changed tests for rotation/scale invariance of descriptors

pull/2/head
Maria Dimashova 13 years ago
parent ad7a6ec41f
commit 2556bb04f0
  1. 509
      modules/features2d/test/test_rotation_and_scale_invariance.cpp
  2. 476
      modules/nonfree/test/test_rotation_and_scale_invariance.cpp

@ -53,7 +53,7 @@ const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bi
static
Mat generateHomography(float angle)
{
// angle - rotation around Oz in degrees
// angle - rotation around Oz in degrees
float angleRadian = angle * CV_PI / 180.;
Mat H = Mat::eye(3, 3, CV_32FC1);
H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
@ -66,7 +66,7 @@ Mat generateHomography(float angle)
static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{
// angle - rotation around Oz in degrees
// angle - rotation around Oz in degrees
float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows));
Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
LUShift.at<float>(0,2) = -srcImage.cols/2;
@ -85,6 +85,32 @@ Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
return H;
}
void rotateKeyPoints(const vector<KeyPoint>& src, const Mat& H, float angle, vector<KeyPoint>& dst)
{
// suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
vector<Point2f> srcCenters, dstCenters;
KeyPoint::convert(src, srcCenters);
perspectiveTransform(srcCenters, dstCenters, H);
dst = src;
for(size_t i = 0; i < dst.size(); i++)
{
dst[i].pt = dstCenters[i];
float dstAngle = src[i].angle + angle;
if(dstAngle >= 360.f)
dstAngle -= 360.f;
dst[i].angle = dstAngle;
}
}
void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
{
dst.resize(src.size());
for(size_t i = 0; i < src.size(); i++)
dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale);
}
static
float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
@ -119,45 +145,45 @@ float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r
return intersectArea / unionArea;
}
static
static
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
const vector<KeyPoint>& keypoints1,
vector<DMatch>& matches)
const vector<KeyPoint>& keypoints1,
vector<DMatch>& matches)
{
vector<Point2f> points0;
vector<Point2f> points0;
KeyPoint::convert(keypoints0, points0);
Mat points0t;
if(H.empty())
points0t = Mat(points0);
else
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
vector<uchar> usedMask(keypoints1.size(), 0);
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
{
int nearestPointIndex = -1;
if(H.empty())
points0t = Mat(points0);
else
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
vector<uchar> usedMask(keypoints1.size(), 0);
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
{
int nearestPointIndex = -1;
float maxIntersectRatio = 0.f;
const float r0 = 0.5f * keypoints0[i0].size;
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
{
if(nearestPointIndex >= 0 && usedMask[i1])
continue;
if(nearestPointIndex >= 0 && usedMask[i1])
continue;
float r1 = 0.5f * keypoints1[i1].size;
float r1 = 0.5f * keypoints1[i1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
keypoints1[i1].pt, r1);
if(intersectRatio > maxIntersectRatio)
{
maxIntersectRatio = intersectRatio;
nearestPointIndex = i1;
maxIntersectRatio = intersectRatio;
nearestPointIndex = i1;
}
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
if(nearestPointIndex >= 0)
usedMask[nearestPointIndex] = 1;
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
if(nearestPointIndex >= 0)
usedMask[nearestPointIndex] = 1;
}
}
class DetectorRotationInvarianceTest : public cvtest::BaseTest
@ -166,9 +192,9 @@ public:
DetectorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minKeyPointMatchesRatio,
float _minAngleInliersRatio) :
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minAngleInliersRatio(_minAngleInliersRatio)
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minAngleInliersRatio(_minAngleInliersRatio)
{
CV_Assert(!featureDetector.empty());
}
@ -177,7 +203,7 @@ protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
// Read test data
Mat image0 = imread(imageFilename), image1, mask1;
@ -191,7 +217,7 @@ protected:
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep)
@ -201,23 +227,23 @@ protected:
vector<KeyPoint> keypoints1;
featureDetector->detect(image1, keypoints1, mask1);
vector<DMatch> matches;
matchKeyPoints(keypoints0, H, keypoints1, matches);
vector<DMatch> matches;
matchKeyPoints(keypoints0, H, keypoints1, matches);
int angleInliersCount = 0;
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < matches.size(); m++)
{
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
// Check does this inlier have consistent angles
// Check does this inlier have consistent angles
const float maxAngleDiff = 15.f; // grad
float angle0 = keypoints0[matches[m].queryIdx].angle;
float angle0 = keypoints0[matches[m].queryIdx].angle;
float angle1 = keypoints1[matches[m].trainIdx].angle;
if(angle0 == -1 || angle1 == -1)
CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
@ -230,13 +256,13 @@ protected:
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
CV_Assert(angleDiff >= 0.f);
CV_Assert(angleDiff >= 0.f);
bool isAngleCorrect = angleDiff < maxAngleDiff;
if(isAngleCorrect)
angleInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
@ -245,9 +271,9 @@ protected:
return;
}
if(keyPointMatchesCount)
if(keyPointMatchesCount)
{
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
if(angleInliersRatio < minAngleInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
@ -258,7 +284,7 @@ protected:
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
<< " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
@ -269,29 +295,20 @@ protected:
float minAngleInliersRatio;
};
void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
{
dst.resize(src.size());
for(size_t i = 0; i < src.size(); i++)
dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale);
}
class DescriptorRotationInvarianceTest : public cvtest::BaseTest
{
public:
DescriptorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minKeyPointMatchesRatio,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minDescInliersRatio(_minDescInliersRatio)
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
CV_Assert(!descriptorExtractor.empty());
}
protected:
@ -310,80 +327,59 @@ protected:
}
vector<KeyPoint> keypoints0;
Mat descriptors0;
Mat descriptors0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
descriptorExtractor->compute(image0, keypoints0, descriptors0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
descriptorExtractor->compute(image0, keypoints0, descriptors0);
BFMatcher bfmatcher(normType);
BFMatcher bfmatcher(normType);
const float minIntersectRatio = 0.5f;
const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep)
{
Mat H = rotateImage(image0, angle, image1, mask1);
vector<KeyPoint> keypoints1;
Mat descriptors1;
featureDetector->detect(image1, keypoints1, mask1);
descriptorExtractor->compute(image1, keypoints1, descriptors1);
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
vector<DMatch> keyPointMatches;
matchKeyPoints(keypoints0, H, keypoints1, keyPointMatches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < keyPointMatches.size(); m++)
{
if(keyPointMatches[m].distance >= minIntersectRatio)
keyPointMatchesCount++;
}
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
int queryIdx = descMatches[m].queryIdx;
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
descInliersCount++;
}
rotateKeyPoints(keypoints0, H, angle, keypoints1);
Mat descriptors1;
descriptorExtractor->compute(image1, keypoints1, descriptors1);
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
if(keyPointMatchesCount)
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
if(descInliersRatio < minDescInliersRatio)
const KeyPoint& transformed_p0 = keypoints1[descMatches[m].queryIdx];
const KeyPoint& p1 = keypoints1[descMatches[m].trainIdx];
if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
p1.pt, 0.5f * p1.size) >= minIntersectRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
descInliersCount++;
}
}
float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
if(descInliersRatio < minDescInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
float minKeyPointMatchesRatio;
float minDescInliersRatio;
float minDescInliersRatio;
};
class DetectorScaleInvarianceTest : public cvtest::BaseTest
@ -392,9 +388,9 @@ public:
DetectorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minKeyPointMatchesRatio,
float _minScaleInliersRatio) :
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minScaleInliersRatio(_minScaleInliersRatio)
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minScaleInliersRatio(_minScaleInliersRatio)
{
CV_Assert(!featureDetector.empty());
}
@ -403,7 +399,7 @@ protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
// Read test data
Mat image0 = imread(imageFilename);
@ -417,58 +413,59 @@ protected:
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
for(int scale = 2; scale <= 4; scale++)
for(float scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
{
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
float scale = 1.f + scaleIdx * 0.5f;
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
featureDetector->detect(image1, keypoints1);
if(keypoints1.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
if(keypoints1.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
if(keypoints1.size() > keypoints0.size())
{
if(keypoints1.size() > keypoints0.size())
{
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
"It gives more points count in an image of the smaller size.\n"
"original size (%d, %d), keypoints count = %d\n"
"reduced size (%d, %d), keypoints count = %d\n",
image0.cols, image0.rows, keypoints0.size(),
image1.cols, image1.rows, keypoints1.size());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
