mirror of https://github.com/opencv/opencv.git
Merge pull request #13267 from LaurentBerger:StitchPython
* Python wrapper for detail * hide pyrotationwrapper * copy code in pyopencv_rotationwarper.hpp * move ImageFeatures MatchInfo and CameraParams in core/misc/ * add python test for detail * move test_detail in test_stitching * renamepull/13474/head
parent
fd27d5ea00
commit
2fb409b286
20 changed files with 998 additions and 206 deletions
@ -0,0 +1,8 @@ |
||||
#ifdef HAVE_OPENCV_STITCHING |
||||
|
||||
typedef std::vector<detail::ImageFeatures> vector_ImageFeatures; |
||||
typedef std::vector<detail::MatchesInfo> vector_MatchesInfo; |
||||
typedef std::vector<detail::CameraParams> vector_CameraParams; |
||||
|
||||
|
||||
#endif |
@ -0,0 +1,387 @@ |
||||
"""Rotation model images stitcher. |
||||
stitching_detailed img1 img2 [...imgN] [flags] |
||||
Flags: |
||||
--preview |
||||
Run stitching in the preview mode. Works faster than usual mode, |
||||
but output image will have lower resolution. |
||||
--try_cuda (yes|no) |
||||
Try to use CUDA. The default value is 'no'. All default values |
||||
are for CPU mode. |
||||
\nMotion Estimation Flags: |
||||
--work_megapix <float> |
||||
Resolution for image registration step. The default is 0.6 Mpx. |
||||
--features (surf|orb|sift) |
||||
Type of features used for images matching. The default is surf. |
||||
--matcher (homography|affine) |
||||
Matcher used for pairwise image matching. |
||||
--estimator (homography|affine) |
||||
Type of estimator used for transformation estimation. |
||||
--match_conf <float> |
||||
Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb. |
||||
--conf_thresh <float> |
||||
Threshold for two images are from the same panorama confidence. |
||||
The default is 1.0. |
||||
--ba (no|reproj|ray|affine) |
||||
Bundle adjustment cost function. The default is ray. |
||||
--ba_refine_mask (mask) |
||||
Set refinement mask for bundle adjustment. It looks like 'x_xxx', |
||||
where 'x' means refine respective parameter and '_' means don't |
||||
refine one, and has the following format: |
||||
<fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle |
||||
adjustment doesn't support estimation of selected parameter then |
||||
the respective flag is ignored. |
||||
--wave_correct (no|horiz|vert) |
||||
Perform wave effect correction. The default is 'horiz'. |
||||
--save_graph <file_name> |
||||
Save matches graph represented in DOT language to <file_name> file. |
||||
Labels description: Nm is number of matches, Ni is number of inliers, |
||||
C is confidence. |
||||
\nCompositing Flags: |
||||
--warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator) |
||||
Warp surface type. The default is 'spherical'. |
||||
--seam_megapix <float> |
||||
Resolution for seam estimation step. The default is 0.1 Mpx. |
||||
--seam (no|voronoi|gc_color|gc_colorgrad) |
||||
Seam estimation method. The default is 'gc_color'. |
||||
--compose_megapix <float> |
||||
Resolution for compositing step. Use -1 for original resolution. |
||||
The default is -1. |
||||
--expos_comp (no|gain|gain_blocks) |
||||
Exposure compensation method. The default is 'gain_blocks'. |
||||
--blend (no|feather|multiband) |
||||
Blending method. The default is 'multiband'. |
||||
--blend_strength <float> |
||||
Blending strength from [0,100] range. The default is 5. |
||||
--output <result_img> |
||||
The default is 'result.jpg'. |
||||
--timelapse (as_is|crop) |
||||
Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names. |
||||
--rangewidth <int> |
||||
uses range_width to limit number of images to match with.\n |
||||
""" |
||||
import numpy as np |
||||
import cv2 as cv |
||||
import sys |
||||
import argparse |
||||
|
||||
parser = argparse.ArgumentParser(description='stitching_detailed') |
||||
parser.add_argument('img_names', nargs='+',help='files to stitch',type=str) |
||||
