mirror of https://github.com/opencv/opencv.git
Merge pull request #12037 from dkurt:test_openvino_models
commit
236f383969
5 changed files with 278 additions and 11 deletions
@ -0,0 +1,238 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_INF_ENGINE |
||||
#include <opencv2/core/utils/filesystem.hpp> |
||||
|
||||
#include <inference_engine.hpp> |
||||
#include <ie_icnn_network.hpp> |
||||
#include <ie_extension.h> |
||||
|
||||
namespace opencv_test { namespace { |
||||
|
||||
static void initDLDTDataPath() |
||||
{ |
||||
#ifndef WINRT |
||||
static bool initialized = false; |
||||
if (!initialized) |
||||
{ |
||||
const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR"); |
||||
if (dldtTestDataPath) |
||||
cvtest::addDataSearchPath(cv::utils::fs::join(dldtTestDataPath, "deployment_tools")); |
||||
initialized = true; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
using namespace InferenceEngine; |
||||
|
||||
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr) |
||||
{ |
||||
std::vector<int> reversedDims(dims.begin(), dims.end()); |
||||
std::reverse(reversedDims.begin(), reversedDims.end()); |
||||
|
||||
m.create(reversedDims, CV_32F); |
||||
randu(m, -1, 1); |
||||
|
||||
dataPtr = make_shared_blob<float>(Precision::FP32, dims, (float*)m.data); |
||||
} |
||||
|
||||
void runIE(Target target, const std::string& xmlPath, const std::string& binPath, |
||||
std::map<std::string, cv::Mat>& inputsMap, std::map<std::string, cv::Mat>& outputsMap) |
||||
{ |
||||
CNNNetReader reader; |
||||
reader.ReadNetwork(xmlPath); |
||||
reader.ReadWeights(binPath); |
||||
|
||||
CNNNetwork net = reader.getNetwork(); |
||||
|
||||
InferenceEnginePluginPtr enginePtr; |
||||
InferencePlugin plugin; |
||||
ExecutableNetwork netExec; |
||||
InferRequest infRequest; |
||||
TargetDevice targetDevice; |
||||
switch (target) |
||||
{ |
||||
case DNN_TARGET_CPU: |
||||
targetDevice = TargetDevice::eCPU; |
||||
break; |
||||
case DNN_TARGET_OPENCL: |
||||
case DNN_TARGET_OPENCL_FP16: |
||||
targetDevice = TargetDevice::eGPU; |
||||
break; |
||||
case DNN_TARGET_MYRIAD: |
||||
targetDevice = TargetDevice::eMYRIAD; |
||||
break; |
||||
default: |
||||
CV_Error(Error::StsNotImplemented, "Unknown target"); |
||||
}; |
||||
|
||||
try |
||||
{ |
||||
enginePtr = PluginDispatcher({""}).getSuitablePlugin(targetDevice); |
||||
|
||||
if (targetDevice == TargetDevice::eCPU) |
||||
{ |
||||
std::string suffixes[] = {"_avx2", "_sse4", ""}; |
||||
bool haveFeature[] = { |
||||
checkHardwareSupport(CPU_AVX2), |
||||
checkHardwareSupport(CPU_SSE4_2), |
||||
true |
||||
}; |
||||
for (int i = 0; i < 3; ++i) |
||||
{ |
||||
if (!haveFeature[i]) |
||||
continue; |
||||
#ifdef _WIN32 |
||||
std::string libName = "cpu_extension" + suffixes[i] + ".dll"; |
||||
#else |
||||
std::string libName = "libcpu_extension" + suffixes[i] + ".so"; |
||||
#endif // _WIN32
|
||||
try |
||||
{ |
||||
IExtensionPtr extension = make_so_pointer<IExtension>(libName); |
||||
enginePtr->AddExtension(extension, 0); |
||||
break; |
||||
} |
||||
catch(...) {} |
||||
} |
||||
// Some of networks can work without a library of extra layers.
|
||||
} |
||||
plugin = InferencePlugin(enginePtr); |
||||
|
||||
netExec = plugin.LoadNetwork(net, {}); |
||||
infRequest = netExec.CreateInferRequest(); |
||||
} |
||||
catch (const std::exception& ex) |
||||
{ |
||||
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); |
||||
} |
||||
|
||||
// Fill input blobs.
|
||||
inputsMap.clear(); |
||||
BlobMap inputBlobs; |
||||
for (auto& it : net.getInputsInfo()) |
||||
{ |
||||
genData(it.second->getDims(), inputsMap[it.first], inputBlobs[it.first]); |
||||
} |
||||
infRequest.SetInput(inputBlobs); |
||||
|
||||
// Fill output blobs.
