|
|
|
@ -55,16 +55,16 @@ using namespace cv::gpu::impl; |
|
|
|
|
#define SHRT_MAX 32767 |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
template <typename T> |
|
|
|
|
struct TypeLimits {}; |
|
|
|
|
|
|
|
|
|
template <> |
|
|
|
|
template <> |
|
|
|
|
struct TypeLimits<short> |
|
|
|
|
{ |
|
|
|
|
static __device__ short max() {return SHRT_MAX;} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
template <> |
|
|
|
|
template <> |
|
|
|
|
struct TypeLimits<float> |
|
|
|
|
{ |
|
|
|
|
static __device__ float max() {return FLT_MAX;} |
|
|
|
@ -82,7 +82,7 @@ namespace csbp_krnls |
|
|
|
|
__constant__ float cdata_weight; |
|
|
|
|
__constant__ float cmax_disc_term; |
|
|
|
|
__constant__ float cdisc_single_jump; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__constant__ int cth; |
|
|
|
|
|
|
|
|
|
__constant__ size_t cimg_step; |
|
|
|
@ -96,7 +96,7 @@ namespace csbp_krnls |
|
|
|
|
__constant__ uchar* ctemp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
{ |
|
|
|
|
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th, |
|
|
|
|
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp) |
|
|
|
@ -107,9 +107,9 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdata_weight, &data_weight, sizeof(float)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmax_disc_term, &max_disc_term, sizeof(float)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisc_single_jump, &disc_single_jump, sizeof(float)) ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cth, &min_disp_th, sizeof(int)) ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cimg_step, &left.step, sizeof(size_t)) ); |
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cleft, &left.ptr, sizeof(left.ptr)) ); |
|
|
|
@ -123,8 +123,8 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
/////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
|
|
namespace csbp_krnls |
|
|
|
|
{ |
|
|
|
|
template <int channels> |
|
|
|
|
{ |
|
|
|
|
template <int channels> |
|
|
|
|
struct DataCostPerPixel |
|
|
|
|
{ |
|
|
|
|
static __device__ float compute(const uchar* left, const uchar* right) |
|
|
|
@ -137,7 +137,7 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
template <> |
|
|
|
|
template <> |
|
|
|
|
struct DataCostPerPixel<1> |
|
|
|
|
{ |
|
|
|
|
static __device__ float compute(const uchar* left, const uchar* right) |
|
|
|
@ -146,12 +146,46 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
__global__ void get_first_k_initial_global(T* data_cost_selected_, T *selected_disp_pyr, int h, int w, int nr_plane) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
|
if (y < h && x < w) |
|
|
|
|
{ |
|
|
|
|
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x; |
|
|
|
|
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x; |
|
|
|
|
T* data_cost = (T*)ctemp + y * cmsg_step1 + x; |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < nr_plane; i++) |
|
|
|
|
{ |
|
|
|
|
T fmin_ = data_cost[i * cdisp_step1]; |
|
|
|
|
int id = i; |
|
|
|
|
for(int j = 0; j < nr_plane; j++) |
|
|
|
|
{ |
|
|
|
|
T cur = data_cost[j * cdisp_step1]; |
|
|
|
|
if(cur < fmin_) |
|
|
|
|
{ |
|
|
|
|
fmin_ = cur; |
|
|
|
|
id = j; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
data_cost_selected[i * cdisp_step1] = fmin_; |
|
|
|
|
selected_disparity[i * cdisp_step1] = id; |
|
|
|
|
data_cost [id * cdisp_step1] = TypeLimits<T>::max();; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
__global__ void get_first_k_initial_local(T* data_cost_selected_, T* selected_disp_pyr, int h, int w, int nr_plane) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (y < h && x < w) |
|
|
|
|
{ |
|
|
|
|
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x; |
|
|
|