parser.add_argument('--preview',help='Run stitching in the preview mode. Works faster than usual mode but output image will have lower resolution.',type=bool,dest = 'preview' ) |
||||
parser.add_argument('--try_cuda',action = 'store', default = False,help='Try to use CUDA. The default value is no. All default values are for CPU mode.',type=bool,dest = 'try_cuda' ) |
||||
parser.add_argument('--work_megapix',action = 'store', default = 0.6,help=' Resolution for image registration step. The default is 0.6 Mpx',type=float,dest = 'work_megapix' ) |
||||
parser.add_argument('--features',action = 'store', default = 'orb',help='Type of features used for images matching. The default is orb.',type=str,dest = 'features' ) |
||||
parser.add_argument('--matcher',action = 'store', default = 'homography',help='Matcher used for pairwise image matching.',type=str,dest = 'matcher' ) |
||||
parser.add_argument('--estimator',action = 'store', default = 'homography',help='Type of estimator used for transformation estimation.',type=str,dest = 'estimator' ) |
||||
parser.add_argument('--match_conf',action = 'store', default = 0.3,help='Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.',type=float,dest = 'match_conf' ) |
||||
parser.add_argument('--conf_thresh',action = 'store', default = 1.0,help='Threshold for two images are from the same panorama confidence.The default is 1.0.',type=float,dest = 'conf_thresh' ) |
||||
parser.add_argument('--ba',action = 'store', default = 'ray',help='Bundle adjustment cost function. The default is ray.',type=str,dest = 'ba' ) |
||||
parser.add_argument('--ba_refine_mask',action = 'store', default = 'xxxxx',help='Set refinement mask for bundle adjustment. mask is "xxxxx"',type=str,dest = 'ba_refine_mask' ) |
||||
parser.add_argument('--wave_correct',action = 'store', default = 'horiz',help='Perform wave effect correction. The default is "horiz"',type=str,dest = 'wave_correct' ) |
||||
parser.add_argument('--save_graph',action = 'store', default = None,help='Save matches graph represented in DOT language to <file_name> file.',type=str,dest = 'save_graph' ) |
||||
parser.add_argument('--warp',action = 'store', default = 'plane',help='Warp surface type. The default is "spherical".',type=str,dest = 'warp' ) |
||||
parser.add_argument('--seam_megapix',action = 'store', default = 0.1,help=' Resolution for seam estimation step. The default is 0.1 Mpx.',type=float,dest = 'seam_megapix' ) |
||||
parser.add_argument('--seam',action = 'store', default = 'no',help='Seam estimation method. The default is "gc_color".',type=str,dest = 'seam' ) |
||||
parser.add_argument('--compose_megapix',action = 'store', default = -1,help='Resolution for compositing step. Use -1 for original resolution.',type=float,dest = 'compose_megapix' ) |
||||
parser.add_argument('--expos_comp',action = 'store', default = 'no',help='Exposure compensation method. The default is "gain_blocks".',type=str,dest = 'expos_comp' ) |
||||
parser.add_argument('--blend',action = 'store', default = 'multiband',help='Blending method. The default is "multiband".',type=str,dest = 'blend' ) |
||||
parser.add_argument('--blend_strength',action = 'store', default = 5,help='Blending strength from [0,100] range.',type=int,dest = 'blend_strength' ) |
||||
parser.add_argument('--output',action = 'store', default = 'result.jpg',help='The default is "result.jpg"',type=str,dest = 'output' ) |
||||
parser.add_argument('--timelapse',action = 'store', default = None,help='Output warped images separately as frames of a time lapse movie, with "fixed_" prepended to input file names.',type=str,dest = 'timelapse' ) |
||||
parser.add_argument('--rangewidth',action = 'store', default = -1,help='uses range_width to limit number of images to match with.',type=int,dest = 'rangewidth' ) |
||||
args = parser.parse_args() |
||||
img_names=args.img_names |
||||
print(img_names) |
||||
preview = args.preview |
