|
|
|
@ -16,7 +16,7 @@ using namespace cv; |
|
|
|
|
using namespace cv::dnn; |
|
|
|
|
using namespace testing; |
|
|
|
|
|
|
|
|
|
static void test(Mat& input, Net& net, int backendId, int targetId) |
|
|
|
|
static void test(Mat& input, Net& net, Backend backendId, Target targetId, bool skipCheck = false) |
|
|
|
|
{ |
|
|
|
|
DNNTestLayer::checkBackend(backendId, targetId); |
|
|
|
|
randu(input, -1.0f, 1.0f); |
|
|
|
@ -29,16 +29,19 @@ static void test(Mat& input, Net& net, int backendId, int targetId) |
|
|
|
|
net.setPreferableTarget(targetId); |
|
|
|
|
Mat outputHalide = net.forward().clone(); |
|
|
|
|
|
|
|
|
|
if (skipCheck) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
double l1, lInf; |
|
|
|
|
DNNTestLayer::getDefaultThresholds(backendId, targetId, &l1, &lInf); |
|
|
|
|
normAssert(outputDefault, outputHalide, "", l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void test(LayerParams& params, Mat& input, int backendId, int targetId) |
|
|
|
|
static void test(LayerParams& params, Mat& input, Backend backendId, Target targetId, bool skipCheck = false) |
|
|
|
|
{ |
|
|
|
|
Net net; |
|
|
|
|
net.addLayerToPrev(params.name, params.type, params); |
|
|
|
|
test(input, net, backendId, targetId); |
|
|
|
|
test(input, net, backendId, targetId, skipCheck); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsWithHalide() |
|
|
|
@ -101,16 +104,17 @@ TEST_P(Convolution, Accuracy) |
|
|
|
|
Size pad = get<4>(GetParam()); |
|
|
|
|
Size dilation = get<5>(GetParam()); |
|
|
|
|
bool hasBias = get<6>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<7>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<7>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<7>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<7>(GetParam())); |
|
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
bool skipCheck = false; |
|
|
|
|
if (cvtest::skipUnstableTests && backendId == DNN_BACKEND_OPENCV && |
|
|
|
|
(targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) && |
|
|
|
|
kernel == Size(3, 1) && stride == Size(1, 1) && pad == Size(0, 1)) |
|
|
|
|
throw SkipTestException("Skip unstable test"); |
|
|
|
|
skipCheck = true; |
|
|
|
|
|
|
|
|
|
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; |
|
|
|
|
Mat weights(4, &sz[0], CV_32F); |
|
|
|
@ -139,7 +143,9 @@ TEST_P(Convolution, Accuracy) |
|
|
|
|
} |
|
|
|
|
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
|
|
|
|
Mat input(4, &inpSz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
test(lp, input, backendId, targetId, skipCheck); |
|
|
|
|
if (skipCheck) |
|
|
|
|
throw SkipTestException("Skip checks in unstable test"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine( |
|
|
|
@ -171,8 +177,8 @@ TEST_P(Deconvolution, Accuracy) |
|
|
|
|
Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]); |
|
|
|
|
Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]); |
|
|
|
|
bool hasBias = get<6>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<7>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<7>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<7>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<7>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_CPU && |
|
|
|
|
dilation.width == 2 && dilation.height == 2) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
@ -235,8 +241,8 @@ TEST_P(LRN, Accuracy) |
|
|
|
|
float bias = get<2>(GetParam())[2]; |
|
|
|
|
bool normBySize = get<3>(GetParam()); |
|
|
|
|
std::string nrmType = get<4>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<5>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<5>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<5>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<5>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
@ -276,8 +282,8 @@ TEST_P(AvePooling, Accuracy) |
|
|
|
|
Size outSize = get<1>(GetParam());; // Input size will be computed from parameters.
|
|
|
|
|
Size kernel = get<2>(GetParam()); |
|
|
|
|
Size stride = get<3>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
@ -317,8 +323,8 @@ TEST_P(MaxPooling, Accuracy) |
|
|
|
|
Size kernel = get<2>(GetParam()); |
|
|
|
|
Size stride = get<3>(GetParam()); |
|
|
|
|
Size pad = get<4>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<5>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<5>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<5>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<5>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("pool", "max"); |
|
|
|
@ -355,8 +361,8 @@ TEST_P(FullyConnected, Accuracy) |
|
|
|
|
Size inSize = get<1>(GetParam()); |
|
|
|
|
int outChannels = get<2>(GetParam()); |
|
|
|
|
bool hasBias = get<3>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
@ -394,8 +400,8 @@ typedef TestWithParam<tuple<int, tuple<Backend, Target> > > SoftMax; |
|
|
|
|
TEST_P(SoftMax, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.type = "SoftMax"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
@ -457,7 +463,7 @@ TEST_P(Test_Halide_layers, MaxPoolUnpool) |
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
static const int kNumChannels = 3; |
|
|
|
|
|
|
|
|
|
void testInPlaceActivation(LayerParams& lp, int backendId, int targetId) |
|
|
|
|
void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId) |
|
|
|
|
{ |
|
|
|
|
EXPECT_FALSE(lp.name.empty()); |
|
|
|
|
|
|
|
|
@ -485,8 +491,8 @@ TEST_P(BatchNorm, Accuracy) |
|
|
|
|
bool hasWeights = get<0>(GetParam()); |
|
|
|
|
bool hasBias = get<1>(GetParam()); |
|
|
|
|
float epsilon = get<2>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<3>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<3>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<3>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<3>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("has_weight", hasWeights); |
|
|
|
@ -518,8 +524,8 @@ typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU; |
|
|
|
|
TEST_P(ReLU, Accuracy) |
|
|
|
|
{ |
|
|
|
|
float negativeSlope = get<0>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("negative_slope", negativeSlope); |
|
|
|
@ -536,8 +542,8 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine( |
|
|
|
|
typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation; |
|
|
|
|
TEST_P(NoParamActivation, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.type = get<0>(GetParam()); |
|
|
|
@ -555,8 +561,8 @@ TEST_P(Power, Accuracy) |
|
|
|
|
float power = get<0>(GetParam())[0]; |
|
|
|
|
float scale = get<0>(GetParam())[1]; |
|
|
|
|
float shift = get<0>(GetParam())[2]; |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("power", power); |
|
|
|
@ -589,8 +595,8 @@ typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale; |
|
|
|
|
TEST_P(Scale, Accuracy) |
|
|
|
|
{ |
|
|
|
|
bool hasBias = get<0>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("bias_term", hasBias); |
|
|
|
@ -624,8 +630,8 @@ TEST_P(Concat, Accuracy) |
|
|
|
|
{ |
|
|
|
|
Vec3i inSize = get<0>(GetParam()); |
|
|
|
|
Vec3i numChannels = get<1>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<2>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<2>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<2>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<2>(GetParam())); |
|
|
|
|
|
|
|
|
|
Net net; |
|
|
|
|
|
|
|
|
@ -692,8 +698,8 @@ TEST_P(Eltwise, Accuracy) |
|
|
|
|
std::string op = get<1>(GetParam()); |
|
|
|
|
int numConv = get<2>(GetParam()); |
|
|
|
|
bool weighted = get<3>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
Target targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
|
|
|
|
|
Net net; |
|
|
|
|
|
|
|
|
|