Fix BRISK detector&descriptor using proper AGAST.

pull/3919/head^2
cbalint13 10 years ago
parent b639353193
commit 26997f32c6
  1. 8
      doc/opencv.bib
  2. 53
      modules/features2d/include/opencv2/features2d.hpp
  3. 40
      modules/features2d/perf/perf_agast.cpp
  4. 7667
      modules/features2d/src/agast.cpp
  5. 9375
      modules/features2d/src/agast_score.cpp
  6. 62
      modules/features2d/src/agast_score.hpp
  7. 45
      modules/features2d/src/brisk.cpp
  8. 137
      modules/features2d/test/test_agast.cpp
  9. 6
      modules/features2d/test/test_detectors_regression.cpp
  10. 6
      modules/features2d/test/test_keypoints.cpp

@ -625,6 +625,14 @@
pages = {430--443},
publisher = {Springer}
}
@inproceedings{mair2010_agast,
title={Adaptive and Generic Corner Detection Based on the Accelerated Segment Test"},
author={"Elmar Mair and Gregory D. Hager and Darius Burschka and Michael Suppa and Gerhard Hirzinger"},
year={"2010"},
month={"September"},
booktitle={"European Conference on Computer Vision (ECCV'10)"},
url={"http://www6.in.tum.de/Main/ResearchAgast"
}
@ARTICLE{Rubner2000,
author = {Rubner, Yossi and Tomasi, Carlo and Guibas, Leonidas J},
title = {The earth mover's distance as a metric for image retrieval},

@ -222,7 +222,7 @@ class CV_EXPORTS_W BRISK : public Feature2D
public:
/** @brief The BRISK constructor
@param thresh FAST/AGAST detection threshold score.
@param thresh AGAST detection threshold score.
@param octaves detection octaves. Use 0 to do single scale.
@param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
keypoint.
@ -408,6 +408,57 @@ public:
CV_WRAP virtual int getType() const = 0;
};
/** @overload */
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSuppression=true );
/** @brief Detects corners using the AGAST algorithm
@param image grayscale image where keypoints (corners) are detected.
@param keypoints keypoints detected on the image.
@param threshold threshold on difference between intensity of the central pixel and pixels of a
circle around this pixel.
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
(keypoints).
@param type one of the four neighborhoods as defined in the paper:
AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
Detects corners using the AGAST algorithm by @cite mair2010_agast .
*/
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSuppression, int type );
//! @} features2d_main
//! @addtogroup features2d_main
//! @{
/** @brief Wrapping class for feature detection using the AGAST method. :
*/
class CV_EXPORTS_W AgastFeatureDetector : public Feature2D
{
public:
enum
{
AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001,
};
CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10,
bool nonmaxSuppression=true,
int type=AgastFeatureDetector::OAST_9_16 );
CV_WRAP virtual void setThreshold(int threshold) = 0;
CV_WRAP virtual int getThreshold() const = 0;
CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
CV_WRAP virtual bool getNonmaxSuppression() const = 0;
CV_WRAP virtual void setType(int type) = 0;
CV_WRAP virtual int getType() const = 0;
};
/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
*/
class CV_EXPORTS_W GFTTDetector : public Feature2D

@ -0,0 +1,40 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
CV_ENUM(AgastType, AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16)
typedef std::tr1::tuple<string, AgastType> File_Type_t;
typedef perf::TestBaseWithParam<File_Type_t> agast;
#define AGAST_IMAGES \
"cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\
"stitching/a3.png"
PERF_TEST_P(agast, detect, testing::Combine(
testing::Values(AGAST_IMAGES),
AgastType::all()
))
{
string filename = getDataPath(get<0>(GetParam()));
int type = get<1>(GetParam());
Mat frame = imread(filename, IMREAD_GRAYSCALE);
if (frame.empty())
FAIL() << "Unable to load source image " << filename;
declare.in(frame);
Ptr<FeatureDetector> fd = AgastFeatureDetector::create(20, true, type);
ASSERT_FALSE( fd.empty() );
vector<KeyPoint> points;
TEST_CYCLE() fd->detect(frame, points);
SANITY_CHECK_KEYPOINTS(points);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,62 @@
/* This is AGAST and OAST, an optimal and accelerated corner detector
based on the accelerated segment tests
Below is the original copyright and the references */
/*
Copyright (C) 2010 Elmar Mair
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
*Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
*Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
*Neither the name of the University of Cambridge nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
The references are:
* Adaptive and Generic Corner Detection Based on the Accelerated Segment Test,
Elmar Mair and Gregory D. Hager and Darius Burschka
and Michael Suppa and Gerhard Hirzinger ECCV 2010
URL: http://www6.in.tum.de/Main/ResearchAgast
*/
#ifndef __OPENCV_FEATURES_2D_AGAST_HPP__
#define __OPENCV_FEATURES_2D_AGAST_HPP__
#ifdef __cplusplus
#include "precomp.hpp"
namespace cv
{
void makeAgastOffsets(int pixel[16], int row_stride, int type);
template<int type>
int agast_cornerScore(const uchar* ptr, const int pixel[], int threshold);
}
#endif
#endif

