Provide a few AVX512 optimized functions for the DNN module

This patch adds AVX512 optimized fastConv as well as the hookups
needed to get these called in the convolution_layer.

AVX512 fastConv is code-identical on a C level to the AVX2 one,
but is measurably faster due to AVX512 having more registers available
to cache results in.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
pull/10416/head
Arjan van de Ven 7 years ago
parent fc8e848a54
commit 2938860b3f
  1. 2
      modules/dnn/CMakeLists.txt
  2. 18
      modules/dnn/src/layers/convolution_layer.cpp
  3. 9
      modules/dnn/src/layers/fully_connected_layer.cpp
  4. 98
      modules/dnn/src/layers/layers_common.simd.hpp

@ -13,7 +13,7 @@ endif()
set(the_description "Deep neural network module. It allows to load models from different frameworks and to make forward pass")
ocv_add_dispatched_file("layers/layers_common" AVX AVX2)
ocv_add_dispatched_file("layers/layers_common" AVX AVX2 AVX512)
ocv_add_module(dnn opencv_core opencv_imgproc WRAP python matlab java js)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wno-shadow -Wno-parentheses -Wmaybe-uninitialized -Wsign-promo

@ -345,10 +345,11 @@ public:
bool is1x1_;
bool useAVX;
bool useAVX2;
bool useAVX512;
ParallelConv()
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false)
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false)
{}
static void run( const Mat& input, Mat& output, const Mat& weights,
@ -383,6 +384,7 @@ public:
p.is1x1_ = kernel == Size(0,0) && pad == Size(0, 0);
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
p.useAVX512 = checkHardwareSupport(CPU_AVX_512DQ);
int ncn = std::min(inpCn, (int)BLK_SIZE_CN);
p.ofstab_.resize(kernel.width*kernel.height*ncn);
@ -562,6 +564,13 @@ public:
// now compute dot product of the weights
// and im2row-transformed part of the tensor
int bsz = ofs1 - ofs0;
#if CV_TRY_AVX512
/* AVX512 convolution requires an alignment of 16, and ROI is only there for larger vector sizes */
if(useAVX512)
opt_AVX512::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
else
#endif
#if CV_TRY_AVX2
if(useAVX2)
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
@ -1093,6 +1102,7 @@ public:
nstripes_ = nstripes;
useAVX = checkHardwareSupport(CPU_AVX);
useAVX2 = checkHardwareSupport(CPU_AVX2);
useAVX512 = checkHardwareSupport(CPU_AVX_512DQ);
}
void operator()(const Range& range_) const
@ -1110,6 +1120,11 @@ public:
size_t bstep = b_->step1();
size_t cstep = c_->step1();
#if CV_TRY_AVX512
if( useAVX512 )
opt_AVX512::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
@ -1214,6 +1229,7 @@ public:
int nstripes_;
bool useAVX;
bool useAVX2;
bool useAVX512;
};
class Col2ImInvoker : public cv::ParallelLoopBody

@ -139,7 +139,7 @@ public:
class FullyConnected : public ParallelLoopBody
{
public:
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false) {}
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false), useAVX512(false) {}
static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
Mat& dstMat, const ActivationLayer* activ, int nstripes)
@ -161,6 +161,7 @@ public:
p.activ = activ;
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
p.useAVX512 = checkHardwareSupport(CPU_AVX_512DQ);
parallel_for_(Range(0, nstripes), p, nstripes);
}
@ -195,6 +196,11 @@ public:
memcpy(sptr, sptr_, vecsize*sizeof(sptr[0]));
#if CV_TRY_AVX512
if( useAVX512 )
opt_AVX512::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
@ -255,6 +261,7 @@ public:
int nstripes;
bool useAVX;
bool useAVX2;
bool useAVX512;
};
#ifdef HAVE_OPENCL

