|
|
|
@ -27,35 +27,38 @@ |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace std; |
|
|
|
|
|
|
|
|
|
static Mat toGrayscale(InputArray _src) { |
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
// only allow one channel
|
|
|
|
|
if(src.channels() != 1) { |
|
|
|
|
CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported"); |
|
|
|
|
} |
|
|
|
|
// create and return normalized image
|
|
|
|
|
Mat dst; |
|
|
|
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); |
|
|
|
|
return dst; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, std::map<int, string>& labelsInfo, char separator = ';') { |
|
|
|
|
std::ifstream file(filename.c_str(), ifstream::in); |
|
|
|
|
if (!file) { |
|
|
|
|
string error_message = "No valid input file was given, please check the given filename."; |
|
|
|
|
CV_Error(CV_StsBadArg, error_message); |
|
|
|
|
} |
|
|
|
|
ifstream csv(filename.c_str()); |
|
|
|
|
if (!csv) CV_Error(CV_StsBadArg, "No valid input file was given, please check the given filename."); |
|
|
|
|
string line, path, classlabel, info; |
|
|
|
|
while (getline(file, line)) { |
|
|
|
|
while (getline(csv, line)) { |
|
|
|
|
stringstream liness(line); |
|
|
|
|
path.clear(); classlabel.clear(); info.clear(); |
|
|
|
|
getline(liness, path, separator); |
|
|
|
|
getline(liness, classlabel, separator); |
|
|
|
|
getline(liness, info, separator); |
|
|
|
|
if(!path.empty() && !classlabel.empty()) { |
|
|
|
|
images.push_back(imread(path, 0)); |
|
|
|
|
labels.push_back(atoi(classlabel.c_str())); |
|
|
|
|
cout << "Processing " << path << endl; |
|
|
|
|
int label = atoi(classlabel.c_str()); |
|
|
|
|
if(!info.empty()) |
|
|
|
|
labelsInfo.insert(std::make_pair(labels.back(), info)); |
|
|
|
|
labelsInfo.insert(std::make_pair(label, info)); |
|
|
|
|
// 'path' can be file, dir or wildcard path
|
|
|
|
|
String root(path.c_str()); |
|
|
|
|
vector<String> files; |
|
|
|
|
glob(root, files, true); |
|
|
|
|
for(vector<String>::const_iterator f = files.begin(); f != files.end(); ++f) { |
|
|
|
|
cout << "\t" << *f << endl; |
|
|
|
|
Mat img = imread(*f, CV_LOAD_IMAGE_GRAYSCALE); |
|
|
|
|
static int w=-1, h=-1; |
|
|
|
|
static bool showSmallSizeWarning = true; |
|
|
|
|
if(w>0 && h>0 && (w!=img.cols || h!=img.rows)) cout << "\t* Warning: images should be of the same size!" << endl; |
|
|
|
|
if(showSmallSizeWarning && (img.cols<50 || img.rows<50)) { |
|
|
|
|
cout << "* Warning: for better results images should be not smaller than 50x50!" << endl; |
|
|
|
|
showSmallSizeWarning = false; |
|
|
|
|
} |
|
|
|
|
images.push_back(img); |
|
|
|
|
labels.push_back(label); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -63,8 +66,17 @@ static void read_csv(const string& filename, vector<Mat>& images, vector<int>& l |
|
|
|
|
int main(int argc, const char *argv[]) { |
|
|
|
|
// Check for valid command line arguments, print usage
|
|
|
|
|
// if no arguments were given.
|
|
|
|
|
if (argc != 2) { |
|
|
|
|
cout << "usage: " << argv[0] << " <csv.ext>" << endl; |
|
|
|
|
if (argc != 2 && argc != 3) { |
|
|
|
|
cout << "Usage: " << argv[0] << " <csv> [arg2]\n" |
|
|
|
|
<< "\t<csv> - path to config file in CSV format\n" |
|
|
|
|
<< "\targ2 - if the 2nd argument is provided (with any value) " |
|
|
|
|
<< "the advanced stuff is run and shown to console.\n" |
|
|
|
|
<< "The CSV config file consists of the following lines:\n" |
|
|
|
|
<< "<path>;<label>[;<comment>]\n" |
|
|
|
|
<< "\t<path> - file, dir or wildcard path\n" |
|
|
|
|
<< "\t<label> - non-negative integer person label\n" |
|
|
|
|
<< "\t<comment> - optional comment string (e.g. person name)" |
|
|
|
|
<< endl; |
|
|
|
|
exit(1); |
|
|
|
|
} |
|
|
|
|
// Get the path to your CSV.