"It gives more points count in an image of the smaller size.\n"
"original size (%d, %d), keypoints count = %d\n"
"reduced size (%d, %d), keypoints count = %d\n",
image0.cols, image0.rows, keypoints0.size(),
image1.cols, image1.rows, keypoints1.size());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
vector<DMatch> matches;
// image1 is query image (it's reduced image0)
// image0 is train image
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
vector<DMatch> matches;
// image1 is query image (it's reduced image0)
// image0 is train image
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
int scaleInliersCount = 0;
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
int scaleInliersCount = 0;
for(size_t m = 0; m < matches.size(); m++)
for(size_t m = 0; m < matches.size(); m++)
{
if(matches[m].distance < minIntersectRatio)
continue;
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
keyPointMatchesCount++;
// Check does this inlier have consistent sizes
// Check does this inlier have consistent sizes
const float maxSizeDiff = 0.8;//0.9f; // grad
float size0 = keypoints0[matches[m].trainIdx].size;
float size0 = keypoints0[matches[m].trainIdx].size;
float size1 = osiKeypoints1[matches[m].queryIdx].size;
CV_Assert(size0 > 0 && size1 > 0);
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
CV_Assert(size0 > 0 && size1 > 0);
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
scaleInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
@ -477,9 +474,9 @@ protected:
return;
}
if(keyPointMatchesCount)
if(keyPointMatchesCount)
{
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
if(scaleInliersRatio < minScaleInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n",
@ -490,21 +487,8 @@ protected:
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
<< " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
#endif
/*vector<DMatch> filteredMatches;
for(size_t i = 0; i < matches.size(); i++)
{
if(matches[i].distance >= minIntersectRatio)
filteredMatches.push_back(matches[i]);
}
Mat out;
namedWindow("out", CV_WINDOW_NORMAL);
drawMatches(image1, keypoints1, image0, keypoints0, filteredMatches, out,
Scalar::all(-1), Scalar(-1), vector<char>(), DrawMatchesFlags::DEFAULT + DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
imshow("out", out);
waitKey();*/
}
ts->set_failed_test_info( cvtest::TS::OK );
}
@ -518,25 +502,23 @@ class DescriptorScaleInvarianceTest : public cvtest::BaseTest
{
public:
DescriptorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minKeyPointMatchesRatio,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minDescInliersRatio(_minDescInliersRatio)
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
CV_Assert(!descriptorExtractor.empty());
}
protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
// Read test data
Mat image0 = imread(imageFilename);
@ -549,145 +531,126 @@ protected:
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
Mat descriptors0;
descriptorExtractor->compute(image0, keypoints0, descriptors0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
Mat descriptors0;
descriptorExtractor->compute(image0, keypoints0, descriptors0);
BFMatcher bfmatcher(normType);
for(int scale = 2; scale <= 4; scale++)
BFMatcher bfmatcher(normType);
for(float scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
{
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
float scale = 1.f + scaleIdx * 0.5f;
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
featureDetector->detect(image1, keypoints1);
if(keypoints1.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
if(keypoints1.size() > keypoints0.size() )
{
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
"It gives more points count in an image of the smaller size.\n"
"original size (%d, %d), keypoints count = %d\n"
"reduced size (%d, %d), keypoints count = %d\n",
image0.cols, image0.rows, keypoints0.size(),
image1.cols, image1.rows, keypoints1.size());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
Mat descriptors1;
descriptorExtractor->compute(image1, keypoints1, descriptors1);
vector<DMatch> keyPointMatches, descMatches;
// image1 is query image (it's reduced image0)
// image0 is train image
bfmatcher.match(descriptors1, descriptors0, descMatches);
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, keyPointMatches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < keyPointMatches.size(); m++)
{
if(keyPointMatches[m].distance >= minIntersectRatio)
keyPointMatchesCount++;
}
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
int queryIdx = descMatches[m].queryIdx;
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
descInliersCount++;
}
vector<KeyPoint> keypoints1;
scaleKeyPoints(keypoints0, keypoints1, 1./scale);
Mat descriptors1;
descriptorExtractor->compute(image1, keypoints1, descriptors1);
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