@ -46,7 +46,7 @@
#include <fstream>
#include <stdlib.h>
#include "fast_score.hpp"
#include "agast_score.hpp"
namespace cv
{
@ -157,7 +157,7 @@ public:
// derive a layer
BriskLayer(const BriskLayer& layer, int mode);
// Fast/Agast without non-max suppression
// Agast without non-max suppression
void
getAgastPoints(int threshold, std::vector<cv::KeyPoint>& keypoints);
@ -204,13 +204,13 @@ private:
value(const cv::Mat& mat, float xf, float yf, float scale) const;
// the image
cv::Mat img_;
// its Fast scores
// its Agast scores
cv::Mat_<uchar> scores_;
// coordinate transformation
float scale_;
float offset_;
// agast
cv::Ptr<cv::FastFeatureDetector> fast_9_16_;
cv::Ptr<cv::AgastFeatureDetector> oast_9_16_;
int pixel_5_8_[25];
int pixel_9_16_[25];
};
@ -618,8 +618,6 @@ BRISK_Impl::detectAndCompute( InputArray _image, InputArray _mask, std::vector<K
OutputArray _descriptors, bool useProvidedKeypoints)
{
bool doOrientation=true;
if (useProvidedKeypoints)
doOrientation = false;
// If the user specified cv::noArray(), this will yield false. Otherwise it will return true.
bool doDescriptors = _descriptors.needed();
@ -733,8 +731,12 @@ BRISK_Impl::computeDescriptorsAndOrOrientation(InputArray _image, InputArray _ma
direction1 += tmp1;
}
kp.angle = (float)(atan2((float) direction1, (float) direction0) / CV_PI * 180.0);
if (kp.angle < 0)
kp.angle += 360.f;
if (!doDescriptors)
{
if (kp.angle < 0)
kp.angle += 360.f;
}
}
if (!doDescriptors)
@ -755,6 +757,9 @@ BRISK_Impl::computeDescriptorsAndOrOrientation(InputArray _image, InputArray _ma
theta -= n_rot_;
}
if (kp.angle < 0)
kp.angle += 360.f;
// now also extract the stuff for the actual direction:
// let us compute the smoothed values
int shifter = 0;
@ -867,7 +872,7 @@ BriskScaleSpace::getKeypoints(const int threshold_, std::vector<cv::KeyPoint>& k
std::vector<std::vector<cv::KeyPoint> > agastPoints;
agastPoints.resize(layers_);
// go through the octaves and intra layers and calculate fast corner scores:
// go through the octaves and intra layers and calculate agast corner scores:
for (int i = 0; i < layers_; i++)
{
// call OAST16_9 without nms
@ -2067,9 +2072,9 @@ BriskLayer::BriskLayer(const cv::Mat& img_in, float scale_in, float offset_in)
scale_ = scale_in;
offset_ = offset_in;
// create an agast detector
fast_9_16_ = FastFeatureDetector::create(1, true, FastFeatureDetector::TYPE_9_16);
makeOffsets(pixel_5_8_, (int)img_.step, 8);
makeOffsets(pixel_9_16_, (int)img_.step, 16);
oast_9_16_ = AgastFeatureDetector::create(1, false, AgastFeatureDetector::OAST_9_16);
makeAgastOffsets(pixel_5_8_, (int)img_.step, AgastFeatureDetector::AGAST_5_8);
makeAgastOffsets(pixel_9_16_, (int)img_.step, AgastFeatureDetector::OAST_9_16);
}
// derive a layer
BriskLayer::BriskLayer(const BriskLayer& layer, int mode)
@ -2089,18 +2094,18 @@ BriskLayer::BriskLayer(const BriskLayer& layer, int mode)
offset_ = 0.5f * scale_ - 0.5f;
}
scores_ = cv::Mat::zeros(img_.rows, img_.cols, CV_8U);
fast_9_16_ = FastFeatureDetector::create(1, false, FastFeatureDetector::TYPE_9_16);
makeOffsets(pixel_5_8_, (int)img_.step, 8);
makeOffsets(pixel_9_16_, (int)img_.step, 16);
oast_9_16_ = AgastFeatureDetector::create(1, false, AgastFeatureDetector::OAST_9_16);
makeAgastOffsets(pixel_5_8_, (int)img_.step, AgastFeatureDetector::AGAST_5_8);
makeAgastOffsets(pixel_9_16_, (int)img_.step, AgastFeatureDetector::OAST_9_16);
}
// Fast/Agast
// Agast
// wraps the agast class
void
BriskLayer::getAgastPoints(int threshold, std::vector<KeyPoint>& keypoints)
{
fast_9_16_->setThreshold(threshold);
fast_9_16_->detect(img_, keypoints);
oast_9_16_->setThreshold(threshold);
oast_9_16_->detect(img_, keypoints);
// also write scores
const size_t num = keypoints.size();
@ -2121,7 +2126,7 @@ BriskLayer::getAgastScore(int x, int y, int threshold) const
{
return score;
}
score = (uchar)cornerScore<16>(&img_.at<uchar>(y, x), pixel_9_16_, threshold - 1);
score = (uchar)agast_cornerScore<AgastFeatureDetector::OAST_9_16>(&img_.at<uchar>(y, x), pixel_9_16_, threshold - 1);
if (score < threshold)
score = 0;
return score;
@ -2134,7 +2139,7 @@ BriskLayer::getAgastScore_5_8(int x, int y, int threshold) const
return 0;
if (x >= img_.cols - 2 || y >= img_.rows - 2)
return 0;
int score = cornerScore<8>(&img_.at<uchar>(y, x), pixel_5_8_, threshold - 1);
int score = agast_cornerScore<AgastFeatureDetector::AGAST_5_8>(&img_.at<uchar>(y, x), pixel_5_8_, threshold - 1);
if (score < threshold)
score = 0;
return score;