@ -72,7 +72,7 @@ void fastConv( const float* weights, size_t wstep, const float* bias,
int outCn = outShape[1];
size_t outPlaneSize = outShape[2]*outShape[3];
float r0 = 1.f, r1 = 1.f, r2 = 1.f;
__m256 vr0 = _mm256_set1_ps(1.f), vr1 = vr0, vr2 = vr0, z = _mm256_setzero_ps();
__m128 vr0 = _mm_set1_ps(1.f), vr1 = vr0, vr2 = vr0, z = _mm_setzero_ps();
// now compute dot product of the weights
// and im2row-transformed part of the tensor
@ -104,9 +104,9 @@ void fastConv( const float* weights, size_t wstep, const float* bias,
r0 = relu[i];
r1 = relu[i+1];
r2 = relu[i+2];
vr0 = _mm256_set1_ps(r0);
vr1 = _mm256_set1_ps(r1);
vr2 = _mm256_set1_ps(r2);
vr0 = _mm_set1_ps(r0);
vr1 = _mm_set1_ps(r1);
vr2 = _mm_set1_ps(r2);
}
int j = 0;
@ -156,38 +156,38 @@ void fastConv( const float* weights, size_t wstep, const float* bias,
t1 = _mm256_add_ps(t1, _mm256_permute2f128_ps(t1, t1, 1));
t2 = _mm256_add_ps(t2, _mm256_permute2f128_ps(t2, t2, 1));
__m256 s0, s1, s2;
__m128 s0, s1, s2;
if( initOutput )
{
s0 = _mm256_set1_ps(bias0);
s1 = _mm256_set1_ps(bias1);
s2 = _mm256_set1_ps(bias2);
s0 = _mm_set1_ps(bias0);
s1 = _mm_set1_ps(bias1);
s2 = _mm_set1_ps(bias2);
}
else
{
s0 = _mm256_castps128_ps256(_mm_loadu_ps(outptr0 + j));
s1 = _mm256_castps128_ps256(_mm_loadu_ps(outptr1 + j));
s2 = _mm256_castps128_ps256(_mm_loadu_ps(outptr2 + j));
s0 = _mm_loadu_ps(outptr0 + j);
s1 = _mm_loadu_ps(outptr1 + j);
s2 = _mm_loadu_ps(outptr2 + j);
}
s0 = _mm256_add_ps(s0, t0);
s1 = _mm256_add_ps(s1, t1);
s2 = _mm256_add_ps(s2, t2);
s0 = _mm_add_ps(s0, _mm256_castps256_ps128(t0));
s1 = _mm_add_ps(s1, _mm256_castps256_ps128(t1));
s2 = _mm_add_ps(s2, _mm256_castps256_ps128(t2));
if( relu )
{
__m256 m0 = _mm256_cmp_ps(s0, z, _CMP_GT_OS);
__m256 m1 = _mm256_cmp_ps(s1, z, _CMP_GT_OS);
__m256 m2 = _mm256_cmp_ps(s2, z, _CMP_GT_OS);
s0 = _mm256_xor_ps(s0, _mm256_andnot_ps(m0, _mm256_xor_ps(_mm256_mul_ps(s0, vr0), s0)));
s1 = _mm256_xor_ps(s1, _mm256_andnot_ps(m1, _mm256_xor_ps(_mm256_mul_ps(s1, vr1), s1)));
s2 = _mm256_xor_ps(s2, _mm256_andnot_ps(m2, _mm256_xor_ps(_mm256_mul_ps(s2, vr2), s2)));
__m128 m0 = _mm_cmp_ps(s0, z, _CMP_GT_OS);
__m128 m1 = _mm_cmp_ps(s1, z, _CMP_GT_OS);
__m128 m2 = _mm_cmp_ps(s2, z, _CMP_GT_OS);
s0 = _mm_xor_ps(s0, _mm_andnot_ps(m0, _mm_xor_ps(_mm_mul_ps(s0, vr0), s0)));
s1 = _mm_xor_ps(s1, _mm_andnot_ps(m1, _mm_xor_ps(_mm_mul_ps(s1, vr1), s1)));
