|
|
|
@ -10,14 +10,14 @@ using namespace cv; |
|
|
|
|
using namespace cv::ml; |
|
|
|
|
using namespace std; |
|
|
|
|
|
|
|
|
|
void get_svm_detector( const Ptr< SVM > & svm, vector< float > & hog_detector ); |
|
|
|
|
vector< float > get_svm_detector( const Ptr< SVM >& svm ); |
|
|
|
|
void convert_to_ml( const std::vector< Mat > & train_samples, Mat& trainData ); |
|
|
|
|
void load_images( const String & dirname, vector< Mat > & img_lst, bool showImages ); |
|
|
|
|
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ); |
|
|
|
|
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst ); |
|
|
|
|
int test_trained_detector( String obj_det_filename, String test_dir, String videofilename ); |
|
|
|
|
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst, bool use_flip ); |
|
|
|
|
void test_trained_detector( String obj_det_filename, String test_dir, String videofilename ); |
|
|
|
|
|
|
|
|
|
void get_svm_detector( const Ptr< SVM >& svm, vector< float > & hog_detector ) |
|
|
|
|
vector< float > get_svm_detector( const Ptr< SVM >& svm ) |
|
|
|
|
{ |
|
|
|
|
// get the support vectors
|
|
|
|
|
Mat sv = svm->getSupportVectors(); |
|
|
|
@ -30,11 +30,11 @@ void get_svm_detector( const Ptr< SVM >& svm, vector< float > & hog_detector ) |
|
|
|
|
CV_Assert( (alpha.type() == CV_64F && alpha.at<double>(0) == 1.) || |
|
|
|
|
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f) ); |
|
|
|
|
CV_Assert( sv.type() == CV_32F ); |
|
|
|
|
hog_detector.clear(); |
|
|
|
|
|
|
|
|
|
hog_detector.resize(sv.cols + 1); |
|
|
|
|
vector< float > hog_detector( sv.cols + 1 ); |
|
|
|
|
memcpy( &hog_detector[0], sv.ptr(), sv.cols*sizeof( hog_detector[0] ) ); |
|
|
|
|
hog_detector[sv.cols] = (float)-rho; |
|
|
|
|
return hog_detector; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
@ -101,35 +101,44 @@ void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, co |
|
|
|
|
srand( (unsigned int)time( NULL ) ); |
|
|
|
|
|
|
|
|
|
for ( size_t i = 0; i < full_neg_lst.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
box.x = rand() % ( full_neg_lst[i].cols - size_x ); |
|
|
|
|
box.y = rand() % ( full_neg_lst[i].rows - size_y ); |
|
|
|
|
Mat roi = full_neg_lst[i]( box ); |
|
|
|
|
neg_lst.push_back( roi.clone() ); |
|
|
|
|
} |
|
|
|
|
if ( full_neg_lst[i].cols >= box.width && full_neg_lst[i].rows >= box.height ) |
|
|
|
|
{ |
|
|
|
|
box.x = rand() % ( full_neg_lst[i].cols - size_x ); |
|
|
|
|
box.y = rand() % ( full_neg_lst[i].rows - size_y ); |
|
|
|
|
Mat roi = full_neg_lst[i]( box ); |
|
|
|
|
neg_lst.push_back( roi.clone() ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst ) |
|
|
|
|
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst, bool use_flip ) |
|
|
|
|
{ |
|
|
|
|
HOGDescriptor hog; |
|
|
|
|
hog.winSize = wsize; |
|
|
|
|
|
|
|
|
|
Rect r = Rect( 0, 0, wsize.width, wsize.height ); |
|
|
|
|
r.x += ( img_lst[0].cols - r.width ) / 2; |
|
|
|
|
r.y += ( img_lst[0].rows - r.height ) / 2; |
|
|
|
|
|
|
|
|
|
Mat gray; |
|
|
|
|
vector< float > descriptors; |
|
|
|
|
|
|
|
|
|
for( size_t i=0 ; i< img_lst.size(); i++ ) |
|
|
|
|
for( size_t i = 0 ; i < img_lst.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