||||
try_cuda = args.try_cuda |
||||
work_megapix = args.work_megapix |
||||
seam_megapix = args.seam_megapix |
||||
compose_megapix = args.compose_megapix |
||||
conf_thresh = args.conf_thresh |
||||
features_type = args.features |
||||
matcher_type = args.matcher |
||||
estimator_type = args.estimator |
||||
ba_cost_func = args.ba |
||||
ba_refine_mask = args.ba_refine_mask |
||||
wave_correct = args.wave_correct |
||||
if wave_correct=='no': |
||||
do_wave_correct= False |
||||
else: |
||||
do_wave_correct=True |
||||
if args.save_graph is None: |
||||
save_graph = False |
||||
else: |
||||
save_graph =True |
||||
save_graph_to = args.save_graph |
||||
warp_type = args.warp |
||||
if args.expos_comp=='no': |
||||
expos_comp_type = cv.detail.ExposureCompensator_NO |
||||
elif args.expos_comp=='gain': |
||||
expos_comp_type = cv.detail.ExposureCompensator_GAIN |
||||
elif args.expos_comp=='gain_blocks': |
||||
expos_comp_type = cv.detail.ExposureCompensator_GAIN_BLOCKS |
||||
else: |
||||
print("Bad exposure compensation method") |
||||
exit |
||||
|
||||
match_conf = args.match_conf |
||||
seam_find_type = args.seam |
||||
blend_type = args.blend |
||||
blend_strength = args.blend_strength |
||||
result_name = args.output |
||||
if args.timelapse is not None: |
||||
timelapse = True |
||||
if args.timelapse=="as_is": |
||||
timelapse_type = cv.detail.Timelapser_AS_IS |
||||
elif args.timelapse=="crop": |
||||
timelapse_type = cv.detail.Timelapser_CROP |
||||
else: |
||||
print("Bad timelapse method") |
||||
exit() |
||||
else: |
||||
timelapse= False |
||||
range_width = args.rangewidth |
||||
if features_type=='orb': |
||||
finder= cv.ORB.create() |
||||
elif features_type=='surf': |
||||
finder= cv.xfeatures2d_SURF.create() |
||||
elif features_type=='sift': |
||||
finder= cv.xfeatures2d_SIFT.create() |
||||
else: |
||||
print ("Unknown descriptor type") |
||||
exit() |
||||
seam_work_aspect = 1 |
||||
full_img_sizes=[] |
||||
features=[] |
||||
images=[] |
||||
is_work_scale_set = False |
||||
is_seam_scale_set = False |
||||
is_compose_scale_set = False; |
||||
for name in img_names: |
||||
full_img = cv.imread(name) |
||||
if full_img is None: |
||||
print("Cannot read image ",name) |
||||
exit() |
||||
full_img_sizes.append((full_img.shape[1],full_img.shape[0])) |
||||
if work_megapix < 0: |
||||
img = full_img |
||||
work_scale = 1 |
||||
is_work_scale_set = True |
||||
else: |
||||
if is_work_scale_set is False: |
||||
work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1]))) |
||||
is_work_scale_set = True |
||||
img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT) |
||||
if is_seam_scale_set is False: |
||||
seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1]))) |
||||
seam_work_aspect = seam_scale / work_scale |
||||
is_seam_scale_set = True |
||||
imgFea= cv.detail.computeImageFeatures2(finder,img) |
||||
features.append(imgFea) |
||||
img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT) |
||||
images.append(img) |
||||
if matcher_type== "affine": |
||||
matcher = cv.detail.AffineBestOf2NearestMatcher_create(False, try_cuda, match_conf) |
||||
elif range_width==-1: |
||||
matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf) |
||||
else: |
||||
matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf) |
||||
p=matcher.apply2(features) |
||||
matcher.collectGarbage() |
||||
if save_graph: |
||||
f = open(save_graph_to,"w") |
||||
# f.write(matchesGraphAsString(img_names, pairwise_matches, conf_thresh)) |
||||
f.close() |
||||
indices=cv.detail.leaveBiggestComponent(features,p,0.3) |
||||
img_subset =[] |
||||
img_names_subset=[] |
||||
full_img_sizes_subset=[] |
||||
num_images=len(indices) |
||||
for i in range(0,num_images): |
||||
img_names_subset.append(img_names[indices[i,0]]) |
||||
img_subset.append(images[indices[i,0]]) |
||||
full_img_sizes_subset.append(full_img_sizes[indices[i,0]]) |
