|
|
|
@ -463,14 +463,10 @@ public: |
|
|
|
|
root_[i] = pool_.allocate<KMeansNode>(); |
|
|
|
|
std::memset(root_[i], 0, sizeof(KMeansNode)); |
|
|
|
|
|
|
|
|
|
if(is_kdtree_distance::val || is_vector_space_distance::val) { |
|
|
|
|
computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_); |
|
|
|
|
computeClustering(root_[i], indices_[i], (int)size_, branching_,0); |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
computeBitfieldNodeStatistics(root_[i], indices_[i], (unsigned int)size_); |
|
|
|
|
computeBitfieldClustering(root_[i], indices_[i], (int)size_, branching_,0); |
|
|
|
|
} |
|
|
|
|
Distance* dummy = NULL; |
|
|
|
|
computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_, dummy); |
|
|
|
|
|
|
|
|
|
computeClustering(root_[i], indices_[i], (int)size_, branching_,0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -829,78 +825,45 @@ private: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* The method responsible with actually doing the recursive hierarchical |
|
|
|
|
* clustering |
|
|
|
|
* |
|
|
|
|
* Params: |
|
|
|
|
* node = the node to cluster |
|
|
|
|
* indices = indices of the points belonging to the current node |
|
|
|
|
* branching = the branching factor to use in the clustering |
|
|
|
|
* |
|
|
|
|
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) |
|
|
|
|
*/ |
|
|
|
|
void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) |
|
|
|
|
template<typename DistType> |
|
|
|
|
void computeNodeStatistics(KMeansNodePtr node, int* indices, |
|
|
|
|
unsigned int indices_length, |
|
|
|
|
const DistType* identifier) |
|
|
|
|
{ |
|
|
|
|
node->size = indices_length; |
|
|
|
|
node->level = level; |
|
|
|
|
|
|
|
|
|
if (indices_length < branching) { |
|
|
|
|
node->indices = indices; |
|
|
|
|
std::sort(node->indices,node->indices+indices_length); |
|
|
|
|
node->childs = NULL; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::AutoBuffer<int> centers_idx_buf(branching); |
|
|
|
|
int* centers_idx = centers_idx_buf.data(); |
|
|
|
|
int centers_length; |
|
|
|
|
(this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); |
|
|
|
|
(void)identifier; |
|
|
|
|
computeNodeStatistics(node, indices, indices_length); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (centers_length<branching) { |
|
|
|
|
node->indices = indices; |
|
|
|
|
std::sort(node->indices,node->indices+indices_length); |
|
|
|
|
node->childs = NULL; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
void computeNodeStatistics(KMeansNodePtr node, int* indices, |
|
|
|
|
unsigned int indices_length, |
|
|
|
|
const cvflann::HammingLUT* identifier) |
|
|
|
|
{ |
|
|
|
|
(void)identifier; |
|
|
|
|
computeBitfieldNodeStatistics(node, indices, indices_length); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void computeNodeStatistics(KMeansNodePtr node, int* indices, |
|
|
|
|
unsigned int indices_length, |
|
|
|
|
const cvflann::Hamming<unsigned char>* identifier) |
|
|
|
|
{ |
|
|
|
|
(void)identifier; |
|
|
|
|
computeBitfieldNodeStatistics(node, indices, indices_length); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::vector<DistanceType> radiuses(branching); |
|
|
|
|
cv::AutoBuffer<int> count_buf(branching); |
|
|
|
|
int* count = count_buf.data(); |
|
|
|
|
for (int i=0; i<branching; ++i) { |
|
|
|
|
