else
bool isRootNode = (nodecounter & 1) == 0;
if(isRootNode)
{
if( (passThres && currentnodeptr->right) ||
(!passThres && currentnodeptr->left))
{
nodecounter ++;
}
else
{
stage_sum += alpha3.x;
nodecounter += 2;
nodeloop ++;
}
}
else
{
stage_sum += passThres ? alpha3.z : alpha3.y;
nodecounter ++;
nodeloop ++;
}
#endif
}
result = (stage_sum >= stagethreshold) ? 1 : 0;
}
if(factor < 2)
{
if(result && lclidx %2 ==0 && lclidy %2 ==0 )
{
int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor);
}
}
else
{
if(result)
{
int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor);
}
}
barrier(CLK_LOCAL_MEM_FENCE);
int queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
nodecounter = splitnode;
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
{
lclcount[0]=0;
barrier(CLK_LOCAL_MEM_FENCE);
//int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
int stagecount = stageinfo->count;
float stagethreshold = stageinfo->threshold;
int perfscale = queuecount > 4 ? 3 : 2;
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
int lcl_compute_win = lcl_sz >> perfscale;
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
int lcl_loops = (stagecount + lcl_compute_win -1) >> (6-perfscale);
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
{
float stage_sum = 0.f;
int temp_coord = lcloutindex[lcl_compute_win_id<<1];
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
if(lcl_compute_win_id < queuecount)
{
int tempnodecounter = lcl_compute_id;
float part_sum = 0.f;
const int stump_factor = STUMP_BASED ? 1 : 2;
int root_offset = 0;
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stagecount;)
{
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
(((__global uchar*)nodeptr) + sizeof(GpuHidHaarTreeNode) * ((nodecounter + tempnodecounter) * stump_factor + root_offset));
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x +=queue_pixel;
info1.z +=queue_pixel;
info2.x +=queue_pixel;
info2.z +=queue_pixel;
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
info3.x +=queue_pixel;
info3.z +=queue_pixel;
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
part_sum += passThres ? alpha3.y : alpha3.x;
tempnodecounter += lcl_compute_win;
lcl_loop++;
#else
if(root_offset == 0)
{
if( (passThres && currentnodeptr->right) ||
(!passThres && currentnodeptr->left))
{
root_offset = 1;
}
else
{
part_sum += alpha3.x;
tempnodecounter += lcl_compute_win;
lcl_loop++;
}
}
else
{
part_sum += passThres ? alpha3.z : alpha3.y;
tempnodecounter += lcl_compute_win;
lcl_loop++;
root_offset = 0;
}
#endif
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
partialsum[lcl_id]=part_sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lcl_compute_win_id < queuecount)
{
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
{
stage_sum += partialsum[lcl_id+i];
}
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
{
int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex<<1] = temp_coord;
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
}
lcl_compute_win_id +=(1<<perfscale);
}
barrier(CLK_LOCAL_MEM_FENCE);
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
nodecounter += stagecount;
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
if(lcl_id<queuecount)
{
int temp = lcloutindex[lcl_id<<1];
int x = mad24(grpidx,grpszx,temp & 0xffff);
int y = mad24(grpidy,grpszy,((temp & (int)0xffff0000) >> 16));
temp = glboutindex[0];
int4 candidate_result;
candidate_result.zw = (int2)convert_int_rte(factor*20.f);
candidate_result.x = convert_int_rte(x*factor);
candidate_result.y = convert_int_rte(y*factor);
atomic_inc(glboutindex);
int i = outputoff+temp+lcl_id;
if(candidate[i].z == 0)
{
candidate[i] = candidate_result;
}
else
{
for(i=i+1;;i++)
{
if(candidate[i].z == 0)
{
candidate[i] = candidate_result;
break;
}
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}//end for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx)
}//end for(int scalei = 0; scalei <loopcount; scalei++)
}
#endif

@ -0,0 +1,323 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Wu Xinglong, wxl370@126.com
// Sen Liu, swjtuls1987@126.com
// Peng Xiao, pengxiao@outlook.com