||||
images = img_subset; |
||||
img_names = img_names_subset; |
||||
full_img_sizes = full_img_sizes_subset; |
||||
num_images = len(img_names) |
||||
if num_images < 2: |
||||
print("Need more images") |
||||
exit() |
||||
|
||||
if estimator_type == "affine": |
||||
estimator = cv.detail_AffineBasedEstimator() |
||||
else: |
||||
estimator = cv.detail_HomographyBasedEstimator() |
||||
b, cameras =estimator.apply(features,p,None) |
||||
if not b: |
||||
print("Homography estimation failed.") |
||||
exit() |
||||
for cam in cameras: |
||||
cam.R=cam.R.astype(np.float32) |
||||
|
||||
if ba_cost_func == "reproj": |
||||
adjuster = cv.detail_BundleAdjusterReproj() |
||||
elif ba_cost_func == "ray": |
||||
adjuster = cv.detail_BundleAdjusterRay() |
||||
elif ba_cost_func == "affine": |
||||
adjuster = cv.detail_BundleAdjusterAffinePartial() |
||||
elif ba_cost_func == "no": |
||||
adjuster = cv.detail_NoBundleAdjuster() |
||||
else: |
||||
print( "Unknown bundle adjustment cost function: ", ba_cost_func ) |
||||
exit() |
||||
adjuster.setConfThresh(1) |
||||
refine_mask=np.zeros((3,3),np.uint8) |
||||
if ba_refine_mask[0] == 'x': |
||||
refine_mask[0,0] = 1 |
||||
if ba_refine_mask[1] == 'x': |
||||
refine_mask[0,1] = 1 |
||||
if ba_refine_mask[2] == 'x': |
||||
refine_mask[0,2] = 1 |
||||
if ba_refine_mask[3] == 'x': |
||||
refine_mask[1,1] = 1 |
||||
if ba_refine_mask[4] == 'x': |
||||
refine_mask[1,2] = 1 |
||||
adjuster.setRefinementMask(refine_mask) |
||||
b,cameras = adjuster.apply(features,p,cameras) |
||||
if not b: |
||||
print("Camera parameters adjusting failed.") |
||||
exit() |
||||
focals=[] |
||||
for cam in cameras: |
||||
focals.append(cam.focal) |
||||
sorted(focals) |
||||
if len(focals)%2==1: |
||||
warped_image_scale = focals[len(focals) // 2] |
||||
else: |
||||
warped_image_scale = (focals[len(focals) // 2]+focals[len(focals) // 2-1])/2 |
||||
if do_wave_correct: |
||||
rmats=[] |
||||
for cam in cameras: |
||||
rmats.append(np.copy(cam.R)) |
||||
rmats = cv.detail.waveCorrect( rmats, cv.detail.WAVE_CORRECT_HORIZ) |
||||
for idx,cam in enumerate(cameras): |
||||
cam.R = rmats[idx] |
||||
corners=[] |
||||
mask=[] |
||||
masks_warped=[] |
||||
images_warped=[] |
||||
sizes=[] |
||||
masks=[] |
||||
for i in range(0,num_images): |
||||
um=cv.UMat(255*np.ones((images[i].shape[0],images[i].shape[1]),np.uint8)) |
||||
masks.append(um) |
||||
|
||||
warper = cv.PyRotationWarper(warp_type,warped_image_scale*seam_work_aspect) # warper peut etre nullptr? |
||||
for i in range(0,num_images): |
||||
K = cameras[i].K().astype(np.float32) |
||||
swa = seam_work_aspect |
||||
K[0,0] *= swa |
||||
K[0,2] *= swa |
||||
K[1,1] *= swa |
||||
K[1,2] *= swa |
||||
corner,image_wp =warper.warp(images[i],K,cameras[i].R,cv.INTER_LINEAR, cv.BORDER_REFLECT) |
||||
corners.append(corner) |
||||
sizes.append((image_wp.shape[1],image_wp.shape[0])) |
||||
images_warped.append(image_wp) |
||||
|
||||
p,mask_wp =warper.warp(masks[i],K,cameras[i].R,cv.INTER_NEAREST, cv.BORDER_CONSTANT) |
||||
masks_warped.append(mask_wp) |
||||
images_warped_f=[] |
||||
for img in images_warped: |
||||
imgf=img.astype(np.float32) |
||||
images_warped_f.append(imgf) |
||||
compensator=cv.detail.ExposureCompensator_createDefault(expos_comp_type) |
||||
compensator.feed(corners, images_warped, masks_warped) |
||||
if seam_find_type == "no": |
||||
seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) |
||||
elif seam_find_type == "voronoi": |
||||
seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM); |
||||
elif seam_find_type == "gc_color": |
||||
seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR") |
||||
elif seam_find_type == "gc_colorgrad": |
||||
seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR_GRAD") |
||||
elif seam_find_type == "dp_color": |
||||
seam_finder = cv.detail_DpSeamFinder("COLOR") |
||||
