diff --git a/samples/python/calibrate.py b/samples/python/calibrate.py index 00dfe57fe6..a5c4a91f5e 100755 --- a/samples/python/calibrate.py +++ b/samples/python/calibrate.py @@ -30,18 +30,19 @@ if __name__ == '__main__': import getopt from glob import glob - args, img_mask = getopt.getopt(sys.argv[1:], '', ['debug=', 'square_size=']) + args, img_mask = getopt.getopt(sys.argv[1:], '', ['debug=', 'square_size=', 'threads=']) args = dict(args) args.setdefault('--debug', './output/') args.setdefault('--square_size', 1.0) + args.setdefault('--threads', 4) if not img_mask: - img_mask = '../data/left*.jpg' # default + img_mask = '../data/left??.jpg' # default else: img_mask = img_mask[0] img_names = glob(img_mask) debug_dir = args.get('--debug') - if not os.path.isdir(debug_dir): + if debug_dir and not os.path.isdir(debug_dir): os.mkdir(debug_dir) square_size = float(args.get('--square_size')) @@ -52,16 +53,16 @@ if __name__ == '__main__': obj_points = [] img_points = [] - h, w = 0, 0 - img_names_undistort = [] - for fn in img_names: - print('processing %s... ' % fn, end='') + h, w = cv2.imread(img_names[0], 0).shape[:2] # TODO: use imquery call to retrieve results + + def processImage(fn): + print('processing %s... ' % fn) img = cv2.imread(fn, 0) if img is None: print("Failed to load", fn) - continue + return None - h, w = img.shape[:2] + assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0])) found, corners = cv2.findChessboardCorners(img, pattern_size) if found: term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1) @@ -71,19 +72,29 @@ if __name__ == '__main__': vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.drawChessboardCorners(vis, pattern_size, corners, found) path, name, ext = splitfn(fn) - outfile = debug_dir + name + '_chess.png' + outfile = os.path.join(debug_dir, name + '_chess.png') cv2.imwrite(outfile, vis) - if found: - img_names_undistort.append(outfile) if not found: print('chessboard not found') - continue + return None - img_points.append(corners.reshape(-1, 2)) - obj_points.append(pattern_points) + print(' %s... OK' % fn) + return (corners.reshape(-1, 2), pattern_points) - print('ok') + threads_num = int(args.get('--threads')) + if threads_num <= 1: + chessboards = [processImage(fn) for fn in img_names] + else: + print("Run with %d threads..." % threads_num) + from multiprocessing.dummy import Pool as ThreadPool + pool = ThreadPool(threads_num) + chessboards = pool.map(processImage, img_names) + + chessboards = [x for x in chessboards if x is not None] + for (corners, pattern_points) in chessboards: + img_points.append(corners) + obj_points.append(pattern_points) # calculate camera distortion rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None) @@ -94,10 +105,16 @@ if __name__ == '__main__': # undistort the image with the calibration print('') - for img_found in img_names_undistort: + for fn in img_names if debug_dir else []: + path, name, ext = splitfn(fn) + img_found = os.path.join(debug_dir, name + '_chess.png') + outfile = os.path.join(debug_dir, name + '_undistorted.png') + img = cv2.imread(img_found) + if img is None: + continue - h, w = img.shape[:2] + h, w = img.shape[:2] newcameramtx, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h)) dst = cv2.undistort(img, camera_matrix, dist_coefs, None, newcameramtx) @@ -105,7 +122,7 @@ if __name__ == '__main__': # crop and save the image x, y, w, h = roi dst = dst[y:y+h, x:x+w] - outfile = img_found + '_undistorted.png' + print('Undistorted image written to: %s' % outfile) cv2.imwrite(outfile, dst)