parent
06b0fe35d2
commit
2af63c2bf1
2 changed files with 81 additions and 93 deletions
@ -0,0 +1,71 @@ |
|||||||
|
import cv2 |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
SZ=20 |
||||||
|
bin_n = 16 # Number of bins |
||||||
|
|
||||||
|
|
||||||
|
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR |
||||||
|
|
||||||
|
## [deskew] |
||||||
|
def deskew(img): |
||||||
|
m = cv2.moments(img) |
||||||
|
if abs(m['mu02']) < 1e-2: |
||||||
|
return img.copy() |
||||||
|
skew = m['mu11']/m['mu02'] |
||||||
|
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) |
||||||
|
img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags) |
||||||
|
return img |
||||||
|
## [deskew] |
||||||
|
|
||||||
|
## [hog] |
||||||
|
def hog(img): |
||||||
|
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) |
||||||
|
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) |
||||||
|
mag, ang = cv2.cartToPolar(gx, gy) |
||||||
|
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16) |
||||||
|
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:] |
||||||
|
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] |
||||||
|
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] |
||||||
|
hist = np.hstack(hists) # hist is a 64 bit vector |
||||||
|
return hist |
||||||
|
## [hog] |
||||||
|
|
||||||
|
img = cv2.imread('digits.png',0) |
||||||
|
if img is None: |
||||||
|
raise Exception("we need the digits.png image from samples/data here !") |
||||||
|
|
||||||
|
|
||||||
|
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)] |
||||||
|
|
||||||
|
# First half is trainData, remaining is testData |
||||||
|
train_cells = [ i[:50] for i in cells ] |
||||||
|
test_cells = [ i[50:] for i in cells] |
||||||
|
|
||||||
|
###### Now training ######################## |
||||||
|
|
||||||
|
deskewed = [map(deskew,row) for row in train_cells] |
||||||
|
hogdata = [map(hog,row) for row in deskewed] |
||||||
|
trainData = np.float32(hogdata).reshape(-1,64) |
||||||
|
responses = np.repeat(np.arange(10),250)[:,np.newaxis] |
||||||
|
|
||||||
|
svm = cv2.ml.SVM_create() |
||||||
|
svm.setKernel(cv2.ml.SVM_LINEAR) |
||||||
|
svm.setType(cv2.ml.SVM_C_SVC) |
||||||
|
svm.setC(2.67) |
||||||
|
svm.setGamma(5.383) |
||||||
|
|
||||||
|
svm.train(trainData, cv2.ml.ROW_SAMPLE, responses) |
||||||
|
svm.save('svm_data.dat') |
||||||
|
|
||||||
|
###### Now testing ######################## |
||||||
|
|
||||||
|
deskewed = [map(deskew,row) for row in test_cells] |
||||||
|
hogdata = [map(hog,row) for row in deskewed] |
||||||
|
testData = np.float32(hogdata).reshape(-1,bin_n*4) |
||||||
|
result = svm.predict(testData)[1] |
||||||
|
|
||||||
|
####### Check Accuracy ######################## |
||||||
|
mask = result==responses |
||||||
|
correct = np.count_nonzero(mask) |
||||||
|
print correct*100.0/result.size |
Loading…
Reference in new issue