@ -170,7 +204,7 @@ namespace csbp_krnls |
|
|
|
|
{ |
|
|
|
|
data_cost_selected[nr_local_minimum * cdisp_step1] = cur; |
|
|
|
|
selected_disparity[nr_local_minimum * cdisp_step1] = d; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_cost[d * cdisp_step1] = TypeLimits<T>::max(); |
|
|
|
|
|
|
|
|
|
nr_local_minimum++; |
|
|
|
@ -203,11 +237,11 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T, int channels> |
|
|
|
|
__global__ void init_data_cost(int h, int w, int level) |
|
|
|
|
__global__ void init_data_cost(int h, int w, int level) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (y < h && x < w) |
|
|
|
|
{ |
|
|
|
|
int y0 = y << level; |
|
|
|
@ -224,28 +258,28 @@ namespace csbp_krnls |
|
|
|
|
for(int yi = y0; yi < yt; yi++) |
|
|
|
|
{ |
|
|
|
|
for(int xi = x0; xi < xt; xi++) |
|
|
|
|
{ |
|
|
|
|
{ |
|
|
|
|
int xr = xi - d; |
|
|
|
|
if(d < cth || xr < 0) |
|
|
|
|
if(d < cth || xr < 0) |
|
|
|
|
val += cdata_weight * cmax_data_term; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
const uchar* lle = cleft + yi * cimg_step + xi * channels; |
|
|
|
|
const uchar* lri = cright + yi * cimg_step + xr * channels; |
|
|
|
|
|
|
|
|
|
val += DataCostPerPixel<channels>::compute(lle, lri); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
data_cost[cdisp_step1 * d] = saturate_cast<T>(val); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T, int winsz, int channels> |
|
|
|
|
template <typename T, int winsz, int channels> |
|
|
|
|
__global__ void init_data_cost_reduce(int level, int rows, int cols, int h) |
|
|
|
|
{ |
|
|
|
|
int x_out = blockIdx.x; |
|
|
|
|
int x_out = blockIdx.x; |
|
|
|
|
int y_out = blockIdx.y % h; |
|
|
|
|
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z; |
|
|
|
|
|
|
|
|
@ -269,7 +303,7 @@ namespace csbp_krnls |
|
|
|
|
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - d); |
|
|
|
|
|
|
|
|
|
for(int y = 0; y < len; ++y) |
|
|
|
|
{ |
|
|
|
|
{ |
|
|
|
|
val += DataCostPerPixel<channels>::compute(lle, lri); |
|
|
|
|
|
|
|
|
|
lle += cimg_step; |
|
|
|
@ -292,28 +326,28 @@ namespace csbp_krnls |
|
|
|
|
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16]; |
|
|
|
|
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8]; |
|
|
|
|
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4]; |
|
|
|
|
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2]; |
|
|
|
|
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2]; |
|
|
|
|
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1]; |
|
|
|
|
|
|
|
|
|
T* data_cost = (T*)ctemp + y_out * cmsg_step1 + x_out; |
|
|
|
|
|
|
|
|
|
if (tid == 0) |
|
|
|
|
if (tid == 0) |
|
|
|
|
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
{ |
|
|
|
|
template <typename T> |
|
|
|
|
template <typename T> |
|
|
|
|
void init_data_cost_caller_(int /*rows*/, int /*cols*/, int h, int w, int level, int /*ndisp*/, int channels, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
dim3 threads(32, 8, 1); |
|
|
|
|
dim3 grid(1, 1, 1); |
|
|
|
|
|
|
|
|
|
grid.x = divUp(w, threads.x); |
|
|
|
|
grid.y = divUp(h, threads.y); |
|
|
|
|
|
|
|
|
|
grid.y = divUp(h, threads.y); |
|
|
|
|
|
|
|
|
|
switch (channels) |
|
|
|
|
{ |
|
|
|
|
case 1: csbp_krnls::init_data_cost<T, 1><<<grid, threads, 0, stream>>>(h, w, level); break; |
|
|
|
@ -322,16 +356,16 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T, int winsz> |
|
|
|
|
template <typename T, int winsz> |
|
|
|
|
void init_data_cost_reduce_caller_(int rows, int cols, int h, int w, int level, int ndisp, int channels, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
const int threadsNum = 256; |
|
|
|
|
const size_t smem_size = threadsNum * sizeof(float); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dim3 threads(winsz, 1, threadsNum / winsz); |