elif seam_find_type == "dp_colorgrad": |
||||
seam_finder = cv.detail_DpSeamFinder("COLOR_GRAD") |
||||
if seam_finder is None: |
||||
print("Can't create the following seam finder ",seam_find_type) |
||||
exit() |
||||
seam_finder.find(images_warped_f, corners,masks_warped ) |
||||
imgListe=[] |
||||
compose_scale=1 |
||||
corners=[] |
||||
sizes=[] |
||||
images_warped=[] |
||||
images_warped_f=[] |
||||
masks=[] |
||||
blender= None |
||||
timelapser=None |
||||
compose_work_aspect=1 |
||||
for idx,name in enumerate(img_names): # https://github.com/opencv/opencv/blob/master/samples/cpp/stitching_detailed.cpp#L725 ? |
||||
full_img = cv.imread(name) |
||||
if not is_compose_scale_set: |
||||
if compose_megapix > 0: |
||||
compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1]))) |
||||
is_compose_scale_set = True; |
||||
compose_work_aspect = compose_scale / work_scale; |
||||
warped_image_scale *= compose_work_aspect |
||||
warper = cv.PyRotationWarper(warp_type,warped_image_scale) |
||||
for i in range(0,len(img_names)): |
||||
cameras[i].focal *= compose_work_aspect |
||||
cameras[i].ppx *= compose_work_aspect |
||||
cameras[i].ppy *= compose_work_aspect |
||||
sz = (full_img.shape[1] * compose_scale,full_img.shape[0] * compose_scale) |
||||
K = cameras[i].K().astype(np.float32) |
||||
roi = warper.warpRoi(sz, K, cameras[i].R); |
||||
corners.append(roi[0:2]) |
||||
sizes.append(roi[2:4]) |
||||
if abs(compose_scale - 1) > 1e-1: |
||||
img =cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, interpolation=cv.INTER_LINEAR_EXACT) |
||||
else: |
||||
img = full_img; |
||||
img_size = (img.shape[1],img.shape[0]); |
||||
K=cameras[idx].K().astype(np.float32) |
||||
corner,image_warped =warper.warp(img,K,cameras[idx].R,cv.INTER_LINEAR, cv.BORDER_REFLECT) |
||||
mask =255*np.ones((img.shape[0],img.shape[1]),np.uint8) |
||||
p,mask_warped =warper.warp(mask,K,cameras[idx].R,cv.INTER_NEAREST, cv.BORDER_CONSTANT) |
||||
compensator.apply(idx,corners[idx],image_warped,mask_warped) |
||||
image_warped_s = image_warped.astype(np.int16) |
||||
image_warped=[] |
||||
dilated_mask = cv.dilate(masks_warped[idx],None) |
||||
seam_mask = cv.resize(dilated_mask,(mask_warped.shape[1],mask_warped.shape[0]),0,0,cv.INTER_LINEAR_EXACT) |
||||
mask_warped = cv.bitwise_and(seam_mask,mask_warped) |
||||
if blender==None and not timelapse: |
||||
blender = cv.detail.Blender_createDefault(1) |
||||
dst_sz = cv.detail.resultRoi(corners,sizes) |
||||
blend_strength=1 |
||||
blend_width = np.sqrt(dst_sz[2]*dst_sz[3]) * blend_strength / 100 |
||||
if blend_width < 1: |
||||
blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) |
||||
elif blend_type == "MULTI_BAND": |
||||
blender = cv.detail.Blender_createDefault(cv.detail.Blender_MULTIBAND) |
||||
blender.setNumBands((np.log(blend_width)/np.log(2.) - 1.).astype(np.int)) |
||||
elif blend_type == "FEATHER": |
||||
blender = cv.detail.Blender_createDefault(cv.detail.Blender_FEATHER) |
||||
blender.setSharpness(1./blend_width) |
||||
blender.prepare(corners, sizes) |
||||
elif timelapser==None and timelapse: |
||||
timelapser = cv.detail.createDefault(timelapse_type); |
||||
timelapser.initialize(corners, sizes) |
||||
if timelapse: |
||||
matones=np.ones((image_warped_s.shape[0],image_warped_s.shape[1]), np.uint8) |
||||
timelapser.process(image_warped_s, matones, corners[idx]) |
||||
pos_s = img_names[idx].rfind("/"); |
||||
if pos_s == -1: |
||||
fixedFileName = "fixed_" + img_names[idx]; |
||||
else: |
||||
fixedFileName = img_names[idx][:pos_s + 1 ]+"fixed_" + img_names[idx][pos_s + 1: ] |
||||
cv.imwrite(fixedFileName, timelapser.getDst()) |
||||
else: |
||||
blender.feed(image_warped_s, mask_warped, corners[idx]) |
||||
if not timelapse: |
||||
result=None |
||||
result_mask=None |
||||
result,result_mask = blender.blend(result,result_mask) |
||||
cv.imwrite(result_name,result) |
Loading…
Reference in new issue