radiuses[i] = 0; |
|
|
|
|
count[i] = 0; |
|
|
|
|
} |
|
|
|
|
void computeNodeStatistics(KMeansNodePtr node, int* indices, |
|
|
|
|
unsigned int indices_length, |
|
|
|
|
const cvflann::Hamming2<unsigned char>* identifier) |
|
|
|
|
{ |
|
|
|
|
(void)identifier; |
|
|
|
|
computeBitfieldNodeStatistics(node, indices, indices_length); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// assign points to clusters
|
|
|
|
|
cv::AutoBuffer<int> belongs_to_buf(indices_length); |
|
|
|
|
int* belongs_to = belongs_to_buf.data(); |
|
|
|
|
for (int i=0; i<indices_length; ++i) { |
|
|
|
|
DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_); |
|
|
|
|
belongs_to[i] = 0; |
|
|
|
|
for (int j=1; j<branching; ++j) { |
|
|
|
|
DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_); |
|
|
|
|
if (sq_dist>new_sq_dist) { |
|
|
|
|
belongs_to[i] = j; |
|
|
|
|
sq_dist = new_sq_dist; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (sq_dist>radiuses[belongs_to[i]]) { |
|
|
|
|
radiuses[belongs_to[i]] = sq_dist; |
|
|
|
|
} |
|
|
|
|
count[belongs_to[i]]++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void refineClustering(int* indices, int indices_length, int branching, CentersType** centers, |
|
|
|
|
std::vector<DistanceType>& radiuses, int* belongs_to, int* count) |
|
|
|
|
{ |
|
|
|
|
cv::AutoBuffer<double> dcenters_buf(branching*veclen_); |
|
|
|
|
Matrix<double> dcenters(dcenters_buf.data(), branching, veclen_); |
|
|
|
|
for (int i=0; i<centers_length; ++i) { |
|
|
|
|
ElementType* vec = dataset_[centers_idx[i]]; |
|
|
|
|
for (size_t k=0; k<veclen_; ++k) { |
|
|
|
|
dcenters[i][k] = double(vec[k]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool converged = false; |
|
|
|
|
int iteration = 0; |
|
|
|
@ -931,7 +894,8 @@ private: |
|
|
|
|
std::vector<DistanceType> sq_dists(indices_length); |
|
|
|
|
|
|
|
|
|
// reassign points to clusters
|
|
|
|
|
KMeansDistanceComputer<Matrix<double> > invoker(distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists); |
|
|
|
|
KMeansDistanceComputer<Matrix<double> > invoker( |
|
|
|
|
distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists); |
|
|
|
|
parallel_for_(cv::Range(0, (int)indices_length), invoker); |
|
|
|
|
|
|
|
|
|
for (int i=0; i < (int)indices_length; ++i) { |
|
|
|
@ -971,119 +935,24 @@ private: |
|
|
|
|
converged = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CentersType** centers = new CentersType*[branching]; |
|
|
|
|
|
|
|
|
|
for (int i=0; i<branching; ++i) { |
|
|
|
|
centers[i] = new CentersType[veclen_]; |
|
|
|
|
memoryCounter_ += (int)(veclen_*sizeof(CentersType)); |
|
|
|
|
for (size_t k=0; k<veclen_; ++k) { |
|
|
|
|
centers[i][k] = (CentersType)dcenters[i][k]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// compute kmeans clustering for each of the resulting clusters
|
|
|
|
|
node->childs = pool_.allocate<KMeansNodePtr>(branching); |
|
|
|
|
int start = 0; |
|
|
|
|
int end = start; |
|
|
|
|
for (int c=0; c<branching; ++c) { |
|
|
|
|
int s = count[c]; |
|
|
|
|
|
|
|
|
|
DistanceType variance = 0; |
|
|
|
|
DistanceType mean_radius =0; |
|
|
|
|
for (int i=0; i<indices_length; ++i) { |
|
|
|
|
if (belongs_to[i]==c) { |
|
|
|
|
DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); |
|
|
|
|
variance += d; |
|
|
|
|