// Erping Pang, erping@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define CV_HAAR_FEATURE_MAX 3
typedef int sumtype;
typedef float sqsumtype;
typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode
{
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64)));
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
float threshold /*__attribute__((aligned (4)))*/;
float alpha[3] __attribute__((aligned(16)));
int left __attribute__((aligned(4)));
int right __attribute__((aligned(4)));
}
GpuHidHaarTreeNode;
//typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
//{
// int count __attribute__((aligned(4)));
// GpuHidHaarTreeNode *node __attribute__((aligned(8)));
// float *alpha __attribute__((aligned(8)));
//}
//GpuHidHaarClassifier;
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
{
int count __attribute__((aligned(4)));
float threshold __attribute__((aligned(4)));
int two_rects __attribute__((aligned(4)));
int reserved0 __attribute__((aligned(8)));
int reserved1 __attribute__((aligned(8)));
int reserved2 __attribute__((aligned(8)));
int reserved3 __attribute__((aligned(8)));
}
GpuHidHaarStageClassifier;
//typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
//{
// int count __attribute__((aligned(4)));
// int is_stump_based __attribute__((aligned(4)));
// int has_tilted_features __attribute__((aligned(4)));
// int is_tree __attribute__((aligned(4)));
// int pq0 __attribute__((aligned(4)));
// int pq1 __attribute__((aligned(4)));
// int pq2 __attribute__((aligned(4)));
// int pq3 __attribute__((aligned(4)));
// int p0 __attribute__((aligned(4)));
// int p1 __attribute__((aligned(4)));
// int p2 __attribute__((aligned(4)));
// int p3 __attribute__((aligned(4)));
// float inv_window_area __attribute__((aligned(4)));
//} GpuHidHaarClassifierCascade;
__kernel void gpuRunHaarClassifierCascade_scaled2(
global GpuHidHaarStageClassifier *stagecascadeptr_,
global int4 *info,
global GpuHidHaarTreeNode *nodeptr_,
global const int *restrict sum,
global const float *restrict sqsum,
global int4 *candidate,
const int rows,
const int cols,
const int step,
const int loopcount,
const int start_stage,
const int split_stage,
const int end_stage,
const int startnode,
global int4 *p,
global float *correction,
const int nodecount)
{
int grpszx = get_local_size(0);
int grpszy = get_local_size(1);
int grpnumx = get_num_groups(0);
int grpidx = get_group_id(0);
int lclidx = get_local_id(0);
int lclidy = get_local_id(1);
int lcl_id = mad24(lclidy, grpszx, lclidx);
__local int glboutindex[1];
__local int lclcount[1];
__local int lcloutindex[64];
glboutindex[0] = 0;
int outputoff = mul24(grpidx, 256);
candidate[outputoff + (lcl_id << 2)] = (int4)0;
candidate[outputoff + (lcl_id << 2) + 1] = (int4)0;
candidate[outputoff + (lcl_id << 2) + 2] = (int4)0;
candidate[outputoff + (lcl_id << 2) + 3] = (int4)0;
int max_idx = rows * cols - 1;
for (int scalei = 0; scalei < loopcount; scalei++)
{
int4 scaleinfo1 = info[scalei];
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16;
int totalgrp = scaleinfo1.y & 0xffff;
float factor = as_float(scaleinfo1.w);
float correction_t = correction[scalei];
float ystep = max(2.0f, factor);
for (int grploop = get_group_id(0); grploop < totalgrp; grploop += grpnumx)
{
int4 cascadeinfo = p[scalei];
int grpidy = grploop / grpnumperline;
int grpidx = grploop - mul24(grpidy, grpnumperline);
int ix = mad24(grpidx, grpszx, lclidx);
int iy = mad24(grpidy, grpszy, lclidy);
int x = round(ix * ystep);
int y = round(iy * ystep);
lcloutindex[lcl_id] = 0;
lclcount[0] = 0;
int nodecounter;
float mean, variance_norm_factor;
//if((ix < width) && (iy < height))
{
const int p_offset = mad24(y, step, x);
cascadeinfo.x += p_offset;
cascadeinfo.z += p_offset;
mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)]
- sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)]
+ sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)])
* correction_t;
variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)]
- sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)]
+ sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)];
