diff --git a/modules/dnn/src/dnn.cpp b/modules/dnn/src/dnn.cpp index a3d1efbc8b..4e4fd9cbbd 100644 --- a/modules/dnn/src/dnn.cpp +++ b/modules/dnn/src/dnn.cpp @@ -483,6 +483,7 @@ struct DataLayer : public Layer } #ifdef HAVE_OPENCL + std::vector tmp_expressions; bool forward_ocl(InputArrayOfArrays, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) { // Supported modes: @@ -493,8 +494,11 @@ struct DataLayer : public Layer std::vector outputs; outputs_.getUMatVector(outputs); + tmp_expressions.clear(); for (int i = 0; i < inputsData.size(); ++i) { + Mat inputData = inputsData[i]; + double scale = scaleFactors[i]; Scalar& mean = means[i]; @@ -508,7 +512,10 @@ struct DataLayer : public Layer if (outputs_.depth() == CV_16S) { if (singleMean) - convertFp16(scale * (inputsData[i] - mean[0]), outputs[i]); + { + tmp_expressions.push_back(Mat(scale * (inputsData[i] - mean[0]))); + convertFp16(tmp_expressions.back(), outputs[i]); + } else { for (int n = 0; n < inputsData[i].size[0]; ++n) @@ -521,7 +528,8 @@ struct DataLayer : public Layer plane[1] = Range(c, c + 1); UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size); - convertFp16(scale * (inp - mean[c]), out); + tmp_expressions.push_back(scale * (inp - mean[c])); + convertFp16(tmp_expressions.back(), out); } } } @@ -529,7 +537,9 @@ struct DataLayer : public Layer { CV_Assert(outputs_.depth() == CV_32F); if (singleMean) + { inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale); + } else { for (int n = 0; n < inputsData[i].size[0]; ++n)