mean_radius += static_cast<DistanceType>( sqrt(d) ); |
|
|
|
|
std::swap(indices[i],indices[end]); |
|
|
|
|
std::swap(belongs_to[i],belongs_to[end]); |
|
|
|
|
end++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
variance /= s; |
|
|
|
|
mean_radius /= s; |
|
|
|
|
variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); |
|
|
|
|
|
|
|
|
|
node->childs[c] = pool_.allocate<KMeansNode>(); |
|
|
|
|
std::memset(node->childs[c], 0, sizeof(KMeansNode)); |
|
|
|
|
node->childs[c]->radius = radiuses[c]; |
|
|
|
|
node->childs[c]->pivot = centers[c]; |
|
|
|
|
node->childs[c]->variance = variance; |
|
|
|
|
node->childs[c]->mean_radius = mean_radius; |
|
|
|
|
computeClustering(node->childs[c],indices+start, end-start, branching, level+1); |
|
|
|
|
start=end; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
delete[] centers; |
|
|
|
|
for (int i=0; i<branching; ++i) { |
|
|
|
|
centers[i] = new CentersType[veclen_]; |
|
|
|
|
memoryCounter_ += (int)(veclen_*sizeof(CentersType)); |
|
|
|
|
for (size_t k=0; k<veclen_; ++k) { |
|
|
|
|
centers[i][k] = (CentersType)dcenters[i][k]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* The method responsible with doing the recursive hierarchical clustering on |
|
|
|
|
* binary vectors. |
|
|
|
|
* As some might have heared that KMeans on binary data doesn't make sense, |
|
|
|
|
* it's worth a little explanation why it actually fairly works. As |
|
|
|
|
* with the Hierarchical Clustering algortihm, we seed several centers for the |
|
|
|
|
* current node by picking some of its points. Then in a first pass each point |
|
|
|
|
* of the node is then related to its closest center. Now let's have a look at |
|
|
|
|
* the 5 central dimensions of the 9 following points: |
|
|
|
|
* |
|
|
|
|
* xxxxxx11100xxxxx (1) |
|
|
|
|
* xxxxxx11010xxxxx (2) |
|
|
|
|
* xxxxxx11001xxxxx (3) |
|
|
|
|
* xxxxxx10110xxxxx (4) |
|
|
|
|
* xxxxxx10101xxxxx (5) |
|
|
|
|
* xxxxxx10011xxxxx (6) |
|
|
|
|
* xxxxxx01110xxxxx (7) |
|
|
|
|
* xxxxxx01101xxxxx (8) |
|
|
|
|
* xxxxxx01011xxxxx (9) |
|
|
|
|
* sum _____ |
|
|
|
|
* of 1: 66555 |
|
|
|
|
* |
|
|
|
|
* Even if the barycenter notion doesn't apply, we can set a center |
|
|
|
|
* xxxxxx11111xxxxx that will better fit the five dimensions we are focusing |
|
|
|
|
* on for these points. |
|
|
|
|
* |
|
|
|
|
* Note that convergence isn't ensured anymore. In practice, using Gonzales |
|
|
|
|
* as seeding algorithm should be fine for getting convergence ("iterations" |
|
|
|
|
* value can be set to -1). But with KMeans++ seeding you should definitely |
|
|
|
|
* set a maximum number of iterations (but make it higher than the "iterations" |
|
|
|
|
* default value of 11). |
|
|
|
|
* |
|
|
|
|
* Params: |
|
|
|
|
* node = the node to cluster |
|
|
|
|
* indices = indices of the points belonging to the current node |
|
|
|
|
* indices_length = number of points in the current node |
|
|
|
|
* branching = the branching factor to use in the clustering |
|
|
|
|
* level = 0 for the root node, it increases with the subdivision levels |
|
|
|
|
*/ |
|
|
|
|
void computeBitfieldClustering(KMeansNodePtr node, int* indices, |
|
|
|
|
int indices_length, int branching, int level) |
|
|
|
|
void refineBitfieldClustering(int* indices, int indices_length, int branching, CentersType** centers, |
|
|