cvtColor( img_lst[i](r), gray, COLOR_BGR2GRAY ); |
|
|
|
|
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) ); |
|
|
|
|
gradient_lst.push_back( Mat( descriptors ).clone() ); |
|
|
|
|
if ( img_lst[i].cols >= wsize.width && img_lst[i].rows >= wsize.height ) |
|
|
|
|
{ |
|
|
|
|
Rect r = Rect(( img_lst[i].cols - wsize.width ) / 2, |
|
|
|
|
( img_lst[i].rows - wsize.height ) / 2, |
|
|
|
|
wsize.width, |
|
|
|
|
wsize.height); |
|
|
|
|
cvtColor( img_lst[i](r), gray, COLOR_BGR2GRAY ); |
|
|
|
|
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) ); |
|
|
|
|
gradient_lst.push_back( Mat( descriptors ).clone() ); |
|
|
|
|
if ( use_flip ) |
|
|
|
|
{ |
|
|
|
|
flip( gray, gray, 1 ); |
|
|
|
|
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) ); |
|
|
|
|
gradient_lst.push_back( Mat( descriptors ).clone() ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int test_trained_detector( String obj_det_filename, String test_dir, String videofilename ) |
|
|
|
|
void test_trained_detector( String obj_det_filename, String test_dir, String videofilename ) |
|
|
|
|
{ |
|
|
|
|
cout << "Testing trained detector..." << endl; |
|
|
|
|
HOGDescriptor hog; |
|
|
|
@ -143,7 +152,10 @@ int test_trained_detector( String obj_det_filename, String test_dir, String vide |
|
|
|
|
|
|
|
|
|
if ( videofilename != "" ) |
|
|
|
|
{ |
|
|
|
|
cap.open( videofilename ); |
|
|
|
|
if ( videofilename.size() == 1 && isdigit( videofilename[0] ) ) |
|
|
|
|
cap.open( videofilename[0] - '0' ); |
|
|
|
|
else |
|
|
|
|
cap.open( videofilename ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
obj_det_filename = "testing " + obj_det_filename; |
|
|
|
@ -165,7 +177,7 @@ int test_trained_detector( String obj_det_filename, String test_dir, String vide |
|
|
|
|
|
|
|
|
|
if ( img.empty() ) |
|
|
|
|
{ |
|
|
|
|
return 0; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vector< Rect > detections; |
|
|
|
@ -180,12 +192,11 @@ int test_trained_detector( String obj_det_filename, String test_dir, String vide |
|
|
|
|
|
|
|
|
|
imshow( obj_det_filename, img ); |
|
|
|
|
|
|
|
|
|
if( 27 == waitKey( delay ) ) |
|
|
|
|
if( waitKey( delay ) == 27 ) |
|
|
|
|
{ |
|
|
|
|
return 0; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int main( int argc, char** argv ) |
|
|
|
@ -199,6 +210,7 @@ int main( int argc, char** argv ) |
|
|
|
|
"{tv | | test video file name}" |
|
|
|
|
"{dw | | width of the detector}" |
|
|
|
|
"{dh | | height of the detector}" |
|
|
|
|
"{f |false| indicates if the program will generate and use mirrored samples or not}" |
|
|
|
|
"{d |false| train twice}" |
|
|
|
|
"{t |false| test a trained detector}" |
|
|
|
|
"{v |false| visualize training steps}" |
|
|
|
@ -223,6 +235,7 @@ int main( int argc, char** argv ) |
|
|
|
|
bool test_detector = parser.get< bool >( "t" ); |
|
|
|
|
bool train_twice = parser.get< bool >( "d" ); |
|
|
|
|
bool visualization = parser.get< bool >( "v" ); |
|
|
|
|
bool flip_samples = parser.get< bool >( "f" ); |
|
|
|
|
|
|
|
|
|
if ( test_detector ) |
|
|
|
|
{ |
|
|
|
@ -234,8 +247,8 @@ int main( int argc, char** argv ) |
|
|
|
|
{ |
|
|
|
|
parser.printMessage(); |
|
|
|
|
cout << "Wrong number of parameters.\n\n" |
|
|
|
|