|
|
|
|
dim3 grid(w, h, 1); |
|
|
|
|
dim3 grid(w, h, 1); |
|
|
|
|
grid.y *= divUp(ndisp, threads.z); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
switch (channels) |
|
|
|
|
{ |
|
|
|
|
case 1: csbp_krnls::init_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break; |
|
|
|
@ -341,19 +375,19 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template<class T> |
|
|
|
|
void init_data_cost_tmpl(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, |
|
|
|
|
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
void init_data_cost_tmpl(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, size_t msg_step, |
|
|
|
|
int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
typedef void (*InitDataCostCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, cudaStream_t stream); |
|
|
|
|
|
|
|
|
|
static const InitDataCostCaller init_data_cost_callers[] = |
|
|
|
|
static const InitDataCostCaller init_data_cost_callers[] = |
|
|
|
|
{ |
|
|
|
|
init_data_cost_caller_<T>, init_data_cost_caller_<T>, init_data_cost_reduce_caller_<T, 4>, |
|
|
|
|
init_data_cost_reduce_caller_<T, 8>, init_data_cost_reduce_caller_<T, 16>, init_data_cost_reduce_caller_<T, 32>, |
|
|
|
|
init_data_cost_caller_<T>, init_data_cost_caller_<T>, init_data_cost_reduce_caller_<T, 4>, |
|
|
|
|
init_data_cost_reduce_caller_<T, 8>, init_data_cost_reduce_caller_<T, 16>, init_data_cost_reduce_caller_<T, 32>, |
|
|
|
|
init_data_cost_reduce_caller_<T, 64>, init_data_cost_reduce_caller_<T, 128>, init_data_cost_reduce_caller_<T, 256> |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t disp_step = msg_step * h; |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) ); |
|
|
|
@ -368,21 +402,24 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
grid.x = divUp(w, threads.x); |
|
|
|
|
grid.y = divUp(h, threads.y); |
|
|
|
|
|
|
|
|
|
csbp_krnls::get_first_k_initial_local<<<grid, threads, 0, stream>>>(data_cost_selected, disp_selected_pyr, h, w, nr_plane); |
|
|
|
|
if (use_local_init_data_cost == true) |
|
|
|
|
csbp_krnls::get_first_k_initial_local<<<grid, threads, 0, stream>>> (data_cost_selected, disp_selected_pyr, h, w, nr_plane); |
|
|
|
|
else |
|
|
|
|
csbp_krnls::get_first_k_initial_global<<<grid, threads, 0, stream>>>(data_cost_selected, disp_selected_pyr, h, w, nr_plane); |
|
|
|
|
if (stream == 0) |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void init_data_cost(int rows, int cols, short* disp_selected_pyr, short* data_cost_selected, |
|
|
|
|
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream) |
|
|
|
|
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, stream); |
|
|
|
|
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, use_local_init_data_cost, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void init_data_cost(int rows, int cols, float* disp_selected_pyr, float* data_cost_selected, |
|
|
|
|
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream) |
|
|
|
|
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, stream); |
|
|
|
|
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, use_local_init_data_cost, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
}}} |
|
|
|
@ -397,13 +434,13 @@ namespace csbp_krnls |
|
|
|
|
__global__ void compute_data_cost(const T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
|
if (y < h && x < w) |
|
|
|
|
{ |
|
|
|
|
int y0 = y << level; |
|
|
|
|
int yt = (y + 1) << level; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int x0 = x << level; |
|
|
|
|
int xt = (x + 1) << level; |
|
|
|
|
|
|
|
|
@ -420,9 +457,9 @@ namespace csbp_krnls |
|
|
|
|
int sel_disp = selected_disparity[d * cdisp_step2]; |