if(keyPointMatchesCount)
const float minIntersectRatio = 0.5f;
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
if(descInliersRatio < minDescInliersRatio)
const KeyPoint& transformed_p0 = keypoints0[descMatches[m].queryIdx];
const KeyPoint& p1 = keypoints0[descMatches[m].trainIdx];
if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
p1.pt, 0.5f * p1.size) >= minIntersectRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
descInliersCount++;
}
}
float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
if(descInliersRatio < minDescInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
float minKeyPointMatchesRatio;
float minDescInliersRatio;
};
// Tests registration
// Detector's rotation invariance check
/*
* Detector's rotation invariance check
*/
TEST(Features2d_RotationInvariance_Detector_ORB, regression)
{
DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
0.45f,
0.75f);
0.47f,
0.77f);
test.safe_run();
}
// Descriptors's rotation invariance check
/*
* Descriptors's rotation invariance check
*/
TEST(Features2d_RotationInvariance_Descriptor_ORB, regression)
{
DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
NORM_HAMMING,
0.45f,
0.53f);
0.99f);
test.safe_run();
}
// TODO: Uncomment test for FREAK when it will work; add test for scale invariance for FREAK
//TEST(Features2d_RotationInvariance_Descriptor_FREAK, regression)
//{
// DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
// NORM_HAMMING(?),
// 0.45f,
// 0.?f);
// DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
// NORM_HAMMING,
// 0.f);
// test.safe_run();
//}
/* TODO: Why ORB has bad scale invariance in this tests?
// Detector's scale invariance check
TEST(Features2d_ScaleInvariance_Detector_ORB, regression)
{
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
0.13f,
0.0f);
test.safe_run();
}
/*
* Detector's scale invariance check
*/
// Descriptor's scale invariance check
TEST(Features2d_ScaleInvariance_Descriptor_ORB, regression)
{
DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
NORM_HAMMING,
0.13f,
0.36f);
test.safe_run();
}*/
//TEST(Features2d_ScaleInvariance_Detector_ORB, regression)
//{
// DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
// 0.22f,
// 0.83f);
// test.safe_run();
//}
/*
* Descriptor's scale invariance check
*/
//TEST(Features2d_ScaleInvariance_Descriptor_ORB, regression)
//{
// DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
// Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
// NORM_HAMMING,
// 0.01f);
// test.safe_run();
//}
//TEST(Features2d_ScaleInvariance_Descriptor_FREAK, regression)
//{
// DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
// NORM_HAMMING,
// 0.01f);
// test.safe_run();
//}

@ -53,7 +53,7 @@ const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bi
static
Mat generateHomography(float angle)
{
// angle - rotation around Oz in degrees
// angle - rotation around Oz in degrees
float angleRadian = angle * CV_PI / 180.;
Mat H = Mat::eye(3, 3, CV_32FC1);
H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
@ -66,7 +66,7 @@ Mat generateHomography(float angle)
static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{
// angle - rotation around Oz in degrees
// angle - rotation around Oz in degrees
float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows));
Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
LUShift.at<float>(0,2) = -srcImage.cols/2;
@ -85,6 +85,32 @@ Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
return H;
}
void rotateKeyPoints(const vector<KeyPoint>& src, const Mat& H, float angle, vector<KeyPoint>& dst)
{
// suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
vector<Point2f> srcCenters, dstCenters;
KeyPoint::convert(src, srcCenters);
perspectiveTransform(srcCenters, dstCenters, H);
dst = src;
for(size_t i = 0; i < dst.size(); i++)
{
dst[i].pt = dstCenters[i];
float dstAngle = src[i].angle + angle;
if(dstAngle >= 360.f)
dstAngle -= 360.f;
dst[i].angle = dstAngle;
}
}
void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
{
dst.resize(src.size());
for(size_t i = 0; i < src.size(); i++)
dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale);
}
static
float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
@ -119,45 +145,45 @@ float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r
return intersectArea / unionArea;
}
static
static
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
const vector<KeyPoint>& keypoints1,
vector<DMatch>& matches)
const vector<KeyPoint>& keypoints1,
vector<DMatch>& matches)
{
vector<Point2f> points0;
vector<Point2f> points0;
KeyPoint::convert(keypoints0, points0);
Mat points0t;
if(H.empty())
points0t = Mat(points0);
else
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
vector<uchar> usedMask(keypoints1.size(), 0);
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
{
int nearestPointIndex = -1;
if(H.empty())
points0t = Mat(points0);
else