<< "Example command line:\n" << argv[0] << " -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian96x160.yml -d\n" |
|
|
|
|
<< "\nExample command line for testing trained detector:\n" << argv[0] << " -t -dw=96 -dh=160 -fn=HOGpedestrian96x160.yml -td=/INRIAPerson/Test/pos"; |
|
|
|
|
<< "Example command line:\n" << argv[0] << " -dw=64 -dh=128 -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian64x128.xml -d\n" |
|
|
|
|
<< "\nExample command line for testing trained detector:\n" << argv[0] << " -t -fn=HOGpedestrian64x128.xml -td=/INRIAPerson/Test/pos"; |
|
|
|
|
exit( 1 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -256,40 +269,40 @@ int main( int argc, char** argv ) |
|
|
|
|
|
|
|
|
|
Size pos_image_size = pos_lst[0].size(); |
|
|
|
|
|
|
|
|
|
for ( size_t i = 0; i < pos_lst.size(); ++i ) |
|
|
|
|
{ |
|
|
|
|
if( pos_lst[i].size() != pos_image_size ) |
|
|
|
|
{ |
|
|
|
|
cout << "All positive images should be same size!" << endl; |
|
|
|
|
exit( 1 ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
pos_image_size = pos_image_size / 8 * 8; |
|
|
|
|
|
|
|
|
|
if ( detector_width && detector_height ) |
|
|
|
|
{ |
|
|
|
|
pos_image_size = Size( detector_width, detector_height ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
labels.assign( pos_lst.size(), +1 ); |
|
|
|
|
const unsigned int old = (unsigned int)labels.size(); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for ( size_t i = 0; i < pos_lst.size(); ++i ) |
|
|
|
|
{ |
|
|
|
|
if( pos_lst[i].size() != pos_image_size ) |
|
|
|
|
{ |
|
|
|
|
cout << "All positive images should be same size!" << endl; |
|
|
|
|
exit( 1 ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
pos_image_size = pos_image_size / 8 * 8; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
clog << "Negative images are being loaded..."; |
|
|
|
|
load_images( neg_dir, full_neg_lst, false ); |
|
|
|
|
sample_neg( full_neg_lst, neg_lst, pos_image_size ); |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
|
|
|
|
|
labels.insert( labels.end(), neg_lst.size(), -1 ); |
|
|
|
|
CV_Assert( old < labels.size() ); |
|
|
|
|
|
|
|
|
|
clog << "Histogram of Gradients are being calculated for positive images..."; |
|
|
|
|
computeHOGs( pos_image_size, pos_lst, gradient_lst ); |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples ); |
|
|
|
|
size_t positive_count = gradient_lst.size(); |
|
|
|
|
labels.assign( positive_count, +1 ); |
|
|
|
|
clog << "...[done] ( positive count : " << positive_count << " )" << endl; |
|
|
|
|
|
|
|
|
|
clog << "Histogram of Gradients are being calculated for negative images..."; |
|
|
|
|
computeHOGs( pos_image_size, neg_lst, gradient_lst ); |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples ); |
|
|
|
|
size_t negative_count = gradient_lst.size() - positive_count; |
|
|
|
|
labels.insert( labels.end(), negative_count, -1 ); |
|
|
|
|
CV_Assert( positive_count < labels.size() ); |
|
|
|
|
clog << "...[done] ( negative count : " << negative_count << " )" << endl; |
|
|
|
|
|
|
|
|
|
Mat train_data; |
|
|
|
|
convert_to_ml( gradient_lst, train_data ); |
|
|
|
@ -306,7 +319,7 @@ int main( int argc, char** argv ) |
|
|
|
|
svm->setP( 0.1 ); // for EPSILON_SVR, epsilon in loss function?