|
|
std::vector<DistanceType>& radiuses, int* belongs_to, int* count) |
|
|
|
|
{ |
|
|
|
|
node->size = indices_length; |
|
|
|
|
node->level = level; |
|
|
|
|
|
|
|
|
|
if (indices_length < branching) { |
|
|
|
|
node->indices = indices; |
|
|
|
|
std::sort(node->indices,node->indices+indices_length); |
|
|
|
|
node->childs = NULL; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::AutoBuffer<int> centers_idx_buf(branching); |
|
|
|
|
int* centers_idx = centers_idx_buf.data(); |
|
|
|
|
int centers_length; |
|
|
|
|
(this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); |
|
|
|
|
|
|
|
|
|
if (centers_length<branching) { |
|
|
|
|
node->indices = indices; |
|
|
|
|
std::sort(node->indices,node->indices+indices_length); |
|
|
|
|
node->childs = NULL; |
|
|
|
|
return; |
|
|
|
|
for (int i=0; i<branching; ++i) { |
|
|
|
|
centers[i] = new CentersType[veclen_]; |
|
|
|
|
memoryCounter_ += (int)(veclen_*sizeof(CentersType)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const unsigned int accumulator_veclen = static_cast<unsigned int>( |
|
|
|
@ -1091,41 +960,6 @@ private: |
|
|
|
|
cv::AutoBuffer<unsigned int> dcenters_buf(branching*accumulator_veclen); |
|
|
|
|
Matrix<unsigned int> dcenters(dcenters_buf.data(), branching, accumulator_veclen); |
|
|
|
|
|
|
|
|
|
CentersType** centers = new CentersType*[branching]; |
|
|
|
|
|
|
|
|
|
for (int i=0; i<branching; ++i) { |
|
|
|
|
centers[i] = new CentersType[veclen_]; |
|
|
|
|
memoryCounter_ += (int)(veclen_*sizeof(CentersType)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::vector<DistanceType> radiuses(branching); |
|
|
|
|
cv::AutoBuffer<int> count_buf(branching); |
|
|
|
|
int* count = count_buf.data(); |
|
|
|
|
for (int i=0; i<branching; ++i) { |
|
|
|
|
radiuses[i] = 0; |
|
|
|
|
count[i] = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// assign points to clusters
|
|
|
|
|
cv::AutoBuffer<int> belongs_to_buf(indices_length); |
|
|
|
|
int* belongs_to = belongs_to_buf.data(); |
|
|
|
|
for (int i=0; i<indices_length; ++i) { |
|
|
|
|
|
|
|
|
|
DistanceType dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_); |
|
|
|
|
belongs_to[i] = 0; |
|
|
|
|
for (int j=1; j<branching; ++j) { |
|
|
|
|
DistanceType new_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_); |
|
|
|
|
if (dist>new_dist) { |
|
|
|
|
belongs_to[i] = j; |
|
|
|
|
dist = new_dist; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (dist>radiuses[belongs_to[i]]) { |
|
|
|
|
radiuses[belongs_to[i]] = dist; |
|
|
|
|
} |
|
|
|
|
count[belongs_to[i]]++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool converged = false; |
|
|
|
|
int iteration = 0; |
|
|
|
|
while (!converged && iteration<iterations_) { |
|
|
|
@ -1172,7 +1006,8 @@ private: |
|
|
|
|
std::vector<DistanceType> dists(indices_length); |
|
|
|
|
|
|
|
|
|
// reassign points to clusters
|
|
|
|
|
KMeansDistanceComputer<ElementType**> invoker(distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists); |
|
|
|
|
KMeansDistanceComputer<ElementType**> invoker( |
|
|
|
|
distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists); |
|
|
|
|
parallel_for_(cv::Range(0, (int)indices_length), invoker); |
|
|
|
|
|
|
|
|
|
for (int i=0; i < indices_length; ++i) { |
|
|
|
@ -1212,10 +1047,53 @@ private: |
|
|
|
|
