|
|
|
@ -1700,6 +1700,8 @@ TEST(Imgproc_ColorBayerVNG, regression) |
|
|
|
|
Mat gold = imread(string(ts.get_data_path()) + "/cvtcolor/bayerVNG_gold.png", CV_LOAD_IMAGE_UNCHANGED); |
|
|
|
|
Mat result; |
|
|
|
|
|
|
|
|
|
CV_Assert(given.data != NULL); |
|
|
|
|
|
|
|
|
|
cvtColor(given, result, CV_BayerBG2BGR_VNG, 3); |
|
|
|
|
|
|
|
|
|
EXPECT_EQ(gold.type(), result.type()); |
|
|
|
@ -1711,3 +1713,128 @@ TEST(Imgproc_ColorBayerVNG, regression) |
|
|
|
|
|
|
|
|
|
EXPECT_EQ(0, countNonZero(diff.reshape(1) > 1)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(Imgproc_ColorBayerVNG_Strict, regression) |
|
|
|
|
{ |
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
|
|
|
const char pattern[][3] = { "bg", "gb", "rg", "gr" }; |
|
|
|
|
const std::string image_name = "lena.png"; |
|
|
|
|
const std::string parent_path = string(ts.get_data_path()) + "./cvtcolor_strict/"; |
|
|
|
|
|
|
|
|
|
Mat src, dst, bayer, reference; |
|
|
|
|
std::string full_path = parent_path + image_name; |
|
|
|
|
src = imread(full_path, CV_LOAD_IMAGE_UNCHANGED); |
|
|
|
|
Size ssize = src.size(); |
|
|
|
|
|
|
|
|
|
if (src.data == NULL) |
|
|
|
|
{ |
|
|
|
|
ts.set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
ts.printf(cvtest::TS::SUMMARY, "No input image\n"); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int type = -1; |
|
|
|
|
for (int i = 0; i < 4; ++i) |
|
|
|
|
{ |
|
|
|
|
// creating Bayer pattern
|
|
|
|
|
bayer.create(ssize, CV_MAKETYPE(src.depth(), 1)); |
|
|
|
|
|
|
|
|
|
if (!strcmp(pattern[i], "bg")) |
|
|
|
|
{ |
|
|
|
|
for (int y = 0; y < ssize.height; ++y) |
|
|
|
|
for (int x = 0; x < ssize.width; ++x) |
|
|
|
|
{ |
|
|
|
|
if ((x + y) % 2) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1]; |
|
|
|
|
else if (x % 2) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0]; |
|
|
|
|
else |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2]; |
|
|
|
|
} |
|
|
|
|
type = CV_BayerBG2BGR_VNG; |
|
|
|
|
} |
|
|
|
|
else if (!strcmp(pattern[i], "gb")) |
|
|
|
|
{ |
|
|
|
|
for (int y = 0; y < ssize.height; ++y) |
|
|
|
|
for (int x = 0; x < ssize.width; ++x) |
|
|
|
|
{ |
|
|
|
|
if ((x + y) % 2 == 0) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1]; |
|
|
|
|
else if (x % 2 == 0) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0]; |
|
|
|
|
else |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2]; |
|
|
|
|
} |
|
|
|
|
type = CV_BayerGB2BGR_VNG; |
|
|
|
|
} |
|
|
|
|
else if (!strcmp(pattern[i], "rg")) |
|
|
|
|
{ |
|
|
|
|
for (int y = 0; y < ssize.height; ++y) |
|
|
|
|
for (int x = 0; x < ssize.width; ++x) |
|
|
|
|
{ |
|
|
|
|
if ((x + y) % 2) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1]; |
|
|
|
|
else if (x % 2 == 0) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0]; |
|
|
|
|
else |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2]; |
|
|
|
|
} |
|
|
|
|
type = CV_BayerRG2BGR_VNG; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for (int y = 0; y < ssize.height; ++y) |
|
|
|
|
for (int x = 0; x < ssize.width; ++x) |
|
|
|
|
{ |
|
|
|
|
if ((x + y) % 2 == 0) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[1]; |
|
|
|
|
else if (x % 2) |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[0]; |
|
|
|
|
else |
|
|
|
|
bayer.at<uchar>(y, x) = src.at<Vec3b>(y, x)[2]; |
|
|
|
|
} |
|
|
|
|
type = CV_BayerGR2BGR_VNG; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// calculating a dst image
|
|
|
|
|
cvtColor(bayer, dst, type); |
|
|
|
|
|
|
|
|
|
// reading a reference image
|
|
|
|
|
full_path = parent_path + pattern[i] + image_name; |
|
|
|
|
reference = imread(full_path, CV_LOAD_IMAGE_UNCHANGED); |
|
|
|
|
if (reference.data == NULL) |
|
|
|
|
{ |
|
|
|
|
imwrite(full_path, dst); |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (reference.depth() != dst.depth() || reference.channels() != dst.channels() || |
|
|
|
|
reference.size() != dst.size()) |
|
|
|
|
{ |
|
|
|
|
ts.set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
|
|
|
ts.printf(cvtest::TS::SUMMARY, "\nReference channels: %d\n" |
|
|
|
|
"Actual channels: %d\n", reference.channels(), dst.channels()); |
|
|
|
|
ts.printf(cvtest::TS::SUMMARY, "\nReference depth: %d\n" |
|
|
|
|
"Actual depth: %d\n", reference.depth(), dst.depth()); |
|
|
|
|
ts.printf(cvtest::TS::SUMMARY, "\nReference rows: %d\n" |
|
|
|
|
"Actual rows: %d\n", reference.rows, dst.rows); |
|
|
|
|
ts.printf(cvtest::TS::SUMMARY, "\nReference cols: %d\n" |
|
|
|
|
"Actual cols: %d\n", reference.cols, dst.cols); |
|
|
|
|
ts.set_gtest_status(); |
|
|
|
|
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat diff; |
|
|
|
|
absdiff(reference, dst, diff); |
|
|
|
|
|
|
|
|
|
int nonZero = countNonZero(diff.reshape(1) > 1); |
|
|
|
|
if (nonZero != 0) |
|
|
|
|
{ |
|
|
|
|
ts.set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
|
ts.printf(cvtest::TS::SUMMARY, "\nCount non zero in absdiff: %d\n", nonZero); |
|
|
|
|
ts.set_gtest_status(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|