|
|
|
|
|
svm->setC( 0.01 ); // From paper, soft classifier
|
|
|
|
|
svm->setType( SVM::EPS_SVR ); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
|
|
|
|
|
svm->train( train_data, ROW_SAMPLE, Mat( labels ) ); |
|
|
|
|
svm->train( train_data, ROW_SAMPLE, labels ); |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
|
|
|
|
|
if ( train_twice ) |
|
|
|
@ -316,22 +329,25 @@ int main( int argc, char** argv ) |
|
|
|
|
my_hog.winSize = pos_image_size; |
|
|
|
|
|
|
|
|
|
// Set the trained svm to my_hog
|
|
|
|
|
vector< float > hog_detector; |
|
|
|
|
get_svm_detector( svm, hog_detector ); |
|
|
|
|
my_hog.setSVMDetector( hog_detector ); |
|
|
|
|
my_hog.setSVMDetector( get_svm_detector( svm ) ); |
|
|
|
|
|
|
|
|
|
vector< Rect > detections; |
|
|
|
|
vector< double > foundWeights; |
|
|
|
|
|
|
|
|
|
for ( size_t i = 0; i < full_neg_lst.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
my_hog.detectMultiScale( full_neg_lst[i], detections, foundWeights ); |
|
|
|
|
if ( full_neg_lst[i].cols >= pos_image_size.width && full_neg_lst[i].rows >= pos_image_size.height ) |
|
|
|
|
my_hog.detectMultiScale( full_neg_lst[i], detections, foundWeights ); |
|
|
|
|
else |
|
|
|
|
detections.clear(); |
|
|
|
|
|
|
|
|
|
for ( size_t j = 0; j < detections.size(); j++ ) |
|
|
|
|
{ |
|
|
|
|
Mat detection = full_neg_lst[i]( detections[j] ).clone(); |
|
|
|
|
resize( detection, detection, pos_image_size ); |
|
|
|
|
neg_lst.push_back( detection ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if ( visualization ) |
|
|
|
|
{ |
|
|
|
|
for ( size_t j = 0; j < detections.size(); j++ ) |
|
|
|
@ -344,30 +360,30 @@ int main( int argc, char** argv ) |
|
|
|
|
} |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
|
|
|
|
|
labels.clear(); |
|
|
|
|
labels.assign( pos_lst.size(), +1 ); |
|
|
|
|
labels.insert( labels.end(), neg_lst.size(), -1); |
|
|
|
|
|
|
|
|
|
gradient_lst.clear(); |
|
|
|
|
clog << "Histogram of Gradients are being calculated for positive images..."; |
|
|
|
|
computeHOGs( pos_image_size, pos_lst, gradient_lst ); |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples ); |
|
|
|
|
positive_count = gradient_lst.size(); |
|
|
|
|
clog << "...[done] ( positive count : " << positive_count << " )" << endl; |
|
|
|
|
|
|
|
|
|
clog << "Histogram of Gradients are being calculated for negative images..."; |
|
|
|
|
computeHOGs( pos_image_size, neg_lst, gradient_lst ); |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples ); |
|
|
|
|
negative_count = gradient_lst.size() - positive_count; |
|
|
|
|
clog << "...[done] ( negative count : " << negative_count << " )" << endl; |
|
|
|
|
|
|
|
|
|
labels.clear(); |
|
|
|
|
labels.assign(positive_count, +1); |
|
|
|
|
labels.insert(labels.end(), negative_count, -1); |
|
|
|
|
|
|
|
|
|
clog << "Training SVM again..."; |
|
|
|
|
convert_to_ml( gradient_lst, train_data ); |
|
|
|
|
svm->train( train_data, ROW_SAMPLE, Mat( labels ) ); |
|
|
|
|
svm->train( train_data, ROW_SAMPLE, labels ); |
|
|
|
|
clog << "...[done]" << endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vector< float > hog_detector; |
|
|
|
|
get_svm_detector( svm, hog_detector ); |
|
|
|
|
HOGDescriptor hog; |
|
|
|
|
hog.winSize = pos_image_size; |
|
|
|
|
hog.setSVMDetector( hog_detector ); |
|
|
|
|
hog.setSVMDetector( get_svm_detector( svm ) ); |
|
|
|
|
hog.save( obj_det_filename ); |
|
|
|
|
|
|
|
|
|
test_trained_detector( obj_det_filename, test_dir, videofilename ); |
|
|
|
|