Merge pull request #9188 from arrybn:mobilenet_ssd_sample
commit
2959e7aba9
4 changed files with 3351 additions and 1 deletions
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,87 @@ |
||||
import numpy as np |
||||
import argparse |
||||
|
||||
try: |
||||
import cv2 as cv |
||||
except ImportError: |
||||
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' |
||||
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') |
||||
|
||||
inWidth = 300 |
||||
inHeight = 300 |
||||
WHRatio = inWidth / float(inHeight) |
||||
inScaleFactor = 0.007843 |
||||
meanVal = 127.5 |
||||
|
||||
classNames = ('background', |
||||
'aeroplane', 'bicycle', 'bird', 'boat', |
||||
'bottle', 'bus', 'car', 'cat', 'chair', |
||||
'cow', 'diningtable', 'dog', 'horse', |
||||
'motorbike', 'person', 'pottedplant', |
||||
'sheep', 'sofa', 'train', 'tvmonitor') |
||||
|
||||
if __name__ == "__main__": |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument("--video", help="path to video file. If empty, camera's stream will be used") |
||||
parser.add_argument("--prototxt", default="MobileNetSSD_300x300.prototxt", |
||||
help="path to caffe prototxt") |
||||
parser.add_argument("-c", "--caffemodel", help="path to caffemodel file, download it here: " |
||||
"https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel") |
||||
parser.add_argument("--thr", default=0.2, help="confidence threshold to filter out weak detections") |
||||
args = parser.parse_args() |
||||
|
||||
net = dnn.readNetFromCaffe(args.prototxt, args.caffemodel) |
||||
|
||||
if len(args.video): |
||||
cap = cv2.VideoCapture(args.video) |
||||
else: |
||||
cap = cv2.VideoCapture(0) |
||||
|
||||
while True: |
||||
# Capture frame-by-frame |
||||
ret, frame = cap.read() |
||||
blob = dnn.blobFromImage(frame, inScaleFactor, (inWidth, inHeight), meanVal) |
||||
net.setInput(blob) |
||||
detections = net.forward() |
||||
|
||||
cols = frame.shape[1] |
||||
rows = frame.shape[0] |
||||
|
||||
if cols / float(rows) > WHRatio: |
||||
cropSize = (int(rows * WHRatio), rows) |
||||
else: |
||||
cropSize = (cols, int(cols / WHRatio)) |
||||
|
||||
y1 = (rows - cropSize[1]) / 2 |
||||
y2 = y1 + cropSize[1] |
||||
x1 = (cols - cropSize[0]) / 2 |
||||
x2 = x1 + cropSize[0] |
||||
frame = frame[y1:y2, x1:x2] |
||||
|
||||
cols = frame.shape[1] |
||||
rows = frame.shape[0] |
||||
|
||||
for i in range(detections.shape[2]): |
||||
confidence = detections[0, 0, i, 2] |
||||
if confidence > args.thr: |
||||
class_id = int(detections[0, 0, i, 1]) |
||||
|
||||
xLeftBottom = int(detections[0, 0, i, 3] * cols) |
||||
yLeftBottom = int(detections[0, 0, i, 4] * rows) |
||||
xRightTop = int(detections[0, 0, i, 5] * cols) |
||||
yRightTop = int(detections[0, 0, i, 6] * rows) |
||||
|
||||
cv2.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop), |
||||
(0, 255, 0)) |
||||
label = classNames[class_id] + ": " + str(confidence) |
||||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
||||
|
||||
cv2.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]), |
||||
(xLeftBottom + labelSize[0], yLeftBottom + baseLine), |
||||
(255, 255, 255), cv2.FILLED) |
||||
cv2.putText(frame, label, (xLeftBottom, yLeftBottom), |
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) |
||||
|
||||
cv2.imshow("detections", frame) |
||||
if cv2.waitKey(1) >= 0: |
||||
break |
@ -0,0 +1,161 @@ |
||||
#include <opencv2/dnn.hpp> |
||||
#include <opencv2/dnn/shape_utils.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
|
||||
#include <fstream> |
||||
#include <iostream> |
||||
#include <cstdlib> |
||||
using namespace std; |
||||
|
||||
const size_t inWidth = 300; |
||||
const size_t inHeight = 300; |
||||
const float WHRatio = inWidth / (float)inHeight; |
||||
const float inScaleFactor = 0.007843f; |
||||
const float meanVal = 127.5; |
||||
const char* classNames[] = {"background", |
||||
"aeroplane", "bicycle", "bird", "boat", |
||||
"bottle", "bus", "car", "cat", "chair", |
||||
"cow", "diningtable", "dog", "horse", |
||||
"motorbike", "person", "pottedplant", |
||||
"sheep", "sofa", "train", "tvmonitor"}; |
||||
|
||||
const char* about = "This sample uses Single-Shot Detector " |
||||
"(https://arxiv.org/abs/1512.02325)" |
||||
"to detect objects on image.\n" |
||||
