|
|
|
@ -192,6 +192,7 @@ private: |
|
|
|
|
void parseQSigmoid (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
|
|
|
void parseQAvgPool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
|
|
|
void parseQConcat (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
|
|
|
void parseQGemm (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
|
|
|
|
|
|
|
|
// '???' domain or '???' layer type
|
|
|
|
|
void parseCustomLayer (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
|
|
@ -2183,17 +2184,39 @@ void ONNXImporter::parseTranspose(LayerParams& layerParams, const opencv_onnx::N |
|
|
|
|
|
|
|
|
|
void ONNXImporter::parseSqueeze(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
|
|
|
{ |
|
|
|
|
CV_Assert_N(node_proto.input_size() == 1, layerParams.has("axes")); |
|
|
|
|
DictValue axes_dict = layerParams.get("axes"); |
|
|
|
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
|
|
|
CV_Assert(node_proto.input_size() <= 2); |
|
|
|
|
|
|
|
|
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
|
|
|
std::vector<bool> maskedAxes(inpShape.size(), false); |
|
|
|
|
for (int i = 0; i < axes_dict.size(); ++i) |
|
|
|
|
if (layerParams.has("axes")) |
|
|
|
|
{ |
|
|
|
|
int axis = axes_dict.getIntValue(i); |
|
|
|
|
CV_CheckLE(axis, static_cast<int>(inpShape.size()), "Squeeze axis"); |
|
|
|
|
maskedAxes[axis] = inpShape[axis] == 1; |
|
|
|
|
DictValue axes_dict = layerParams.get("axes"); |
|
|
|
|
for (int i = 0; i < axes_dict.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
int axis = axes_dict.getIntValue(i); |
|
|
|
|
CV_CheckLE(axis, static_cast<int>(inpShape.size()), "Squeeze axis"); |
|
|
|
|
maskedAxes[axis] = inpShape[axis] == 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if (node_proto.input_size() == 2) |
|
|
|
|
{ |
|
|
|
|
if (constBlobs.find(node_proto.input(1)) != constBlobs.end()) |
|
|
|
|
{ |
|
|
|
|
Mat axesMat = getBlob(node_proto, 1); |
|
|
|
|
if (axesMat.depth() == CV_32F) |
|
|
|
|
axesMat.convertTo(axesMat, CV_32S); |
|
|
|
|
size_t axesLen = axesMat.total(); |
|
|
|
|
for (int i = 0; i < axesLen; i++) |
|
|
|
|
{ |
|
|
|
|
int axis = axesMat.at<int>(i); |
|
|
|
|
CV_CheckLE(axis, static_cast<int>(inpShape.size()), "Squeeze axis"); |
|
|
|
|
maskedAxes[axis] = inpShape[axis] == 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
CV_Error(Error::StsNotImplemented, cv::format("ONNX/Squeeze: doesn't support non-constant 'axes' input")); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
MatShape outShape; |
|
|
|
|
for (int i = 0; i < inpShape.size(); ++i) |
|
|
|
|
{ |
|
|
|
@ -3260,6 +3283,78 @@ void ONNXImporter::parseQMatMul(LayerParams& layerParams, const opencv_onnx::Nod |
|
|
|
|
addLayer(layerParams, node_proto); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// A * B + C = Y, we require that the dimension of A is [m, k], and the dimension of B is [n, k].