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
vector<uchar> usedMask(keypoints1.size(), 0);
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
{
int nearestPointIndex = -1;
float maxIntersectRatio = 0.f;
const float r0 = 0.5f * keypoints0[i0].size;
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
{
if(nearestPointIndex >= 0 && usedMask[i1])
continue;
if(nearestPointIndex >= 0 && usedMask[i1])
continue;
float r1 = 0.5f * keypoints1[i1].size;
float r1 = 0.5f * keypoints1[i1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
keypoints1[i1].pt, r1);
if(intersectRatio > maxIntersectRatio)
{
maxIntersectRatio = intersectRatio;
nearestPointIndex = i1;
maxIntersectRatio = intersectRatio;
nearestPointIndex = i1;
}
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
if(nearestPointIndex >= 0)
usedMask[nearestPointIndex] = 1;
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
if(nearestPointIndex >= 0)
usedMask[nearestPointIndex] = 1;
}
}
class DetectorRotationInvarianceTest : public cvtest::BaseTest
@ -166,9 +192,9 @@ public:
DetectorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minKeyPointMatchesRatio,
float _minAngleInliersRatio) :
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minAngleInliersRatio(_minAngleInliersRatio)
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minAngleInliersRatio(_minAngleInliersRatio)
{
CV_Assert(!featureDetector.empty());
}
@ -177,7 +203,7 @@ protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
// Read test data
Mat image0 = imread(imageFilename), image1, mask1;
@ -191,7 +217,7 @@ protected:
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep)
@ -201,23 +227,23 @@ protected:
vector<KeyPoint> keypoints1;
featureDetector->detect(image1, keypoints1, mask1);
vector<DMatch> matches;
matchKeyPoints(keypoints0, H, keypoints1, matches);
vector<DMatch> matches;
matchKeyPoints(keypoints0, H, keypoints1, matches);
int angleInliersCount = 0;
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < matches.size(); m++)
{
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
// Check does this inlier have consistent angles
// Check does this inlier have consistent angles
const float maxAngleDiff = 15.f; // grad
float angle0 = keypoints0[matches[m].queryIdx].angle;
float angle0 = keypoints0[matches[m].queryIdx].angle;
float angle1 = keypoints1[matches[m].trainIdx].angle;
if(angle0 == -1 || angle1 == -1)
CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
@ -230,13 +256,13 @@ protected:
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
CV_Assert(angleDiff >= 0.f);
CV_Assert(angleDiff >= 0.f);
bool isAngleCorrect = angleDiff < maxAngleDiff;
if(isAngleCorrect)
angleInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
@ -245,9 +271,9 @@ protected:
return;
}
if(keyPointMatchesCount)
if(keyPointMatchesCount)
{
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
if(angleInliersRatio < minAngleInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
@ -258,7 +284,7 @@ protected:
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
<< " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
@ -269,29 +295,20 @@ protected:
float minAngleInliersRatio;
};
void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
{
dst.resize(src.size());
for(size_t i = 0; i < src.size(); i++)
dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale);
}
class DescriptorRotationInvarianceTest : public cvtest::BaseTest
{
public:
DescriptorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minKeyPointMatchesRatio,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minDescInliersRatio(_minDescInliersRatio)
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
CV_Assert(!descriptorExtractor.empty());
}
protected:
@ -310,80 +327,59 @@ protected:
}
vector<KeyPoint> keypoints0;
Mat descriptors0;
Mat descriptors0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
descriptorExtractor->compute(image0, keypoints0, descriptors0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
descriptorExtractor->compute(image0, keypoints0, descriptors0);
BFMatcher bfmatcher(normType);
BFMatcher bfmatcher(normType);
const float minIntersectRatio = 0.5f;
const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep)
{
Mat H = rotateImage(image0, angle, image1, mask1);
vector<KeyPoint> keypoints1;
Mat descriptors1;
featureDetector->detect(image1, keypoints1, mask1);
descriptorExtractor->compute(image1, keypoints1, descriptors1);
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
vector<DMatch> keyPointMatches;
matchKeyPoints(keypoints0, H, keypoints1, keyPointMatches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < keyPointMatches.size(); m++)
{
if(keyPointMatches[m].distance >= minIntersectRatio)
keyPointMatchesCount++;
}
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
int queryIdx = descMatches[m].queryIdx;
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