s2 = _mm_xor_ps(s2, _mm_andnot_ps(m2, _mm_xor_ps(_mm_mul_ps(s2, vr2), s2)));
}
_mm_storeu_ps(outptr0 + j, _mm256_castps256_ps128(s0));
_mm_storeu_ps(outptr1 + j, _mm256_castps256_ps128(s1));
_mm_storeu_ps(outptr2 + j, _mm256_castps256_ps128(s2));
_mm_storeu_ps(outptr0 + j, s0);
_mm_storeu_ps(outptr1 + j, s1);
_mm_storeu_ps(outptr2 + j, s2);
}
for( ; j < blockSize; j++ )
@ -294,11 +294,63 @@ void fastGEMM1T( const float* vec, const float* weights,
_mm256_zeroupper();
}
void fastGEMM( const float* aptr, size_t astep, const float* bptr,
size_t bstep, float* cptr, size_t cstep,
int ma, int na, int nb )
{
int n = 0;
#ifdef CV_AVX512
for( ; n <= nb - 32; n += 32 )
{
for( int m = 0; m < ma; m += 4 )
{
const float* aptr0 = aptr + astep*m;
const float* aptr1 = aptr + astep*std::min(m+1, ma-1);
const float* aptr2 = aptr + astep*std::min(m+2, ma-1);
const float* aptr3 = aptr + astep*std::min(m+3, ma-1);
float* cptr0 = cptr + cstep*m;
float* cptr1 = cptr + cstep*std::min(m+1, ma-1);
float* cptr2 = cptr + cstep*std::min(m+2, ma-1);
float* cptr3 = cptr + cstep*std::min(m+3, ma-1);
__m512 d00 = _mm512_setzero_ps(), d01 = _mm512_setzero_ps();
__m512 d10 = _mm512_setzero_ps(), d11 = _mm512_setzero_ps();
__m512 d20 = _mm512_setzero_ps(), d21 = _mm512_setzero_ps();
__m512 d30 = _mm512_setzero_ps(), d31 = _mm512_setzero_ps();
for( int k = 0; k < na; k++ )
{
__m512 a0 = _mm512_set1_ps(aptr0[k]);
__m512 a1 = _mm512_set1_ps(aptr1[k]);
__m512 a2 = _mm512_set1_ps(aptr2[k]);
__m512 a3 = _mm512_set1_ps(aptr3[k]);
__m512 b0 = _mm512_loadu_ps(bptr + k*bstep + n);
__m512 b1 = _mm512_loadu_ps(bptr + k*bstep + n + 16);
d00 = _mm512_fmadd_ps(a0, b0, d00);
d01 = _mm512_fmadd_ps(a0, b1, d01);
d10 = _mm512_fmadd_ps(a1, b0, d10);
d11 = _mm512_fmadd_ps(a1, b1, d11);
d20 = _mm512_fmadd_ps(a2, b0, d20);
d21 = _mm512_fmadd_ps(a2, b1, d21);
d30 = _mm512_fmadd_ps(a3, b0, d30);
d31 = _mm512_fmadd_ps(a3, b1, d31);
}
_mm512_storeu_ps(cptr0 + n, d00);
_mm512_storeu_ps(cptr0 + n + 16, d01);
_mm512_storeu_ps(cptr1 + n, d10);
_mm512_storeu_ps(cptr1 + n + 16, d11);
_mm512_storeu_ps(cptr2 + n, d20);
_mm512_storeu_ps(cptr2 + n + 16, d21);
_mm512_storeu_ps(cptr3 + n, d30);
_mm512_storeu_ps(cptr3 + n + 16, d31);
}
}
#endif
for( ; n <= nb - 16; n += 16 )
{
for( int m = 0; m < ma; m += 4 )

Loading…
Cancel
Save