Tonemap as Algorithm

pull/1474/head
Fedor Morozov 11 years ago
parent af2c9077f7
commit 258b98d15b
  1. 77
      modules/photo/include/opencv2/photo.hpp
  2. 1
      modules/photo/src/hdr_fusion.cpp
  3. 191
      modules/photo/src/tonemap.cpp
  4. 45
      modules/photo/test/test_hdr.cpp

@ -59,20 +59,6 @@ enum
INPAINT_TELEA = 1 // A. Telea algorithm
};
//! the tonemapping algorithm
enum
{
TONEMAP_LINEAR,
TONEMAP_DRAGO, // Adaptive Logarithmic Mapping For
// Displaying High Contrast Scenes
TONEMAP_REINHARD, // Dynamic Range Reduction Inspired
// by Photoreceptor Physiology
TONEMAP_DURAND, // Fast Bilateral Filtering for the
// Display of High-Dynamic-Range Images
TONEMAP_COUNT
};
//! restores the damaged image areas using one of the available intpainting algorithms
CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask,
OutputArray dst, double inpaintRadius, int flags );
@ -96,9 +82,6 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs,
CV_EXPORTS_W void makeHDR(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, Mat response = Mat());
CV_EXPORTS_W void tonemap(InputArray src, OutputArray dst, int algorithm,
const std::vector<float>& params = std::vector<float>());
CV_EXPORTS_W void exposureFusion(InputArrayOfArrays srcImgs, OutputArray dst, float wc = 1.0f, float ws = 1.0f, float we = 0.0f);
CV_EXPORTS_W void shiftMat(InputArray src, Point shift, OutputArray dst);
@ -108,6 +91,66 @@ CV_EXPORTS_W Point getExpShift(InputArray img0, InputArray img1, int max_bits =
CV_EXPORTS_W void estimateResponse(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, int samples = 50, float lambda = 10);
CV_EXPORTS_W void alignImages(InputArrayOfArrays src, std::vector<Mat>& dst);
class CV_EXPORTS_W Tonemap : public Algorithm
{
public:
Tonemap(float gamma);
virtual ~Tonemap();
void process(InputArray src, OutputArray dst);
static Ptr<Tonemap> create(const String& name);
protected:
float gamma;
Mat img;
void linearMap();
void gammaCorrection();
virtual void tonemap() = 0;
};
class CV_EXPORTS_W TonemapLinear : public Tonemap
{
public:
TonemapLinear(float gamma = 2.2f);
AlgorithmInfo* info() const;
protected:
void tonemap();
};
class CV_EXPORTS_W TonemapDrago : public Tonemap
{
public:
TonemapDrago(float gamma = 2.2f, float bias = 0.85f);
AlgorithmInfo* info() const;
protected:
float bias;
void tonemap();
};
class CV_EXPORTS_W TonemapDurand : public Tonemap
{
public:
TonemapDurand(float gamma = 2.2f, float contrast = 4.0f, float sigma_color = 2.0f, float sigma_space = 2.0f);
AlgorithmInfo* info() const;
protected:
float contrast;
float sigma_color;
float sigma_space;
void tonemap();
};
class CV_EXPORTS_W TonemapReinhardDevlin : public Tonemap
{
public:
TonemapReinhardDevlin(float gamma = 2.2f, float intensity = 0.0f, float color_adapt = 0.0f, float light_adapt = 1.0f);
AlgorithmInfo* info() const;
protected:
float intensity;
float color_adapt;
float light_adapt;
void tonemap();
};
} // cv
#endif

@ -161,7 +161,6 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O
res_ptr[channel] = exp(sum[channel] / weight_sum);
}
}
tonemap(result, result, 0);
}
void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, float wc, float ws, float we)