|
|
|
|
int xr = xi - sel_disp; |
|
|
|
|
|
|
|
|
|
if (xr < 0 || sel_disp < cth) |
|
|
|
|
if (xr < 0 || sel_disp < cth) |
|
|
|
|
val += cdata_weight * cmax_data_term; |
|
|
|
|
else |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
const uchar* left_x = cleft + yi * cimg_step + xi * channels; |
|
|
|
|
const uchar* right_x = cright + yi * cimg_step + xr * channels; |
|
|
|
@ -436,17 +473,17 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T, int winsz, int channels> |
|
|
|
|
template <typename T, int winsz, int channels> |
|
|
|
|
__global__ void compute_data_cost_reduce(const T* selected_disp_pyr, T* data_cost_, int level, int rows, int cols, int h, int nr_plane) |
|
|
|
|
{ |
|
|
|
|
int x_out = blockIdx.x; |
|
|
|
|
int x_out = blockIdx.x; |
|
|
|
|
int y_out = blockIdx.y % h; |
|
|
|
|
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z; |
|
|
|
|
|
|
|
|
|
int tid = threadIdx.x; |
|
|
|
|
|
|
|
|
|
const T* selected_disparity = selected_disp_pyr + y_out/2 * cmsg_step2 + x_out/2; |
|
|
|
|
T* data_cost = data_cost_ + y_out * cmsg_step1 + x_out; |
|
|
|
|
T* data_cost = data_cost_ + y_out * cmsg_step1 + x_out; |
|
|
|
|
|
|
|
|
|
if (d < nr_plane) |
|
|
|
|
{ |
|
|
|
@ -468,7 +505,7 @@ namespace csbp_krnls |
|
|
|
|
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - sel_disp); |
|
|
|
|
|
|
|
|
|
for(int y = 0; y < len; ++y) |
|
|
|
|
{ |
|
|
|
|
{ |
|
|
|
|
val += DataCostPerPixel<channels>::compute(lle, lri); |
|
|
|
|
|
|
|
|
|
lle += cimg_step; |
|
|
|
@ -491,18 +528,18 @@ namespace csbp_krnls |
|
|
|
|
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16]; |
|
|
|
|
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8]; |
|
|
|
|
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4]; |
|
|
|
|
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2]; |
|
|
|
|
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2]; |
|
|
|
|
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1]; |
|
|
|
|
|
|
|
|
|
if (tid == 0) |
|
|
|
|
if (tid == 0) |
|
|
|
|
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
{ |
|
|
|
|
template <typename T> |
|
|
|
|
template <typename T> |
|
|
|
|
void compute_data_cost_caller_(const T* disp_selected_pyr, T* data_cost, int /*rows*/, int /*cols*/, |
|
|
|
|
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
@ -517,20 +554,20 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
case 1: csbp_krnls::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>(disp_selected_pyr, data_cost, h, w, level, nr_plane); break; |
|
|
|
|
case 3: csbp_krnls::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>(disp_selected_pyr, data_cost, h, w, level, nr_plane); break; |
|
|
|
|
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T, int winsz> |
|
|
|
|
template <typename T, int winsz> |
|
|
|
|
void compute_data_cost_reduce_caller_(const T* disp_selected_pyr, T* data_cost, int rows, int cols, |
|
|
|
|
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
const int threadsNum = 256; |
|
|
|
|
const size_t smem_size = threadsNum * sizeof(float); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dim3 threads(winsz, 1, threadsNum / winsz); |
|
|
|
|
dim3 grid(w, h, 1); |
|
|
|
|
dim3 grid(w, h, 1); |
|
|
|
|
grid.y *= divUp(nr_plane, threads.z); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
switch (channels) |
|
|
|
|
{ |
|
|
|
|
case 1: csbp_krnls::compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane); break; |
|
|
|
@ -538,19 +575,19 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<class T> |
|
|
|
|
void compute_data_cost_tmpl(const T* disp_selected_pyr, T* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
|
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