".caffemodel model's file is avaliable here: " |
||||
"https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel\n"; |
||||
|
||||
const char* params |
||||
= "{ help | false | print usage }" |
||||
"{ proto | MobileNetSSD_300x300.prototxt | model configuration }" |
||||
"{ model | | model weights }" |
||||
"{ video | | video for detection }" |
||||
"{ out | | path to output video file}" |
||||
"{ min_confidence | 0.2 | min confidence }"; |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
cv::CommandLineParser parser(argc, argv, params); |
||||
|
||||
if (parser.get<bool>("help")) |
||||
{ |
||||
cout << about << endl; |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
|
||||
String modelConfiguration = parser.get<string>("proto"); |
||||
String modelBinary = parser.get<string>("model"); |
||||
|
||||
//! [Initialize network]
|
||||
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
||||
//! [Initialize network]
|
||||
|
||||
VideoCapture cap(parser.get<String>("video")); |
||||
if(!cap.isOpened()) // check if we succeeded
|
||||
{ |
||||
cap = VideoCapture(0); |
||||
if(!cap.isOpened()) |
||||
{ |
||||
cout << "Couldn't find camera" << endl; |
||||
return -1; |
||||
} |
||||
} |
||||
|
||||
Size inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size
|
||||
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT)); |
||||
|
||||
Size cropSize; |
||||
if (inVideoSize.width / (float)inVideoSize.height > WHRatio) |
||||
{ |
||||
cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio), |
||||
inVideoSize.height); |
||||
} |
||||
else |
||||
{ |
||||
cropSize = Size(inVideoSize.width, |
||||
static_cast<int>(inVideoSize.width / WHRatio)); |
||||
} |
||||
|
||||
Rect crop(Point((inVideoSize.width - cropSize.width) / 2, |
||||
(inVideoSize.height - cropSize.height) / 2), |
||||
cropSize); |
||||
|
||||
VideoWriter outputVideo; |
||||
outputVideo.open(parser.get<String>("out") , |
||||
static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)), |
||||
cap.get(CV_CAP_PROP_FPS), cropSize, true); |
||||
|
||||
for(;;) |
||||
{ |
||||
Mat frame; |
||||
cap >> frame; // get a new frame from camera
|
||||
//! [Prepare blob]
|
||||
|
||||
Mat inputBlob = blobFromImage(frame, inScaleFactor, |
||||
Size(inWidth, inHeight), meanVal); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob, "data"); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
TickMeter tm; |
||||
tm.start(); |
||||
//! [Make forward pass]
|
||||
Mat detection = net.forward("detection_out"); //compute output
|
||||
tm.stop(); |
||||
cout << "Inference time, ms: " << tm.getTimeMilli() << endl; |
||||
//! [Make forward pass]
|
||||
|
||||
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
||||
|
||||
frame = frame(crop); |
||||
|
||||
float confidenceThreshold = parser.get<float>("min_confidence"); |
||||
for(int i = 0; i < detectionMat.rows; i++) |
||||
{ |
||||
float confidence = detectionMat.at<float>(i, 2); |
||||
|
||||
if(confidence > confidenceThreshold) |
||||
{ |
||||
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1)); |
||||
|
||||
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
||||
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
||||
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
||||
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
||||
|
||||
ostringstream ss; |
||||
ss << confidence; |
||||
String conf(ss.str()); |
||||
|
||||
Rect object((int)xLeftBottom, (int)yLeftBottom, |
||||
(int)(xRightTop - xLeftBottom), |
||||
(int)(yRightTop - yLeftBottom)); |
||||
|
||||
rectangle(frame, object, Scalar(0, 255, 0)); |
||||
String label = String(classNames[objectClass]) + ": " + conf; |
||||
int baseLine = 0; |
||||
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
||||
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
||||
Size(labelSize.width, labelSize.height + baseLine)), |
||||
Scalar(255, 255, 255), CV_FILLED); |
||||
putText(frame, label, Point(xLeftBottom, yLeftBottom), |
||||
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
||||
} |
||||
} |
||||
|
||||
if (outputVideo.isOpened()) |
||||
outputVideo << frame; |
||||
|
||||
imshow("detections", frame); |
||||
if (waitKey(1) >= 0) break; |
||||
} |
||||
|
||||
return 0; |
||||
} // main
|
Loading…
Reference in new issue