@ -47,20 +47,58 @@
namespace cv
{
static float getParam(const std::vector<float>& params, size_t i, float defval)
Tonemap::Tonemap(float gamma) : gamma(gamma)
{
if(params.size() > i) {
return params[i];
} else {
return defval;
}
}
static void DragoMap(Mat& src_img, Mat &dst_img, const std::vector<float>& params)
Tonemap::~Tonemap()
{
}
void Tonemap::process(InputArray src, OutputArray dst)
{
Mat srcMat = src.getMat();
CV_Assert(!srcMat.empty());
dst.create(srcMat.size(), CV_32FC3);
img = dst.getMat();
srcMat.copyTo(img);
linearMap();
tonemap();
gammaCorrection();
}
void Tonemap::linearMap()
{
double min, max;
minMaxLoc(img, &min, &max);
if(max - min > DBL_EPSILON) {
img = (img - min) / (max - min);
}
}
void Tonemap::gammaCorrection()
{
pow(img, 1.0f / gamma, img);
}
void TonemapLinear::tonemap()
{
}
TonemapLinear::TonemapLinear(float gamma) : Tonemap(gamma)
{
}
TonemapDrago::TonemapDrago(float gamma, float bias) :
Tonemap(gamma),
bias(bias)
{
}
void TonemapDrago::tonemap()
{
float bias_value = getParam(params, 1, 0.85f);
Mat gray_img;
cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
log(gray_img, log_img);
float mean = expf(static_cast<float>(sum(log_img)[0]) / log_img.total());
@ -73,7 +111,7 @@ static void DragoMap(Mat& src_img, Mat &dst_img, const std::vector<float>& param
Mat map;
log(gray_img + 1.0f, map);
Mat div;
pow(gray_img / (float)max, logf(bias_value) / logf(0.5f), div);
pow(gray_img / (float)max, logf(bias) / logf(0.5f), div);
log(2.0f + 8.0f * div, div);
map = map.mul(1.0f / div);
map = map.mul(1.0f / gray_img);
@ -81,22 +119,61 @@ static void DragoMap(Mat& src_img, Mat &dst_img, const std::vector<float>& param
gray_img.release();
std::vector<Mat> channels(3);
split(src_img, channels);
split(img, channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(map);
}
map.release();
merge(channels, dst_img);
merge(channels, img);
linearMap();
}
static void ReinhardDevlinMap(Mat& src_img, Mat &dst_img, const std::vector<float>& params)
TonemapDurand::TonemapDurand(float gamma, float contrast, float sigma_color, float sigma_space) :
Tonemap(gamma),
contrast(contrast),
sigma_color(sigma_color),
sigma_space(sigma_space)
{
float intensity = getParam(params, 1, 0.0f);
float color_adapt = getParam(params, 2, 0.0f);
float light_adapt = getParam(params, 3, 1.0f);
}
Mat gray_img;
cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
void TonemapDurand::tonemap()
{
Mat gray_img;
cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
log(gray_img, log_img);
Mat map_img;
bilateralFilter(log_img, map_img, -1, sigma_color, sigma_space);
double min, max;
minMaxLoc(map_img, &min, &max);
float scale = contrast / (float)(max - min);
exp(map_img * (scale - 1.0f) + log_img, map_img);
log_img.release();
map_img = map_img.mul(1.0f / gray_img);
gray_img.release();
std::vector<Mat> channels(3);
split(img, channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(map_img);
}
merge(channels, img);
}
TonemapReinhardDevlin::TonemapReinhardDevlin(float gamma, float intensity, float color_adapt, float light_adapt) :
Tonemap(gamma),
intensity(intensity),
color_adapt(color_adapt),
light_adapt(light_adapt)
{
}
void TonemapReinhardDevlin::tonemap()
{
Mat gray_img;
cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
log(gray_img, log_img);
@ -108,11 +185,11 @@ static void ReinhardDevlinMap(Mat& src_img, Mat &dst_img, const std::vector<floa
double key = (float)((log_max - log_mean) / (log_max - log_min));
float map_key = 0.3f + 0.7f * pow((float)key, 1.4f);
intensity = exp(-intensity);
Scalar chan_mean = mean(src_img);
Scalar chan_mean = mean(img);
float gray_mean = (float)mean(gray_img)[0];
std::vector<Mat> channels(3);
split(src_img, channels);
split(img, channels);
for(int i = 0; i < 3; i++) {
float global = color_adapt * (float)chan_mean[i] + (1.0f - color_adapt) * gray_mean;
@ -122,65 +199,31 @@ static void ReinhardDevlinMap(Mat& src_img, Mat &dst_img, const std::vector<floa
channels[i] = channels[i].mul(1.0f / (adapt + channels[i]));
}
gray_img.release();
merge(channels, dst_img);
merge(channels, img);
linearMap();
}
static void DurandMap(Mat& src_img, Mat& dst_img, const std::vector<float>& params)
Ptr<Tonemap> Tonemap::create(const String& TonemapType)
{
float contrast = getParam(params, 1, 4.0f);
float sigma_color = getParam(params, 2, 2.0f);
float sigma_space = getParam(params, 3, 2.0f);
Mat gray_img;
cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
log(gray_img, log_img);
Mat map_img;
bilateralFilter(log_img, map_img, -1, sigma_color, sigma_space);
double min, max;
minMaxLoc(map_img, &min, &max);
float scale = contrast / (float)(max - min);
exp(map_img * (scale - 1.0f) + log_img, map_img);
log_img.release();
map_img = map_img.mul(1.0f / gray_img);
gray_img.release();
std::vector<Mat> channels(3);
split(src_img, channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(map_img);
}
merge(channels, dst_img);
return Algorithm::create<Tonemap>("Tonemap." + TonemapType);
}
void tonemap(InputArray _src, OutputArray _dst, int algorithm,
const std::vector<float>& params)
{
typedef void (*tonemap_func)(Mat&, Mat&, const std::vector<float>&);
tonemap_func functions[TONEMAP_COUNT] = {
NULL, DragoMap, ReinhardDevlinMap, DurandMap};
CV_INIT_ALGORITHM(TonemapLinear, "Tonemap.Linear",
obj.info()->addParam(obj, "gamma", obj.gamma));
Mat src = _src.getMat();
CV_Assert(!src.empty());
CV_Assert(0 <= algorithm && algorithm < TONEMAP_COUNT);
_dst.create(src.size(), CV_32FC3);
Mat dst = _dst.getMat();
src.copyTo(dst);
CV_INIT_ALGORITHM(TonemapDrago, "Tonemap.Drago",
obj.info()->addParam(obj, "gamma", obj.gamma);
obj.info()->addParam(obj, "bias", obj.bias));
double min, max;
minMaxLoc(dst, &min, &max);
if(max - min < DBL_EPSILON) {
return;
}
dst = (dst - min) / (max - min);
if(functions[algorithm]) {
functions[algorithm](dst, dst, params);
}
minMaxLoc(dst, &min, &max);
dst = (dst - min) / (max - min);
float gamma = getParam(params, 0, 1.0f);
pow(dst, 1.0f / gamma, dst);
}
CV_INIT_ALGORITHM(TonemapDurand, "Tonemap.Durand",
obj.info()->addParam(obj, "gamma", obj.gamma);
obj.info()->addParam(obj, "contrast", obj.contrast);
obj.info()->addParam(obj, "sigma_color", obj.sigma_color);
obj.info()->addParam(obj, "sigma_space", obj.sigma_space));
CV_INIT_ALGORITHM(TonemapReinhardDevlin, "Tonemap.ReinhardDevlin",
obj.info()->addParam(obj, "gamma", obj.gamma);
obj.info()->addParam(obj, "intensity", obj.intensity);
obj.info()->addParam(obj, "color_adapt", obj.color_adapt);
obj.info()->addParam(obj, "light_adapt", obj.light_adapt));
}