typedef void (*ComputeDataCostCaller)(const T* disp_selected_pyr, T* data_cost, int rows, int cols, |
|
|
|
|
typedef void (*ComputeDataCostCaller)(const T* disp_selected_pyr, T* data_cost, int rows, int cols, |
|
|
|
|
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream); |
|
|
|
|
|
|
|
|
|
static const ComputeDataCostCaller callers[] = |
|
|
|
|
static const ComputeDataCostCaller callers[] = |
|
|
|
|
{ |
|
|
|
|
compute_data_cost_caller_<T>, compute_data_cost_caller_<T>, compute_data_cost_reduce_caller_<T, 4>, |
|
|
|
|
compute_data_cost_reduce_caller_<T, 8>, compute_data_cost_reduce_caller_<T, 16>, compute_data_cost_reduce_caller_<T, 32>, |
|
|
|
|
compute_data_cost_caller_<T>, compute_data_cost_caller_<T>, compute_data_cost_reduce_caller_<T, 4>, |
|
|
|
|
compute_data_cost_reduce_caller_<T, 8>, compute_data_cost_reduce_caller_<T, 16>, compute_data_cost_reduce_caller_<T, 32>, |
|
|
|
|
compute_data_cost_reduce_caller_<T, 64>, compute_data_cost_reduce_caller_<T, 128>, compute_data_cost_reduce_caller_<T, 256> |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
@ -559,12 +596,12 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step1, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step2, &disp_step2, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step1, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) ); |
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) ); |
|
|
|
|
|
|
|
|
|
callers[level](disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, stream); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (stream == 0) |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void compute_data_cost(const short* disp_selected_pyr, short* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
@ -587,10 +624,10 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace csbp_krnls |
|
|
|
|
{ |
|
|
|
|
template <typename T> |
|
|
|
|
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new, |
|
|
|
|
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new, |
|
|
|
|
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur, |
|
|
|
|
T* data_cost_selected, T* disparity_selected_new, T* data_cost_new, |
|
|
|
|
const T* data_cost_cur, const T* disparity_selected_cur, |
|
|
|
|
T* data_cost_selected, T* disparity_selected_new, T* data_cost_new, |
|
|
|
|
const T* data_cost_cur, const T* disparity_selected_cur, |
|
|
|
|
int nr_plane, int nr_plane2) |
|
|
|
|
{ |
|
|
|
|
for(int i = 0; i < nr_plane; i++) |
|
|
|
@ -620,17 +657,17 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_, |
|
|
|
|
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_, |
|
|
|
|
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur, |
|
|
|
|
T* data_cost_selected_, const T* data_cost_, |
|
|
|
|
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_, |
|
|
|
|
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_, |
|
|
|
|
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur, |
|
|
|
|
T* data_cost_selected_, const T* data_cost_, |
|
|
|
|
int h, int w, int nr_plane, int h2, int w2, int nr_plane2) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
|
if (y < h && x < w) |
|
|
|
|
{ |
|
|
|
|
{ |
|
|
|
|
const T* u_cur = u_cur_ + min(h2-1, y/2 + 1) * cmsg_step2 + x/2; |
|
|
|
|
const T* d_cur = d_cur_ + max(0, y/2 - 1) * cmsg_step2 + x/2; |
|
|
|
|
const T* l_cur = l_cur_ + y/2 * cmsg_step2 + min(w2-1, x/2 + 1); |
|
|
|
@ -644,7 +681,7 @@ namespace csbp_krnls |
|
|
|
|
for(int d = 0; d < nr_plane2; d++) |
|
|
|
|
{ |
|
|
|
|
int idx2 = d * cdisp_step2; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T val = data_cost[d * cdisp_step1] + u_cur[idx2] + d_cur[idx2] + l_cur[idx2] + r_cur[idx2]; |
|
|
|
|