@ -0,0 +1,137 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace std;
using namespace cv;
class CV_AgastTest : public cvtest::BaseTest
{
public:
CV_AgastTest();
~CV_AgastTest();
protected:
void run(int);
};
CV_AgastTest::CV_AgastTest() {}
CV_AgastTest::~CV_AgastTest() {}
void CV_AgastTest::run( int )
{
for(int type=0; type <= 2; ++type) {
Mat image1 = imread(string(ts->get_data_path()) + "inpaint/orig.png");
Mat image2 = imread(string(ts->get_data_path()) + "cameracalibration/chess9.png");
string xml = string(ts->get_data_path()) + format("agast/result%d.xml", type);
if (image1.empty() || image2.empty())
{
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
Mat gray1, gray2;
cvtColor(image1, gray1, COLOR_BGR2GRAY);
cvtColor(image2, gray2, COLOR_BGR2GRAY);
vector<KeyPoint> keypoints1;
vector<KeyPoint> keypoints2;
AGAST(gray1, keypoints1, 30, true, type);
AGAST(gray2, keypoints2, (type > 0 ? 30 : 20), true, type);
for(size_t i = 0; i < keypoints1.size(); ++i)
{
const KeyPoint& kp = keypoints1[i];
cv::circle(image1, kp.pt, cvRound(kp.size/2), Scalar(255, 0, 0));
}
for(size_t i = 0; i < keypoints2.size(); ++i)
{
const KeyPoint& kp = keypoints2[i];
cv::circle(image2, kp.pt, cvRound(kp.size/2), Scalar(255, 0, 0));
}
Mat kps1(1, (int)(keypoints1.size() * sizeof(KeyPoint)), CV_8U, &keypoints1[0]);
Mat kps2(1, (int)(keypoints2.size() * sizeof(KeyPoint)), CV_8U, &keypoints2[0]);
FileStorage fs(xml, FileStorage::READ);
if (!fs.isOpened())
{
fs.open(xml, FileStorage::WRITE);
if (!fs.isOpened())
{
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
fs << "exp_kps1" << kps1;
fs << "exp_kps2" << kps2;
fs.release();
fs.open(xml, FileStorage::READ);
if (!fs.isOpened())
{
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
}
Mat exp_kps1, exp_kps2;
read( fs["exp_kps1"], exp_kps1, Mat() );
read( fs["exp_kps2"], exp_kps2, Mat() );
fs.release();
if ( exp_kps1.size != kps1.size || 0 != cvtest::norm(exp_kps1, kps1, NORM_L2) ||
exp_kps2.size != kps2.size || 0 != cvtest::norm(exp_kps2, kps2, NORM_L2))
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
/*cv::namedWindow("Img1"); cv::imshow("Img1", image1);
cv::namedWindow("Img2"); cv::imshow("Img2", image2);
cv::waitKey(0);*/
}
ts->set_failed_test_info(cvtest::TS::OK);
}
TEST(Features2d_AGAST, regression) { CV_AgastTest test; test.safe_run(); }

@ -259,6 +259,12 @@ TEST( Features2d_Detector_FAST, regression )
test.safe_run();
}
TEST( Features2d_Detector_AGAST, regression )
{
CV_FeatureDetectorTest test( "detector-agast", AgastFeatureDetector::create() );
test.safe_run();
}
TEST( Features2d_Detector_GFTT, regression )
{
CV_FeatureDetectorTest test( "detector-gftt", GFTTDetector::create() );

@ -131,6 +131,12 @@ TEST(Features2d_Detector_Keypoints_FAST, validation)
test.safe_run();
}
TEST(Features2d_Detector_Keypoints_AGAST, validation)
{
CV_FeatureDetectorKeypointsTest test(AgastFeatureDetector::create());
test.safe_run();
}
TEST(Features2d_Detector_Keypoints_HARRIS, validation)
{

Loading…
Cancel
Save