now BA in opencv_stitching uses only geometrically consistent matches

pull/13383/head
Alexey Spizhevoy 14 years ago
parent 15173fc559
commit 29b917a500
  1. 2
      modules/stitching/main.cpp
  2. 23
      modules/stitching/motion_estimators.cpp
  3. 1
      modules/stitching/motion_estimators.hpp

@ -35,7 +35,7 @@ int main(int argc, char* argv[])
string result_name = "result.png";
int ba_space = BundleAdjuster::FOCAL_RAY_SPACE;
float ba_thresh = 1.f;
bool wave_correct = false;
bool wave_correct = true;
int warp_type = Warper::SPHERICAL;
bool user_match_conf = false;
float match_conf = 0.55f;

@ -309,13 +309,12 @@ void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features
}
// Find pair-wise motion
vector<uchar> inlier_mask;
matches_info.H = findHomography(src_points, dst_points, inlier_mask, CV_RANSAC);
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC);
// Find number of inliers
matches_info.num_inliers = 0;
for (size_t i = 0; i < inlier_mask.size(); ++i)
if (inlier_mask[i])
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
if (matches_info.inliers_mask[i])
matches_info.num_inliers++;
// Check if we should try to refine motion
@ -328,8 +327,9 @@ void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features
int inlier_idx = 0;
for (size_t i = 0; i < matches_info.matches.size(); ++i)
{
if (!inlier_mask[i])
if (!matches_info.inliers_mask[i])
continue;
const DMatch& m = matches_info.matches[i];
Point2f p = features1.keypoints[m.queryIdx].pt;
@ -346,13 +346,7 @@ void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features
}
// Rerun motion estimation on inliers only
matches_info.H = findHomography(src_points, dst_points, inlier_mask, CV_RANSAC);
// Find number of inliers
matches_info.num_inliers = 0;
for (size_t i = 0; i < inlier_mask.size(); ++i)
if (inlier_mask[i])
matches_info.num_inliers++;
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC);
}
@ -505,7 +499,7 @@ void BundleAdjuster::estimate(const vector<Mat> &images, const vector<ImageFeatu
total_num_matches_ = 0;
for (size_t i = 0; i < edges_.size(); ++i)
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].matches.size());
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);
CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3,
cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 100, DBL_EPSILON));
@ -599,6 +593,9 @@ void BundleAdjuster::calcError(Mat &err)
for (size_t k = 0; k < matches_info.matches.size(); ++k)
{
if (!matches_info.inliers_mask[k])
continue;
const DMatch& m = matches_info.matches[k];
Point2d kp1 = features1.keypoints[m.queryIdx].pt;

@ -44,6 +44,7 @@ struct MatchesInfo
int src_img_idx, dst_img_idx; // Optional images indices
std::vector<cv::DMatch> matches;
std::vector<uchar> inliers_mask;
int num_inliers; // Number of geometrically consistent matches
cv::Mat H; // Homography
};

Loading…
Cancel
Save