descInliersCount++;
}
rotateKeyPoints(keypoints0, H, angle, keypoints1);
Mat descriptors1;
descriptorExtractor->compute(image1, keypoints1, descriptors1);
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
if(keyPointMatchesCount)
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
if(descInliersRatio < minDescInliersRatio)
const KeyPoint& transformed_p0 = keypoints1[descMatches[m].queryIdx];
const KeyPoint& p1 = keypoints1[descMatches[m].trainIdx];
if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
p1.pt, 0.5f * p1.size) >= minIntersectRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
descInliersCount++;
}
}
float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
if(descInliersRatio < minDescInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
float minKeyPointMatchesRatio;
float minDescInliersRatio;
float minDescInliersRatio;
};
class DetectorScaleInvarianceTest : public cvtest::BaseTest
@ -392,9 +388,9 @@ public:
DetectorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minKeyPointMatchesRatio,
float _minScaleInliersRatio) :
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minScaleInliersRatio(_minScaleInliersRatio)
featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minScaleInliersRatio(_minScaleInliersRatio)
{
CV_Assert(!featureDetector.empty());
}
@ -403,7 +399,7 @@ protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
// Read test data
Mat image0 = imread(imageFilename);
@ -417,58 +413,59 @@ protected:
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
for(int scale = 2; scale <= 4; scale++)
for(float scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
{
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
float scale = 1.f + scaleIdx * 0.5f;
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
featureDetector->detect(image1, keypoints1);
if(keypoints1.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
if(keypoints1.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
if(keypoints1.size() > keypoints0.size())
{
if(keypoints1.size() > keypoints0.size())
{
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
"It gives more points count in an image of the smaller size.\n"
"original size (%d, %d), keypoints count = %d\n"
"reduced size (%d, %d), keypoints count = %d\n",
image0.cols, image0.rows, keypoints0.size(),
image1.cols, image1.rows, keypoints1.size());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
"It gives more points count in an image of the smaller size.\n"
"original size (%d, %d), keypoints count = %d\n"
"reduced size (%d, %d), keypoints count = %d\n",
image0.cols, image0.rows, keypoints0.size(),
image1.cols, image1.rows, keypoints1.size());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
vector<DMatch> matches;
// image1 is query image (it's reduced image0)
// image0 is train image
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
vector<DMatch> matches;
// image1 is query image (it's reduced image0)
// image0 is train image
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
int scaleInliersCount = 0;
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
int scaleInliersCount = 0;
for(size_t m = 0; m < matches.size(); m++)
for(size_t m = 0; m < matches.size(); m++)
{
if(matches[m].distance < minIntersectRatio)
continue;
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
keyPointMatchesCount++;
// Check does this inlier have consistent sizes
// Check does this inlier have consistent sizes
const float maxSizeDiff = 0.8;//0.9f; // grad
float size0 = keypoints0[matches[m].trainIdx].size;
float size0 = keypoints0[matches[m].trainIdx].size;
float size1 = osiKeypoints1[matches[m].queryIdx].size;
CV_Assert(size0 > 0 && size1 > 0);
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
CV_Assert(size0 > 0 && size1 > 0);
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
scaleInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
@ -477,9 +474,9 @@ protected:
return;
}
if(keyPointMatchesCount)
if(keyPointMatchesCount)
{
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
if(scaleInliersRatio < minScaleInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n",
@ -490,7 +487,7 @@ protected:
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
<< " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
@ -505,25 +502,23 @@ class DescriptorScaleInvarianceTest : public cvtest::BaseTest
{
public:
DescriptorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minKeyPointMatchesRatio,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minDescInliersRatio(_minDescInliersRatio)
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
CV_Assert(!descriptorExtractor.empty());
}
protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
// Read test data
Mat image0 = imread(imageFilename);
@ -536,102 +531,71 @@ protected:
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
Mat descriptors0;