variance_norm_factor = variance_norm_factor * correction_t - mean * mean;
variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f;
bool result = true;
nodecounter = startnode + nodecount * scalei;
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
{
float stage_sum = 0.f;
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
(((__global uchar*)stagecascadeptr_)+stageloop*sizeof(GpuHidHaarStageClassifier));
int stagecount = stageinfo->count;
for (int nodeloop = 0; nodeloop < stagecount;)
{
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
(((__global uchar*)nodeptr_) + nodecounter * sizeof(GpuHidHaarTreeNode));
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x += p_offset;
info1.z += p_offset;
info2.x += p_offset;
info2.z += p_offset;
info3.x += p_offset;
info3.z += p_offset;
float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)]
- sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] -
sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)]
+ sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x;
classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)]
- sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] -
sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)]
+ sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y;
classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)]
- sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] -
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
bool passThres = (classsum >= nodethreshold) ? 1 : 0;
#if STUMP_BASED
stage_sum += passThres ? alpha3.y : alpha3.x;
nodecounter++;
nodeloop++;
#else
bool isRootNode = (nodecounter & 1) == 0;
if(isRootNode)
{
if( (passThres && currentnodeptr->right) ||
(!passThres && currentnodeptr->left))
{
nodecounter ++;
}
else
{
stage_sum += alpha3.x;
nodecounter += 2;
nodeloop ++;
}
}
else
{
stage_sum += (passThres ? alpha3.z : alpha3.y);
nodecounter ++;
nodeloop ++;
}
#endif
}
result = (stage_sum >= stageinfo->threshold) ? 1 : 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (result)
{
int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex] = (y << 16) | x;
}
barrier(CLK_LOCAL_MEM_FENCE);
int queuecount = lclcount[0];
if (lcl_id < queuecount)
{
int temp = lcloutindex[lcl_id];
int x = temp & 0xffff;
int y = (temp & (int)0xffff0000) >> 16;
temp = atomic_inc(glboutindex);
int4 candidate_result;
candidate_result.zw = (int2)convert_int_rte(factor * 20.f);
candidate_result.x = x;
candidate_result.y = y;
int i = outputoff+temp+lcl_id;
if(candidate[i].z == 0)
{
candidate[i] = candidate_result;
}
else
{
for(i=i+1;;i++)
{
if(candidate[i].z == 0)
{
candidate[i] = candidate_result;
break;
}
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
}
}
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, const int nodenum)
{
const int counter = get_global_id(0);
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
GpuHidHaarTreeNode t1 = *(__global GpuHidHaarTreeNode*)
(((__global uchar*)orinode) + counter * sizeof(GpuHidHaarTreeNode));
__global GpuHidHaarTreeNode* pNew = (__global GpuHidHaarTreeNode*)
(((__global uchar*)newnode) + (counter + nodenum) * sizeof(GpuHidHaarTreeNode));
#pragma unroll
for (i = 0; i < 3; i++)
{
tr_x[i] = (int)(t1.p[i][0] * scale + 0.5f);
tr_y[i] = (int)(t1.p[i][1] * scale + 0.5f);
tr_w[i] = (int)(t1.p[i][2] * scale + 0.5f);
tr_h[i] = (int)(t1.p[i][3] * scale + 0.5f);
}
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]);
#pragma unroll
for (i = 0; i < 3; i++)
{
pNew->p[i][0] = tr_x[i];
pNew->p[i][1] = tr_y[i];
pNew->p[i][2] = tr_x[i] + tr_w[i];
pNew->p[i][3] = tr_y[i] + tr_h[i];
pNew->weight[i] = t1.weight[i] * weight_scale;
}
pNew->left = t1.left;
pNew->right = t1.right;
pNew->threshold = t1.threshold;
pNew->alpha[0] = t1.alpha[0];
pNew->alpha[1] = t1.alpha[1];
pNew->alpha[2] = t1.alpha[2];
}

@ -98,6 +98,8 @@ int main( int argc, const char** argv )
return -1;
}
cout << "old cascade: " << (cascade.isOldFormatCascade() ? "TRUE" : "FALSE") << endl;
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
{
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0';

Loading…
Cancel
Save