converged = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length, |
|
|
|
|
int branching, int level, CentersType** centers, |
|
|
|
|
std::vector<DistanceType>& radiuses, int* belongs_to, int* count) |
|
|
|
|
{ |
|
|
|
|
// compute kmeans clustering for each of the resulting clusters
|
|
|
|
|
node->childs = pool_.allocate<KMeansNodePtr>(branching); |
|
|
|
|
int start = 0; |
|
|
|
|
int end = start; |
|
|
|
|
for (int c=0; c<branching; ++c) { |
|
|
|
|
int s = count[c]; |
|
|
|
|
|
|
|
|
|
DistanceType variance = 0; |
|
|
|
|
DistanceType mean_radius =0; |
|
|
|
|
for (int i=0; i<indices_length; ++i) { |
|
|
|
|
if (belongs_to[i]==c) { |
|
|
|
|
DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); |
|
|
|
|
variance += d; |
|
|
|
|
mean_radius += static_cast<DistanceType>( sqrt(d) ); |
|
|
|
|
std::swap(indices[i],indices[end]); |
|
|
|
|
std::swap(belongs_to[i],belongs_to[end]); |
|
|
|
|
end++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
variance /= s; |
|
|
|
|
mean_radius /= s; |
|
|
|
|
variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); |
|
|
|
|
|
|
|
|
|
node->childs[c] = pool_.allocate<KMeansNode>(); |
|
|
|
|
std::memset(node->childs[c], 0, sizeof(KMeansNode)); |
|
|
|
|
node->childs[c]->radius = radiuses[c]; |
|
|
|
|
node->childs[c]->pivot = centers[c]; |
|
|
|
|
node->childs[c]->variance = variance; |
|
|
|
|
node->childs[c]->mean_radius = mean_radius; |
|
|
|
|
computeClustering(node->childs[c],indices+start, end-start, branching, level+1); |
|
|
|
|
start=end; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void computeAnyBitfieldSubClustering(KMeansNodePtr node, int* indices, int indices_length, |
|
|
|
|
int branching, int level, CentersType** centers, |
|
|
|
|
std::vector<DistanceType>& radiuses, int* belongs_to, int* count) |
|
|
|
|
{ |
|
|
|
|
// compute kmeans clustering for each of the resulting clusters
|
|
|
|
|
node->childs = pool_.allocate<KMeansNodePtr>(branching); |
|
|
|
|
int start = 0; |
|
|
|
@ -1249,14 +1127,183 @@ private: |
|
|
|
|
node->childs[c]->pivot = centers[c]; |
|
|
|
|
node->childs[c]->variance = static_cast<DistanceType>(variance); |
|
|
|
|
node->childs[c]->mean_radius = mean_radius; |
|
|
|
|
computeBitfieldClustering(node->childs[c],indices+start, end-start, branching, level+1); |
|
|
|
|
computeClustering(node->childs[c],indices+start, end-start, branching, level+1); |
|
|
|
|
start=end; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
delete[] centers; |
|
|
|
|
|
|
|
|
|
template<typename DistType> |
|
|
|
|
void refineAndSplitClustering( |
|
|
|
|
KMeansNodePtr node, int* indices, int indices_length, int branching, |
|
|
|
|
int level, CentersType** centers, std::vector<DistanceType>& radiuses, |
|
|
|
|
int* belongs_to, int* count, const DistType* identifier) |
|
|
|
|
{ |
|
|
|
|
(void)identifier; |
|
|
|
|
refineClustering(indices, indices_length, branching, centers, radiuses, belongs_to, count); |
|
|
|
|
|
|
|
|
|
computeSubClustering(node, indices, indices_length, branching, |
|
|
|
|
level, centers, radiuses, belongs_to, count); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* The methods responsible with doing the recursive hierarchical clustering on |
|
|
|
|
* binary vectors. |
|
|
|
|
* As some might have heared that KMeans on binary data doesn't make sense, |
