parent
ff1eb0d582
commit
2d5a1dacd0
5 changed files with 474 additions and 0 deletions
@ -0,0 +1,135 @@ |
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// @Authors
|
||||||
|
// Jin Ma, jin@multicorewareinc.com
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other oclMaterials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors as is and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
#include "precomp.hpp" |
||||||
|
|
||||||
|
using namespace std; |
||||||
|
using namespace cv; |
||||||
|
using namespace cv::ocl; |
||||||
|
|
||||||
|
KalmanFilter::KalmanFilter()
|
||||||
|
{ |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type) |
||||||
|
{ |
||||||
|
init(dynamParams, measureParams, controlParams, type); |
||||||
|
} |
||||||
|
|
||||||
|
void KalmanFilter::init(int DP, int MP, int CP, int type) |
||||||
|
{ |
||||||
|
CV_Assert( DP > 0 && MP > 0 ); |
||||||
|
CV_Assert( type == CV_32F || type == CV_64F ); |
||||||
|
CP = cv::max(CP, 0); |
||||||
|
|
||||||
|
statePre.create(DP, 1, type); |
||||||
|
statePre.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
statePost.create(DP, 1, type); |
||||||
|
statePost.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
transitionMatrix.create(DP, DP, type); |
||||||
|
setIdentity(transitionMatrix, 1); |
||||||
|
|
||||||
|
processNoiseCov.create(DP, DP, type); |
||||||
|
setIdentity(processNoiseCov, 1); |
||||||
|
|
||||||
|
measurementNoiseCov.create(MP, MP, type); |
||||||
|
setIdentity(measurementNoiseCov, 1); |
||||||
|
|
||||||
|
measurementMatrix.create(MP, DP, type); |
||||||
|
measurementMatrix.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
errorCovPre.create(DP, DP, type); |
||||||
|
errorCovPre.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
errorCovPost.create(DP, DP, type); |
||||||
|
errorCovPost.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
gain.create(DP, MP, type); |
||||||
|
gain.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
if( CP > 0 ) |
||||||
|
{ |
||||||
|
controlMatrix.create(DP, CP, type); |
||||||
|
controlMatrix.setTo(Scalar::all(0)); |
||||||
|
} |
||||||
|
else |
||||||
|
controlMatrix.release(); |
||||||
|
|
||||||
|
temp1.create(DP, DP, type); |
||||||
|
temp2.create(MP, DP, type); |
||||||
|
temp3.create(MP, MP, type); |
||||||
|
temp4.create(MP, DP, type); |
||||||
|
temp5.create(MP, 1, type); |
||||||
|
} |
||||||
|
|
||||||
|
CV_EXPORTS const oclMat& KalmanFilter::predict(const oclMat& control) |
||||||
|
{ |
||||||
|
gemm(transitionMatrix, statePost, 1, oclMat(), 0, statePre); |
||||||
|
oclMat temp; |
||||||
|
|
||||||
|
if(control.data)
|
||||||
|
gemm(controlMatrix, control, 1, statePre, 1, statePre); |
||||||
|
gemm(transitionMatrix, errorCovPost, 1, oclMat(), 0, temp1); |
||||||
|
gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T); |
||||||
|
statePre.copyTo(statePost); |
||||||
|
return statePre; |
||||||
|
} |
||||||
|
|
||||||
|
CV_EXPORTS const oclMat& KalmanFilter::correct(const oclMat& measurement) |
||||||
|
{ |
||||||
|
CV_Assert(measurement.empty() == false); |
||||||
|
gemm(measurementMatrix, errorCovPre, 1, oclMat(), 0, temp2); |
||||||
|
gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T); |
||||||
|
Mat temp; |
||||||
|
solve(Mat(temp3), Mat(temp2), temp, DECOMP_SVD); |
||||||
|
temp4.upload(temp); |
||||||
|
gain = temp4.t(); |
||||||
|
gemm(measurementMatrix, statePre, -1, measurement, 1, temp5); |
||||||
|
gemm(gain, temp5, 1, statePre, 1, statePost); |
||||||
|
gemm(gain, temp2, -1, errorCovPre, 1, errorCovPost); |
||||||
|
return statePost; |
||||||
|
} |
@ -0,0 +1,100 @@ |
|||||||
|
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||||
|
// |
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||||
|
// |
||||||
|
// By downloading, copying, installing or using the software you agree to this license. |