data_cost_new[d * cdisp_step1] = val; |
|
|
|
|
} |
|
|
|
@ -669,58 +706,58 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
{ |
|
|
|
|
template<class T> |
|
|
|
|
void init_message_tmpl(T* u_new, T* d_new, T* l_new, T* r_new, |
|
|
|
|
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur, |
|
|
|
|
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur, |
|
|
|
|
T* data_cost_selected, const T* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
|
void init_message_tmpl(T* u_new, T* d_new, T* l_new, T* r_new, |
|
|
|
|
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur, |
|
|
|
|
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur, |
|
|
|
|
T* data_cost_selected, const T* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
|
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
size_t disp_step1 = msg_step1 * h; |
|
|
|
|
size_t disp_step2 = msg_step2 * h2; |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step1, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step2, &disp_step2, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step1, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dim3 threads(32, 8, 1); |
|
|
|
|
dim3 grid(1, 1, 1); |
|
|
|
|
|
|
|
|
|
grid.x = divUp(w, threads.x); |
|
|
|
|
grid.y = divUp(h, threads.y); |
|
|
|
|
grid.y = divUp(h, threads.y); |
|
|
|
|
|
|
|
|
|
csbp_krnls::init_message<<<grid, threads, 0, stream>>>(u_new, d_new, l_new, r_new, |
|
|
|
|
csbp_krnls::init_message<<<grid, threads, 0, stream>>>(u_new, d_new, l_new, r_new, |
|
|
|
|
u_cur, d_cur, l_cur, r_cur, |
|
|
|
|
selected_disp_pyr_new, selected_disp_pyr_cur, |
|
|
|
|
data_cost_selected, data_cost, |
|
|
|
|
selected_disp_pyr_new, selected_disp_pyr_cur, |
|
|
|
|
data_cost_selected, data_cost, |
|
|
|
|
h, w, nr_plane, h2, w2, nr_plane2); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (stream == 0) |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void init_message(short* u_new, short* d_new, short* l_new, short* r_new, |
|
|
|
|
const short* u_cur, const short* d_cur, const short* l_cur, const short* r_cur, |
|
|
|
|
short* selected_disp_pyr_new, const short* selected_disp_pyr_cur, |
|
|
|
|
short* data_cost_selected, const short* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
|
void init_message(short* u_new, short* d_new, short* l_new, short* r_new, |
|
|
|
|
const short* u_cur, const short* d_cur, const short* l_cur, const short* r_cur, |
|
|
|
|
short* selected_disp_pyr_new, const short* selected_disp_pyr_cur, |
|
|
|
|
short* data_cost_selected, const short* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
|
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur, |
|
|
|
|
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2, |
|
|
|
|
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur, |
|
|
|
|
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2, |
|
|
|
|
h, w, nr_plane, h2, w2, nr_plane2, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void init_message(float* u_new, float* d_new, float* l_new, float* r_new, |
|
|
|
|
const float* u_cur, const float* d_cur, const float* l_cur, const float* r_cur, |
|
|
|
|
float* selected_disp_pyr_new, const float* selected_disp_pyr_cur, |
|
|
|
|
float* data_cost_selected, const float* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
|
void init_message(float* u_new, float* d_new, float* l_new, float* r_new, |
|
|
|
|
const float* u_cur, const float* d_cur, const float* l_cur, const float* r_cur, |
|
|
|
|
float* selected_disp_pyr_new, const float* selected_disp_pyr_cur, |
|
|
|
|
float* data_cost_selected, const float* data_cost, size_t msg_step1, size_t msg_step2, |
|
|
|
|
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur, |