|
||||
outputsMap.clear(); |
||||
BlobMap outputBlobs; |
||||
for (auto& it : net.getOutputsInfo()) |
||||
{ |
||||
genData(it.second->dims, outputsMap[it.first], outputBlobs[it.first]); |
||||
} |
||||
infRequest.SetOutput(outputBlobs); |
||||
|
||||
infRequest.Infer(); |
||||
} |
||||
|
||||
std::vector<String> getOutputsNames(const Net& net) |
||||
{ |
||||
std::vector<String> names; |
||||
if (names.empty()) |
||||
{ |
||||
std::vector<int> outLayers = net.getUnconnectedOutLayers(); |
||||
std::vector<String> layersNames = net.getLayerNames(); |
||||
names.resize(outLayers.size()); |
||||
for (size_t i = 0; i < outLayers.size(); ++i) |
||||
names[i] = layersNames[outLayers[i] - 1]; |
||||
} |
||||
return names; |
||||
} |
||||
|
||||
void runCV(Target target, const std::string& xmlPath, const std::string& binPath, |
||||
const std::map<std::string, cv::Mat>& inputsMap, |
||||
std::map<std::string, cv::Mat>& outputsMap) |
||||
{ |
||||
Net net = readNet(xmlPath, binPath); |
||||
for (auto& it : inputsMap) |
||||
net.setInput(it.second, it.first); |
||||
net.setPreferableTarget(target); |
||||
|
||||
std::vector<String> outNames = getOutputsNames(net); |
||||
std::vector<Mat> outs; |
||||
net.forward(outs, outNames); |
||||
|
||||
outputsMap.clear(); |
||||
EXPECT_EQ(outs.size(), outNames.size()); |
||||
for (int i = 0; i < outs.size(); ++i) |
||||
{ |
||||
EXPECT_TRUE(outputsMap.insert({outNames[i], outs[i]}).second); |
||||
} |
||||
} |
||||
|
||||
typedef TestWithParam<tuple<Target, String> > DNNTestOpenVINO; |
||||
TEST_P(DNNTestOpenVINO, models) |
||||
{ |
||||
Target target = (dnn::Target)(int)get<0>(GetParam()); |
||||
std::string modelName = get<1>(GetParam()); |
||||
|
||||
if (modelName == "semantic-segmentation-adas-0001" && target == DNN_TARGET_OPENCL_FP16) |
||||
throw SkipTestException(""); |
||||
|
||||
std::string precision = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "FP16" : "FP32"; |
||||
std::string prefix = utils::fs::join("intel_models", |
||||
utils::fs::join(modelName, |
||||
utils::fs::join(precision, modelName))); |
||||
std::string xmlPath = findDataFile(prefix + ".xml"); |
||||
std::string binPath = findDataFile(prefix + ".bin"); |
||||
|
||||
std::map<std::string, cv::Mat> inputsMap; |
||||
std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap; |
||||
runIE(target, xmlPath, binPath, inputsMap, ieOutputsMap); |
||||
runCV(target, xmlPath, binPath, inputsMap, cvOutputsMap); |
||||
|
||||
EXPECT_EQ(ieOutputsMap.size(), cvOutputsMap.size()); |
||||
for (auto& srcIt : ieOutputsMap) |
||||
{ |
||||
auto dstIt = cvOutputsMap.find(srcIt.first); |
||||
CV_Assert(dstIt != cvOutputsMap.end()); |
||||
double normInf = cvtest::norm(srcIt.second, dstIt->second, cv::NORM_INF); |
||||
EXPECT_EQ(normInf, 0); |
||||
} |
||||
} |
||||
|
||||
static testing::internal::ParamGenerator<String> intelModels() |
||||
{ |
||||
initDLDTDataPath(); |
||||
std::vector<String> modelsNames; |
||||
|
||||
std::string path; |
||||
try |
||||
{ |
||||
path = findDataDirectory("intel_models", false); |
||||
} |
||||
catch (...) |
||||
{ |
||||
std::cerr << "ERROR: Can't find OpenVINO models. Check INTEL_CVSDK_DIR environment variable (run setup.sh)" << std::endl; |
||||
return ValuesIn(modelsNames); // empty list
|
||||
} |
||||
|
||||
cv::utils::fs::glob_relative(path, "", modelsNames, false, true); |
||||
|
||||
modelsNames.erase( |
||||
std::remove_if(modelsNames.begin(), modelsNames.end(), |
||||
[&](const String& dir){ return !utils::fs::isDirectory(utils::fs::join(path, dir)); }), |
||||
modelsNames.end() |
||||
); |
||||
CV_Assert(!modelsNames.empty()); |
||||
|
||||
return ValuesIn(modelsNames); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, DNNTestOpenVINO, Combine( |
||||
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16), intelModels() |
||||
)); |
||||
|
||||
}} |
||||
#endif // HAVE_INF_ENGINE
|
Loading…
Reference in new issue