@ -70,6 +70,7 @@ TEST(Photo_HdrFusion, regression)
vector<Mat> images;
ifstream list_file(fuse_path + "list.txt");
ASSERT_TRUE(list_file.is_open());
string name;
float val;
while(list_file >> name >> val) {
@ -110,48 +111,48 @@ TEST(Photo_HdrFusion, regression)
TEST(Photo_Tonemap, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
vector<Mat>images(TONEMAP_COUNT);
for(int i = 0; i < TONEMAP_COUNT; i++) {
stringstream stream;
stream << "tonemap" << i << ".png";
string file_name;
stream >> file_name;
loadImage(folder + "tonemap/" + file_name ,images[i]);
}
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
Mat img;
loadImage(folder + "rle.hdr", img);
vector<float> param(1);
param[0] = 2.2f;
loadImage(test_path + "../rle.hdr", img);
ifstream list_file(test_path + "list.txt");
ASSERT_TRUE(list_file.is_open());
for(int i = 0; i < TONEMAP_COUNT; i++) {
string name;
while(list_file >> name) {
Mat expected = imread(test_path + name + ".png");
ASSERT_FALSE(img.empty()) << "Could not load input image " << test_path + name + ".png";
Ptr<Tonemap> mapper = Tonemap::create(name);
ASSERT_FALSE(mapper.empty()) << "Could not find mapper " << name;
Mat result;
tonemap(img, result, i, param);
mapper->process(img, result);
result.convertTo(result, CV_8UC3, 255);
checkEqual(images[i], result, 0);
checkEqual(expected, result, 0);
}
list_file.close();
}
TEST(Photo_Align, regression)
{
const int TESTS_COUNT = 100;
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
string file_name = folder + "exp_fusion.png";
string file_name = folder + "lena.png";
Mat img = imread(file_name);
ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name;
cvtColor(img, img, COLOR_RGB2GRAY);
int max_bits = 6;
int max_shift = 64;
srand(time(0));
int max_bits = 5;
int max_shift = 32;
srand(static_cast<unsigned>(time(0)));
int errors = 0;
for(int i = 0; i < TESTS_COUNT; i++) {
Point shift(rand() % max_shift, rand() % max_shift);
Mat res;
shiftMat(img, shift, res);
Point calc = getExpShift(img, res, max_bits);
ASSERT_TRUE(calc == -shift);
errors += (calc != -shift);
}
ASSERT_TRUE(errors < 5);
}

Loading…
Cancel
Save