|
|
|
|
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2, |
|
|
|
|
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur, |
|
|
|
|
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2, |
|
|
|
|
h, w, nr_plane, h2, w2, nr_plane2, stream); |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
@ -732,7 +769,7 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace csbp_krnls |
|
|
|
|
{ |
|
|
|
|
template <typename T> |
|
|
|
|
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3, |
|
|
|
|
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3, |
|
|
|
|
const T* dst_disp, const T* src_disp, int nr_plane, T* temp) |
|
|
|
|
{ |
|
|
|
|
T minimum = TypeLimits<T>::max(); |
|
|
|
@ -742,7 +779,7 @@ namespace csbp_krnls |
|
|
|
|
int idx = d * cdisp_step1; |
|
|
|
|
T val = data[idx] + msg1[idx] + msg2[idx] + msg3[idx]; |
|
|
|
|
|
|
|
|
|
if(val < minimum) |
|
|
|
|
if(val < minimum) |
|
|
|
|
minimum = val; |
|
|
|
|
|
|
|
|
|
msg_dst[idx] = val; |
|
|
|
@ -756,7 +793,7 @@ namespace csbp_krnls |
|
|
|
|
|
|
|
|
|
for(int d2 = 0; d2 < nr_plane; d2++) |
|
|
|
|
cost_min = fmin(cost_min, msg_dst[d2 * cdisp_step1] + cdisc_single_jump * abs(dst_disp[d2 * cdisp_step1] - src_disp_reg)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
temp[d * cdisp_step1] = saturate_cast<T>(cost_min); |
|
|
|
|
sum += cost_min; |
|
|
|
|
} |
|
|
|
@ -780,9 +817,9 @@ namespace csbp_krnls |
|
|
|
|
T* d = d_ + y * cmsg_step1 + x; |
|
|
|
|
T* l = l_ + y * cmsg_step1 + x; |
|
|
|
|
T* r = r_ + y * cmsg_step1 + x; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const T* disp = selected_disp_pyr_cur + y * cmsg_step1 + x; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T* temp = (T*)ctemp + y * cmsg_step1 + x; |
|
|
|
|
|
|
|
|
|
message_per_pixel(data, u, r - 1, u + cmsg_step1, l + 1, disp, disp - cmsg_step1, nr_plane, temp); |
|
|
|
@ -793,12 +830,12 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
{ |
|
|
|
|
template<class T> |
|
|
|
|
void calc_all_iterations_tmpl(T* u, T* d, T* l, T* r, const T* data_cost_selected, |
|
|
|
|
void calc_all_iterations_tmpl(T* u, T* d, T* l, T* r, const T* data_cost_selected, |
|
|
|
|
const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
{ |
|
|
|
|
size_t disp_step = msg_step * h; |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) ); |
|
|
|
@ -811,20 +848,20 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
|
|
|
|
|
for(int t = 0; t < iters; ++t) |
|
|
|
|
{ |
|
|
|
|
csbp_krnls::compute_message<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t & 1); |
|
|
|
|
|
|
|
|
|
csbp_krnls::compute_message<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t & 1); |
|
|
|
|
|
|
|
|
|
if (stream == 0) |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void calc_all_iterations(short* u, short* d, short* l, short* r, short* data_cost_selected, |
|
|
|
|
const short* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream) |
|
|
|
|
void calc_all_iterations(short* u, short* d, short* l, short* r, short* data_cost_selected, |
|
|
|
|
const short* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
calc_all_iterations_tmpl(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, msg_step, h, w, nr_plane, iters, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void calc_all_iterations(float*u, float* d, float* l, float* r, float* data_cost_selected, |
|
|
|
|
void calc_all_iterations(float*u, float* d, float* l, float* r, float* data_cost_selected, |
|
|
|
|
const float* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
calc_all_iterations_tmpl(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, msg_step, h, w, nr_plane, iters, stream); |
|
|
|