||||||
|
// If you do not agree to this license, do not download, install, |
||||||
|
// copy or use the software. |
||||||
|
// |
||||||
|
// |
||||||
|
// License Agreement |
||||||
|
// For Open Source Computer Vision Library |
||||||
|
// |
||||||
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
||||||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||||
|
// Third party copyrights are property of their respective owners. |
||||||
|
// |
||||||
|
// @Authors |
||||||
|
// Jin Ma jin@multicorewareinc.com |
||||||
|
// |
||||||
|
// Redistribution and use in source and binary forms, with or without modification, |
||||||
|
// are permitted provided that the following conditions are met: |
||||||
|
// |
||||||
|
// * Redistribution's of source code must retain the above copyright notice, |
||||||
|
// this list of conditions and the following disclaimer. |
||||||
|
// |
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||||
|
// this list of conditions and the following disclaimer in the documentation |
||||||
|
// and/or other oclMaterials provided with the distribution. |
||||||
|
// |
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products |
||||||
|
// derived from this software without specific prior written permission. |
||||||
|
// |
||||||
|
// This software is provided by the copyright holders and contributors as is and |
||||||
|
// any express or implied warranties, including, but not limited to, the implied |
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||||
|
// indirect, incidental, special, exemplary, or consequential damages |
||||||
|
// (including, but not limited to, procurement of substitute goods or services; |
||||||
|
// loss of use, data, or profits; or business interruption) however caused |
||||||
|
// and on any theory of liability, whether in contract, strict liability, |
||||||
|
// or tort (including negligence or otherwise) arising in any way out of |
||||||
|
// the use of this software, even if advised of the possibility of such damage. |
||||||
|
// |
||||||
|
//M*/ |
||||||
|
#if defined (DOUBLE_SUPPORT) |
||||||
|
#ifdef cl_khr_fp64 |
||||||
|
#pragma OPENCL EXTENSION cl_khr_fp64:enable |
||||||
|
#elif defined (cl_amd_fp64) |
||||||
|
#pragma OPENCL EXTENSION cl_amd_fp64:enable |
||||||
|
#endif |
||||||
|
#endif |
||||||
|
|
||||||
|
|
||||||
|
#if defined (DOUBLE_SUPPORT) |
||||||
|
#define DATA_TYPE double |
||||||
|
#else |
||||||
|
#define DATA_TYPE float |
||||||
|
#endif |
||||||
|
|
||||||
|
__kernel void setIdentityKernel_F1(__global float* src, int src_row, int src_col, int src_step, DATA_TYPE scalar) |
||||||
|
{ |
||||||
|
int x = get_global_id(0); |
||||||
|
int y = get_global_id(1); |
||||||
|
|
||||||
|
if(x < src_col && y < src_row) |
||||||
|
{ |
||||||
|
if(x == y) |
||||||
|
src[y * src_step + x] = scalar; |
||||||
|
else |
||||||
|
src[y * src_step + x] = 0 * scalar; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
__kernel void setIdentityKernel_D1(__global DATA_TYPE* src, int src_row, int src_col, int src_step, DATA_TYPE scalar) |
||||||
|
{ |
||||||
|
int x = get_global_id(0); |
||||||
|
int y = get_global_id(1); |
||||||
|
|
||||||
|
if(x < src_col && y < src_row) |
||||||
|
{ |
||||||
|
if(x == y) |
||||||
|
src[y * src_step + x] = scalar; |
||||||
|
else |
||||||
|
src[y * src_step + x] = 0 * scalar; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
__kernel void setIdentityKernel_I1(__global int* src, int src_row, int src_col, int src_step, int scalar) |
||||||
|
{ |
||||||
|
int x = get_global_id(0); |
||||||
|
int y = get_global_id(1); |
||||||
|
|
||||||
|
if(x < src_col && y < src_row) |
||||||
|
{ |
||||||
|
if(x == y) |
||||||
|
src[y * src_step + x] = scalar; |
||||||
|
else |
||||||
|
src[y * src_step + x] = 0 * scalar; |
||||||
|
} |
||||||
|
