|
|
|
@ -73,7 +73,7 @@ public: |
|
|
|
|
|
|
|
|
|
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE |
|
|
|
|
{ |
|
|
|
|
if (preferableTarget == DNN_TARGET_OPENCL && !fuse_batch_norm) |
|
|
|
|
if (!fuse_batch_norm) |
|
|
|
|
{ |
|
|
|
|
top->getScaleShift(scale, shift); |
|
|
|
|
fuse_batch_norm = !scale.empty() || !shift.empty(); |
|
|
|
@ -252,8 +252,7 @@ public: |
|
|
|
|
CV_TRACE_FUNCTION(); |
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
|
|
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && |
|
|
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), |
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
|
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
|
|
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
|
|
@ -274,25 +273,53 @@ public: |
|
|
|
|
for( i = 0; i < splitDim; i++ ) |
|
|
|
|
newRows *= inpBlob.size[i]; |
|
|
|
|
|
|
|
|
|
if (inpBlob.total() == newRows) |
|
|
|
|
Mat inpMat = inpBlob.reshape(1, newRows); |
|
|
|
|
Mat outMat = outBlob.reshape(1, newRows); |
|
|
|
|
|
|
|
|
|
if ( inpBlob.total() == newRows ) |
|
|
|
|
{ |
|
|
|
|
// MVN is applied to single values at an every row.
|
|
|
|
|
if (shift.empty()) |
|
|
|
|
{ |
|
|
|
|
outBlob.setTo(0); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for ( i = 0; i < newRows; i++ ) |
|
|
|
|
{ |
|
|
|
|
outMat.row(i).setTo(((float*)shift.data)[i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat inpMat = inpBlob.reshape(1, newRows); |
|
|
|
|
Mat outMat = outBlob.reshape(1, newRows); |
|
|
|
|
|
|
|
|
|
Scalar mean, dev; |
|
|
|
|
for ( i = 0; i < newRows; i++) |
|
|
|
|
{ |
|
|
|
|
Mat inpRow = inpMat.row(i); |
|
|
|
|
Mat outRow = outMat.row(i); |
|
|
|
|
|
|
|
|
|
float weight = 1.f; |
|
|
|
|
float bias = 0.f; |
|
|
|
|
if (fuse_batch_norm) |
|
|
|
|
{ |
|
|
|
|
weight = i < scale.cols ? ((float*)scale.data)[i] : weight; |
|
|
|
|
bias = i < shift.cols ? ((float*)shift.data)[i] : bias; |
|
|
|
|
} |
|
|
|
|
cv::meanStdDev(inpRow, mean, (normVariance) ? dev : noArray()); |
|
|
|
|
double alpha = (normVariance) ? 1/(eps + dev[0]) : 1; |
|
|
|
|
inpRow.convertTo(outRow, outRow.type(), alpha, -mean[0] * alpha); |
|
|
|
|
double normalizationScale = 1.0; |
|
|
|
|
double normalizationShift = 0.0; |
|
|
|
|
if (fuse_batch_norm) |
|
|
|
|
{ |
|
|
|
|
normalizationScale = alpha * weight; |
|
|
|
|
normalizationShift = -mean[0] * normalizationScale + bias; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
normalizationScale = alpha; |
|
|
|
|
normalizationShift = -mean[0] * alpha; |
|
|
|
|
} |
|
|
|
|
inpRow.convertTo(outRow, outRow.type(), normalizationScale, normalizationShift); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|