|
|
|
|
|
// And the dim of output Y is [m, n]
|
|
|
|
|
void ONNXImporter::parseQGemm(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
|
|
|
{ |
|
|
|
|
int ninputs = node_proto.input_size(); |
|
|
|
|
CV_Assert(ninputs == 8 || ninputs == 9); |
|
|
|
|
|
|
|
|
|
layerParams.type = "InnerProductInt8"; |
|
|
|
|
|
|
|
|
|
if (constBlobs.find(node_proto.input(3)) == constBlobs.end()) |
|
|
|
|
CV_Error(Error::StsNotImplemented, "Variable weights is not supported"); |
|
|
|
|
|
|
|
|
|
Mat weights = getBlob(node_proto, 3); |
|
|
|
|
|
|
|
|
|
if (!layerParams.get<int>("transB", 0)) |
|
|
|
|
{ |
|
|
|
|
transpose(weights, weights); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_Assert(layerParams.get<float>("alpha", 1) == 1.0f); |
|
|
|
|
CV_Assert(layerParams.get<int>("transA", 0) == 0); |
|
|
|
|
|
|
|
|
|
int firstInpDims = outShapes[node_proto.input(0)].size(); |
|
|
|
|
|
|
|
|
|
Mat inp_sc = getBlob(node_proto, 1); |
|
|
|
|
Mat inp_zp = getBlob(node_proto, 2); |
|
|
|
|
|
|
|
|
|
int outCn = weights.size[0]; |
|
|
|
|
int secondInpDims = weights.dims; |
|
|
|
|
|
|
|
|
|
Mat w_scale = getBlob(node_proto, 4); |
|
|
|
|
CV_Assert(w_scale.total() == 1 || w_scale.total() == outCn); |
|
|
|
|
bool per_channel = w_scale.total() == outCn; |
|
|
|
|
Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at<float>(0))); |
|
|
|
|
|
|
|
|
|
Mat w_zp = getBlob(node_proto, 5); |
|
|
|
|
int8_t* ptrZp = w_zp.ptr<int8_t>(0); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < w_zp.total(); i++) |
|
|
|
|
{ |
|
|
|
|
if (ptrZp[i] != (int8_t)0) |
|
|
|
|
CV_Error(Error::StsUnsupportedFormat, "The zero-point non-zero case of W is not supported!"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat out_sc, bias; |
|
|
|
|
out_sc = getBlob(node_proto, 7); |
|
|
|
|
if (constBlobs.find(node_proto.input(6)) != constBlobs.end()) |
|
|
|
|
bias = getBlob(node_proto, 6); |
|
|
|
|
else |
|
|
|
|
bias = Mat::zeros(1, outCn, CV_32S); |
|
|
|
|
|
|
|
|
|
Mat biasFused(1, outCn, CV_32S); |
|
|
|
|
Mat outputMultiplier(1, outCn, CV_32F); |
|
|
|
|
for (int i = 0; i < outCn; i++) |
|
|
|
|
{ |
|
|
|
|
biasFused.at<int>(i) = bias.at<int>(i) - inp_zp.at<int8_t>(0)*(cv::sum(weights.row(i))[0]); |
|
|
|
|
outputMultiplier.at<float>(i) = (inp_sc.at<float>(0) * wt_sc.at<float>(i)) / out_sc.at<float>(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
layerParams.type = "InnerProductInt8"; |
|
|
|
|
layerParams.set("num_output", outCn); |
|
|
|
|
layerParams.set("axis", firstInpDims - secondInpDims + 1); |
|
|
|
|
layerParams.set("input_scale", inp_sc.at<float>(0)); |
|
|
|
|
layerParams.set("input_zeropoint", inp_zp.at<int8_t>(0)); |
|
|
|
|
layerParams.set("per_channel", per_channel); |
|
|
|
|
|
|
|
|
|
layerParams.blobs.push_back(weights); |
|
|
|
|
layerParams.blobs.push_back(biasFused); |
|
|
|
|
layerParams.blobs.push_back(outputMultiplier); |
|
|
|
|
addLayer(layerParams, node_proto); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void ONNXImporter::parseQEltwise(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
|
|
|
{ |
|
|
|
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
|
|
@ -3654,6 +3749,7 @@ void ONNXImporter::buildDispatchMap_COM_MICROSOFT(int opset_version) |
|
|
|
|
dispatch["QLinearLeakyRelu"] = &ONNXImporter::parseQLeakyRelu; |
|
|
|
|
dispatch["QLinearSigmoid"] = &ONNXImporter::parseQSigmoid; |
|
|
|
|
dispatch["QLinearConcat"] = &ONNXImporter::parseQConcat; |
|
|
|
|
dispatch["QGemm"] = &ONNXImporter::parseQGemm; |
|
|
|
|
|
|
|
|
|
domain_dispatch_map["com.microsoft"] = dispatch; |
|
|
|
|
} |
|
|
|
|