|
|
|
|
@ -88,10 +100,6 @@ int main(int argc, const char *argv[]) { |
|
|
|
|
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; |
|
|
|
|
CV_Error(CV_StsError, error_message); |
|
|
|
|
} |
|
|
|
|
// Get the height from the first image. We'll need this
|
|
|
|
|
// later in code to reshape the images to their original
|
|
|
|
|
// size:
|
|
|
|
|
int height = images[0].rows; |
|
|
|
|
// The following lines simply get the last images from
|
|
|
|
|
// your dataset and remove it from the vector. This is
|
|
|
|
|
// done, so that the training data (which we learn the
|
|
|
|
@ -118,6 +126,9 @@ int main(int argc, const char *argv[]) { |
|
|
|
|
Ptr<FaceRecognizer> model = createEigenFaceRecognizer(); |
|
|
|
|
model->setLabelsInfo(labelsInfo); |
|
|
|
|
model->train(images, labels); |
|
|
|
|
string saveModelPath = "face-rec-model.txt"; |
|
|
|
|
cout << "Saving the trained model to " << saveModelPath << endl; |
|
|
|
|
model->save(saveModelPath); |
|
|
|
|
|
|
|
|
|
// The following line predicts the label of a given
|
|
|
|
|
// test image:
|
|
|
|
@ -133,39 +144,43 @@ int main(int argc, const char *argv[]) { |
|
|
|
|
cout << result_message << endl; |
|
|
|
|
if( (predictedLabel == testLabel) && !model->getLabelInfo(predictedLabel).empty() ) |
|
|
|
|
cout << format("%d-th label's info: %s", predictedLabel, model->getLabelInfo(predictedLabel).c_str()) << endl; |
|
|
|
|
// Sometimes you'll need to get/set internal model data,
|
|
|
|
|
// which isn't exposed by the public cv::FaceRecognizer.
|
|
|
|
|
// Since each cv::FaceRecognizer is derived from a
|
|
|
|
|
// cv::Algorithm, you can query the data.
|
|
|
|
|
//
|
|
|
|
|
// First we'll use it to set the threshold of the FaceRecognizer
|
|
|
|
|
// to 0.0 without retraining the model. This can be useful if
|
|
|
|
|
// you are evaluating the model:
|
|
|
|
|
//
|
|
|
|
|
model->set("threshold", 0.0); |
|
|
|
|
// Now the threshold of this model is set to 0.0. A prediction
|
|
|
|
|
// now returns -1, as it's impossible to have a distance below
|
|
|
|
|
// it
|
|
|
|
|
predictedLabel = model->predict(testSample); |
|
|
|
|
cout << "Predicted class = " << predictedLabel << endl; |
|
|
|
|
// Here is how to get the eigenvalues of this Eigenfaces model:
|
|
|
|
|
Mat eigenvalues = model->getMat("eigenvalues"); |
|
|
|
|
// And we can do the same to display the Eigenvectors (read Eigenfaces):
|
|
|
|
|
Mat W = model->getMat("eigenvectors"); |
|
|
|
|
// From this we will display the (at most) first 10 Eigenfaces:
|
|
|
|
|
for (int i = 0; i < min(10, W.cols); i++) { |
|
|
|
|
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i)); |
|
|
|
|
cout << msg << endl; |
|
|
|
|
// get eigenvector #i
|
|
|
|
|
Mat ev = W.col(i).clone(); |
|
|
|
|
// Reshape to original size & normalize to [0...255] for imshow.
|
|
|
|
|
Mat grayscale = toGrayscale(ev.reshape(1, height)); |
|
|
|
|
// Show the image & apply a Jet colormap for better sensing.
|
|
|
|
|
Mat cgrayscale; |
|
|
|
|
applyColorMap(grayscale, cgrayscale, COLORMAP_JET); |
|
|
|
|
imshow(format("%d", i), cgrayscale); |
|
|
|
|
} |
|
|
|
|
waitKey(0); |
|
|
|
|
|
|
|
|
|
// advanced stuff
|
|
|
|
|
if(argc>2) { |
|
|
|
|
// Sometimes you'll need to get/set internal model data,
|
|
|
|
|
// which isn't exposed by the public cv::FaceRecognizer.
|
|
|
|
|
// Since each cv::FaceRecognizer is derived from a
|
|
|
|
|
// cv::Algorithm, you can query the data.
|
|
|
|
|
//
|
|
|
|
|
// First we'll use it to set the threshold of the FaceRecognizer
|
|
|
|
|
// to 0.0 without retraining the model. This can be useful if
|
|
|
|
|
// you are evaluating the model:
|
|
|
|
|
//
|
|
|
|
|
model->set("threshold", 0.0); |
|
|
|
|
// Now the threshold of this model is set to 0.0. A prediction
|
|
|
|
|
// now returns -1, as it's impossible to have a distance below
|
|
|
|
|
// it
|
|
|
|
|
predictedLabel = model->predict(testSample); |
|
|
|
|
cout << "Predicted class = " << predictedLabel << endl; |
|
|
|
|
// Here is how to get the eigenvalues of this Eigenfaces model:
|
|
|
|
|
Mat eigenvalues = model->getMat("eigenvalues"); |
|
|
|
|
// And we can do the same to display the Eigenvectors (read Eigenfaces):
|
|
|
|
|
Mat W = model->getMat("eigenvectors"); |
|
|
|
|
// From this we will display the (at most) first 10 Eigenfaces:
|
|
|
|
|
for (int i = 0; i < min(10, W.cols); i++) { |
|
|
|
|
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i)); |
|
|
|
|
cout << msg << endl; |
|
|
|
|
// get eigenvector #i
|
|
|
|
|
Mat ev = W.col(i).clone(); |
|
|
|
|
// Reshape to original size & normalize to [0...255] for imshow.
|
|
|
|
|
Mat grayscale; |
|
|
|
|
normalize(ev.reshape(1), grayscale, 0, 255, NORM_MINMAX, CV_8UC1); |
|
|
|
|
// Show the image & apply a Jet colormap for better sensing.
|
|
|
|
|
Mat cgrayscale; |
|
|
|
|
applyColorMap(grayscale, cgrayscale, COLORMAP_JET); |
|
|
|
|
imshow(format("%d", i), cgrayscale); |
|
|
|
|
} |
|
|
|
|
waitKey(0); |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|