|
|
|
|
* it's worth a little explanation why it actually fairly works. As |
|
|
|
|
* with the Hierarchical Clustering algortihm, we seed several centers for the |
|
|
|
|
* current node by picking some of its points. Then in a first pass each point |
|
|
|
|
* of the node is then related to its closest center. Now let's have a look at |
|
|
|
|
* the 5 central dimensions of the 9 following points: |
|
|
|
|
* |
|
|
|
|
* xxxxxx11100xxxxx (1) |
|
|
|
|
* xxxxxx11010xxxxx (2) |
|
|
|
|
* xxxxxx11001xxxxx (3) |
|
|
|
|
* xxxxxx10110xxxxx (4) |
|
|
|
|
* xxxxxx10101xxxxx (5) |
|
|
|
|
* xxxxxx10011xxxxx (6) |
|
|
|
|
* xxxxxx01110xxxxx (7) |
|
|
|
|
* xxxxxx01101xxxxx (8) |
|
|
|
|
* xxxxxx01011xxxxx (9) |
|
|
|
|
* sum _____ |
|
|
|
|
* of 1: 66555 |
|
|
|
|
* |
|
|
|
|
* Even if the barycenter notion doesn't apply, we can set a center |
|
|
|
|
* xxxxxx11111xxxxx that will better fit the five dimensions we are focusing |
|
|
|
|
* on for these points. |
|
|
|
|
* |
|
|
|
|
* Note that convergence isn't ensured anymore. In practice, using Gonzales |
|
|
|
|
* as seeding algorithm should be fine for getting convergence ("iterations" |
|
|
|
|
* value can be set to -1). But with KMeans++ seeding you should definitely |
|
|
|
|
* set a maximum number of iterations (but make it higher than the "iterations" |
|
|
|
|
* default value of 11). |
|
|
|
|
* |
|
|
|
|
* Params: |
|
|
|
|
* node = the node to cluster |
|
|
|
|
* indices = indices of the points belonging to the current node |
|
|
|
|
* indices_length = number of points in the current node |
|
|
|
|
* branching = the branching factor to use in the clustering |
|
|
|
|
* level = 0 for the root node, it increases with the subdivision levels |
|
|
|
|
* centers = clusters centers to compute |
|
|
|
|
* radiuses = radiuses of clusters |
|
|
|
|
* belongs_to = LookUp Table returning, for a given indice id, the center id it belongs to |
|
|
|
|
* count = array storing the number of indices for a given center id |
|
|
|
|
* identifier = dummy pointer on an instance of Distance (use to branch correctly among templates) |
|
|
|
|
*/ |
|
|
|
|
void refineAndSplitClustering( |
|
|
|
|
KMeansNodePtr node, int* indices, int indices_length, int branching, |
|
|
|
|
int level, CentersType** centers, std::vector<DistanceType>& radiuses, |
|
|
|
|
int* belongs_to, int* count, const cvflann::HammingLUT* identifier) |
|
|
|
|
{ |
|
|
|
|
(void)identifier; |
|
|
|
|
refineBitfieldClustering( |
|
|
|
|
indices, indices_length, branching, centers, radiuses, belongs_to, count); |
|
|
|
|
|
|
|
|
|
computeAnyBitfieldSubClustering(node, indices, indices_length, branching, |
|
|
|
|
level, centers, radiuses, belongs_to, count); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void refineAndSplitClustering( |
|
|
|
|
KMeansNodePtr node, int* indices, int indices_length, int branching, |
|
|
|
|
int level, CentersType** centers, std::vector<DistanceType>& radiuses, |
|
|
|
|
int* belongs_to, int* count, const cvflann::Hamming<unsigned char>* identifier) |
|
|
|
|
{ |
|
|
|
|
(void)identifier; |
|
|
|
|
refineBitfieldClustering( |
|
|
|
|
indices, indices_length, branching, centers, radiuses, belongs_to, count); |
|
|
|
|
|
|
|
|
|
computeAnyBitfieldSubClustering(node, indices, indices_length, branching, |
|