descriptorExtractor->compute(image0, keypoints0, descriptors0);
if(keypoints0.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
Mat descriptors0;
descriptorExtractor->compute(image0, keypoints0, descriptors0);
BFMatcher bfmatcher(normType);
for(int scale = 2; scale <= 4; scale++)
BFMatcher bfmatcher(normType);
for(float scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
{
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
float scale = 1.f + scaleIdx * 0.5f;
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
featureDetector->detect(image1, keypoints1);
if(keypoints1.size() < 15)
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
if(keypoints1.size() > keypoints0.size() )
{
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
"It gives more points count in an image of the smaller size.\n"
"original size (%d, %d), keypoints count = %d\n"
"reduced size (%d, %d), keypoints count = %d\n",
image0.cols, image0.rows, keypoints0.size(),
image1.cols, image1.rows, keypoints1.size());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale);
Mat descriptors1;
descriptorExtractor->compute(image1, keypoints1, descriptors1);
vector<DMatch> keyPointMatches, descMatches;
// image1 is query image (it's reduced image0)
// image0 is train image
bfmatcher.match(descriptors1, descriptors0, descMatches);
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, keyPointMatches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < keyPointMatches.size(); m++)
{
if(keyPointMatches[m].distance >= minIntersectRatio)
keyPointMatchesCount++;
}
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
int queryIdx = descMatches[m].queryIdx;
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
descInliersCount++;
}
vector<KeyPoint> keypoints1;
scaleKeyPoints(keypoints0, keypoints1, 1./scale);
Mat descriptors1;
descriptorExtractor->compute(image1, keypoints1, descriptors1);
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
if(keyPointMatchesCount)
const float minIntersectRatio = 0.5f;
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
if(descInliersRatio < minDescInliersRatio)
const KeyPoint& transformed_p0 = keypoints0[descMatches[m].queryIdx];
const KeyPoint& p1 = keypoints0[descMatches[m].trainIdx];
if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
p1.pt, 0.5f * p1.size) >= minIntersectRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
descInliersCount++;
}
}
float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
if(descInliersRatio < minDescInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
float minKeyPointMatchesRatio;
float minDescInliersRatio;
};
// Tests registration
// Detector's rotation invariance check
/*
* Detector's rotation invariance check
*/
TEST(Features2d_RotationInvariance_Detector_SURF, regression)
{
DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
0.44f,
0.45f,
0.76f);
test.safe_run();
}
@ -639,19 +603,20 @@ TEST(Features2d_RotationInvariance_Detector_SURF, regression)
TEST(Features2d_RotationInvariance_Detector_SIFT, regression)
{
DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
0.64f,
0.74f);
0.75f,
0.76f);
test.safe_run();
}
// Descriptors's rotation invariance check
/*
* Descriptors's rotation invariance check
*/
TEST(Features2d_RotationInvariance_Descriptor_SURF, regression)
{
DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
Algorithm::create<DescriptorExtractor>("Feature2D.SURF"),
NORM_L1,
0.44f,
0.63f);
0.83f);
test.safe_run();
}
@ -660,45 +625,46 @@ TEST(Features2d_RotationInvariance_Descriptor_SIFT, regression)
DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
Algorithm::create<DescriptorExtractor>("Feature2D.SIFT"),
NORM_L1,
0.64f,
0.72f);
0.98f);
test.safe_run();
}
// Detector's scale invariance check
/*
* Detector's scale invariance check
*/
TEST(Features2d_ScaleInvariance_Detector_SURF, regression)
{
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
0.62f,
0.68f);
0.64f,
0.84f);
test.safe_run();
}
TEST(Features2d_ScaleInvariance_Detector_SIFT, regression)
{
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
0.59f,
0.94f);
0.69f,
0.99f);
test.safe_run();
}
// Descriptor's scale invariance check
/*
* Descriptor's scale invariance check
*/
TEST(Features2d_ScaleInvariance_Descriptor_SURF, regression)
{
DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
Algorithm::create<DescriptorExtractor>("Feature2D.SURF"),
NORM_L1,
0.62f,
0.68f);
0.61f);
test.safe_run();
}
TEST(Features2d_ScaleInvariance_Descriptor_SIFT, regression)
{
DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
Algorithm::create<DescriptorExtractor>("Feature2D.SIFT"),
NORM_L1,
0.59f,
0.78f);
test.safe_run();
}
//TEST(Features2d_ScaleInvariance_Descriptor_SIFT, regression)
//{
// DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
// Algorithm::create<DescriptorExtractor>("Feature2D.SIFT"),
// NORM_L1,
// 0.14f);
// test.safe_run();
//}

Loading…
Cancel
Save