@ -839,10 +876,10 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace csbp_krnls |
|
|
|
|
{ |
|
|
|
|
template <typename T> |
|
|
|
|
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_, |
|
|
|
|
const T* data_cost_selected, const T* disp_selected_pyr, |
|
|
|
|
short* disp, size_t res_step, int cols, int rows, int nr_plane) |
|
|
|
|
{ |
|
|
|
|
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_, |
|
|
|
|
const T* data_cost_selected, const T* disp_selected_pyr, |
|
|
|
|
short* disp, size_t res_step, int cols, int rows, int nr_plane) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
@ -855,15 +892,15 @@ namespace csbp_krnls |
|
|
|
|
const T* d = d_ + (y-1) * cmsg_step1 + (x+0); |
|
|
|
|
const T* l = l_ + (y+0) * cmsg_step1 + (x+1); |
|
|
|
|
const T* r = r_ + (y+0) * cmsg_step1 + (x-1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int best = 0; |
|
|
|
|
T best_val = TypeLimits<T>::max(); |
|
|
|
|
for (int i = 0; i < nr_plane; ++i) |
|
|
|
|
for (int i = 0; i < nr_plane; ++i) |
|
|
|
|
{ |
|
|
|
|
int idx = i * cdisp_step1; |
|
|
|
|
T val = data[idx]+ u[idx] + d[idx] + l[idx] + r[idx]; |
|
|
|
|
|
|
|
|
|
if (val < best_val) |
|
|
|
|
if (val < best_val) |
|
|
|
|
{ |
|
|
|
|
best_val = val; |
|
|
|
|
best = saturate_cast<short>(disp_selected[idx]); |
|
|
|
@ -874,12 +911,12 @@ namespace csbp_krnls |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
namespace cv { namespace gpu { namespace csbp |
|
|
|
|
{ |
|
|
|
|
template<class T> |
|
|
|
|
void compute_disp_tmpl(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step, |
|
|
|
|
template<class T> |
|
|
|
|
void compute_disp_tmpl(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step, |
|
|
|
|
const DevMem2D_<short>& disp, int nr_plane, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
{ |
|
|
|
|
size_t disp_step = disp.rows * msg_step; |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) ); |
|
|
|
|
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) ); |
|
|
|
@ -889,23 +926,23 @@ namespace cv { namespace gpu { namespace csbp |
|
|
|
|
|
|
|
|
|
grid.x = divUp(disp.cols, threads.x); |
|
|
|
|
grid.y = divUp(disp.rows, threads.y); |
|
|
|
|
|
|
|
|
|
csbp_krnls::compute_disp<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, disp_selected, |
|
|
|
|
|
|
|
|
|
csbp_krnls::compute_disp<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, disp_selected, |
|
|
|
|
disp.ptr, disp.step / disp.elemSize(), disp.cols, disp.rows, nr_plane); |
|
|
|
|
if (stream == 0) |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void compute_disp(const short* u, const short* d, const short* l, const short* r, const short* data_cost_selected, const short* disp_selected, size_t msg_step, |
|
|
|
|
void compute_disp(const short* u, const short* d, const short* l, const short* r, const short* data_cost_selected, const short* disp_selected, size_t msg_step, |
|
|
|
|
DevMem2D_<short> disp, int nr_plane, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
compute_disp_tmpl(u, d, l, r, data_cost_selected, disp_selected, msg_step, disp, nr_plane, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void compute_disp(const float* u, const float* d, const float* l, const float* r, const float* data_cost_selected, const float* disp_selected, size_t msg_step, |
|
|
|
|
void compute_disp(const float* u, const float* d, const float* l, const float* r, const float* data_cost_selected, const float* disp_selected, size_t msg_step, |
|
|
|
|
DevMem2D_<short> disp, int nr_plane, cudaStream_t stream) |
|
|
|
|
{ |
|
|
|
|
compute_disp_tmpl(u, d, l, r, data_cost_selected, disp_selected, msg_step, disp, nr_plane, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
}}} |
|
|
|
|
}}} |
|
|
|
|