} |
@ -0,0 +1,147 @@ |
|||||||
|
///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// @Authors
|
||||||
|
// Jin Ma, jin@multicorewareinc.com
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other oclMaterials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "test_precomp.hpp" |
||||||
|
#ifdef HAVE_OPENCL |
||||||
|
using namespace cv; |
||||||
|
using namespace cv::ocl; |
||||||
|
using namespace cvtest; |
||||||
|
using namespace testing; |
||||||
|
using namespace std; |
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////
|
||||||
|
PARAM_TEST_CASE(Kalman, int, int) |
||||||
|
{ |
||||||
|
int size_; |
||||||
|
int iteration; |
||||||
|
virtual void SetUp() |
||||||
|
{ |
||||||
|
size_ = GET_PARAM(0); |
||||||
|
iteration = GET_PARAM(1); |
||||||
|
} |
||||||
|
}; |
||||||
|
|
||||||
|
TEST_P(Kalman, Accuracy) |
||||||
|
{ |
||||||
|
const int Dim = size_; |
||||||
|
const int Steps = iteration; |
||||||
|
const double max_init = 1; |
||||||
|
const double max_noise = 0.1; |
||||||
|
|
||||||
|
cv::RNG &rng = TS::ptr()->get_rng(); |
||||||
|
|
||||||
|
Mat sample_mat(Dim, 1, CV_32F), temp_mat; |
||||||
|
oclMat Sample(Dim, 1, CV_32F); |
||||||
|
oclMat Temp(Dim, 1, CV_32F); |
||||||
|
Mat Temp_cpu(Dim, 1, CV_32F); |
||||||
|
|
||||||
|
Size size(Sample.cols, Sample.rows); |
||||||
|
|
||||||
|
sample_mat = randomMat(rng, size, Sample.type(), -max_init, max_init, false); |
||||||
|
Sample.upload(sample_mat); |
||||||
|
|
||||||
|
//ocl start
|
||||||
|
cv::ocl::KalmanFilter kalman_filter_ocl; |
||||||
|
kalman_filter_ocl.init(Dim, Dim); |
||||||
|
|
||||||
|
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPre, 1); |
||||||
|
cv::ocl::setIdentity(kalman_filter_ocl.measurementMatrix, 1); |
||||||
|
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPost, 1); |
||||||
|
|
||||||
|
kalman_filter_ocl.measurementNoiseCov.setTo(Scalar::all(0)); |
||||||
|
kalman_filter_ocl.statePre.setTo(Scalar::all(0)); |
||||||
|
kalman_filter_ocl.statePost.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
kalman_filter_ocl.correct(Sample); |
||||||
|
//ocl end
|
||||||
|
|
||||||
|
//cpu start
|
||||||
|
cv::KalmanFilter kalman_filter_cpu; |
||||||
|
|
||||||
|
kalman_filter_cpu.init(Dim, Dim); |
||||||
|
|
||||||
|
cv::setIdentity(kalman_filter_cpu.errorCovPre, 1); |
||||||
|
cv::setIdentity(kalman_filter_cpu.measurementMatrix, 1); |
||||||
|
cv::setIdentity(kalman_filter_cpu.errorCovPost, 1); |
||||||
|
|
||||||
|
kalman_filter_cpu.measurementNoiseCov.setTo(Scalar::all(0)); |
||||||
|
kalman_filter_cpu.statePre.setTo(Scalar::all(0)); |
||||||
|
kalman_filter_cpu.statePost.setTo(Scalar::all(0)); |
||||||
|
|
||||||
|
kalman_filter_cpu.correct(sample_mat); |
||||||
|
//cpu end
|
||||||
|
//test begin
|
||||||
|
for(int i = 0; i<Steps; i++) |
||||||
|
{ |
||||||
|
kalman_filter_ocl.predict(); |
||||||
|
kalman_filter_cpu.predict(); |
||||||
|
|
||||||
|
cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu); |
||||||
|
|
||||||
|
Size size1(Temp.cols, Temp.rows); |
||||||
|
Mat temp = randomMat(rng, size1, Temp.type(), 0, 0xffff, false); |
||||||
|
|
||||||
|
|
||||||
|
cv::multiply(2, temp, temp); |
||||||
|
|
||||||
|
cv::subtract(temp, 1, temp); |
||||||
|
|
||||||
|
cv::multiply(max_noise, temp, temp); |
||||||
|
|
||||||
|
cv::add(temp, Temp_cpu, Temp_cpu); |
||||||
|
|
||||||
|
Temp.upload(Temp_cpu); |
||||||
|
Temp.copyTo(Sample); |
||||||
|
Temp_cpu.copyTo(sample_mat); |
||||||
|
|
||||||
|
kalman_filter_ocl.correct(Temp); |
||||||
|
kalman_filter_cpu.correct(Temp_cpu); |
||||||
|
} |
||||||
|
//test end
|
||||||
|
EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0); |
||||||
|
} |
||||||
|
INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30))); |
||||||
|
|
||||||
|
#endif // HAVE_OPENCL
|
||||||
|
|
Loading…
Reference in new issue