|
|
|
level, centers, radiuses, belongs_to, count); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void refineAndSplitClustering( |
|
|
|
|
KMeansNodePtr node, int* indices, int indices_length, int branching, |
|
|
|
|
int level, CentersType** centers, std::vector<DistanceType>& radiuses, |
|
|
|
|
int* belongs_to, int* count, const cvflann::Hamming2<unsigned char>* identifier) |
|
|
|
|
{ |
|
|
|
|
(void)identifier; |
|
|
|
|
refineBitfieldClustering( |
|
|
|
|
indices, indices_length, branching, centers, radiuses, belongs_to, count); |
|
|
|
|
|
|
|
|
|
computeAnyBitfieldSubClustering(node, indices, indices_length, branching, |
|
|
|
|
level, centers, radiuses, belongs_to, count); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* The method responsible with actually doing the recursive hierarchical |
|
|
|
|
* clustering |
|
|
|
|
* |
|
|
|
|
* Params: |
|
|
|
|
* node = the node to cluster |
|
|
|
|
* indices = indices of the points belonging to the current node |
|
|
|
|
* branching = the branching factor to use in the clustering |
|
|
|
|
* |
|
|
|
|
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) |
|
|
|
|
*/ |
|
|
|
|
void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) |
|
|
|
|
{ |
|
|
|
|
node->size = indices_length; |
|
|
|
|
node->level = level; |
|
|
|
|
|
|
|
|
|
if (indices_length < branching) { |
|
|
|
|
node->indices = indices; |
|
|
|
|
std::sort(node->indices,node->indices+indices_length); |
|
|
|
|
node->childs = NULL; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::AutoBuffer<int> centers_idx_buf(branching); |
|
|
|
|
int* centers_idx = centers_idx_buf.data(); |
|
|
|
|
int centers_length; |
|
|
|
|
(this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); |
|
|
|
|
|
|
|
|
|
if (centers_length<branching) { |
|
|
|
|
node->indices = indices; |
|
|
|
|
std::sort(node->indices,node->indices+indices_length); |
|
|
|
|
node->childs = NULL; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<DistanceType> radiuses(branching); |
|
|
|
|
cv::AutoBuffer<int> count_buf(branching); |
|
|
|
|
int* count = count_buf.data(); |
|
|
|
|
for (int i=0; i<branching; ++i) { |
|
|
|
|
radiuses[i] = 0; |
|
|
|
|
count[i] = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// assign points to clusters
|
|
|
|
|
cv::AutoBuffer<int> belongs_to_buf(indices_length); |
|
|
|
|
int* belongs_to = belongs_to_buf.data(); |
|
|
|
|
for (int i=0; i<indices_length; ++i) { |
|
|
|
|
DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_); |
|
|
|
|
belongs_to[i] = 0; |
|
|
|
|
for (int j=1; j<branching; ++j) { |
|
|
|
|
DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_); |
|
|
|
|
if (sq_dist>new_sq_dist) { |
|
|
|
|
belongs_to[i] = j; |
|
|
|
|
sq_dist = new_sq_dist; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (sq_dist>radiuses[belongs_to[i]]) { |
|
|
|
|
radiuses[belongs_to[i]] = sq_dist; |
|
|
|
|
} |
|
|
|
|
count[belongs_to[i]]++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CentersType** centers = new CentersType*[branching]; |
|
|
|
|
|
|
|
|
|
Distance* dummy = NULL; |
|
|
|
|
refineAndSplitClustering(node, indices, indices_length, branching, level, |
|
|
|
|
centers, radiuses, belongs_to, count, dummy); |
|
|
|
|
|
|
|
|
|
delete[] centers; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|