Merge pull request #22122 from zihaomu:gemm_onnx_bug_fix

pull/22156/head
Alexander Alekhin 2 years ago
commit 24a66a44bf
  1. 10
      modules/dnn/src/onnx/onnx_importer.cpp
  2. 5
      modules/dnn/test/test_onnx_importer.cpp

@ -2080,15 +2080,17 @@ void ONNXImporter::parseBatchNormalization(LayerParams& layerParams, const openc
addLayer(layerParams, node_proto);
}
// A * B + C = Y, we require that the dimension of A is [m, k], and the dimension of B is [n, k].
// And the dim of output Y is [m, n]
void ONNXImporter::parseGemm(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "InnerProduct";
Mat weights = getBlob(node_proto, 1);
int ind_num_out = 0;
if (layerParams.has("transB") && !layerParams.get<int>("transB")) {
if (!layerParams.get<int>("transB", 0))
{
transpose(weights, weights);
ind_num_out = 1;
}
layerParams.blobs.push_back(weights);
@ -2110,7 +2112,7 @@ void ONNXImporter::parseGemm(LayerParams& layerParams, const opencv_onnx::NodePr
addLayer(constParams, proto);
}
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]);
layerParams.set("num_output", layerParams.blobs[0].size[0]);
layerParams.set("bias_term", node_proto.input_size() == 3);
addLayer(layerParams, node_proto);
}

@ -1746,6 +1746,11 @@ TEST_P(Test_ONNX_layers, DivConst)
testONNXModels("div_const");
}
TEST_P(Test_ONNX_layers, Gemm)
{
testONNXModels("gemm_no_transB");
testONNXModels("gemm_transB_0");
}
TEST_P(Test_ONNX_layers, Quantized_Convolution)
{

Loading…
Cancel
Save