|
|
|
@ -47,11 +47,11 @@ |
|
|
|
|
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable |
|
|
|
|
#define MAX_FLOAT 3.40282e+038f |
|
|
|
|
|
|
|
|
|
#ifndef block_size |
|
|
|
|
#define block_size 16 |
|
|
|
|
#ifndef BLOCK_SIZE |
|
|
|
|
#define BLOCK_SIZE 16 |
|
|
|
|
#endif |
|
|
|
|
#ifndef max_desc_len |
|
|
|
|
#define max_desc_len 64 |
|
|
|
|
#ifndef MAX_DESC_LEN |
|
|
|
|
#define MAX_DESC_LEN 64 |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
int bit1Count(float x) |
|
|
|
@ -66,15 +66,15 @@ int bit1Count(float x) |
|
|
|
|
return (float)c; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifndef distType |
|
|
|
|
#define distType 0 |
|
|
|
|
#ifndef DIST_TYPE |
|
|
|
|
#define DIST_TYPE 0 |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#if (distType == 0) |
|
|
|
|
#if (DIST_TYPE == 0) |
|
|
|
|
#define DIST(x, y) fabs((x) - (y)) |
|
|
|
|
#elif (distType == 1) |
|
|
|
|
#elif (DIST_TYPE == 1) |
|
|
|
|
#define DIST(x, y) (((x) - (y)) * ((x) - (y))) |
|
|
|
|
#elif (distType == 2) |
|
|
|
|
#elif (DIST_TYPE == 2) |
|
|
|
|
#define DIST(x, y) bit1Count((uint)(x) ^ (uint)(y)) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
@ -87,9 +87,9 @@ float reduce_block(__local float *s_query, |
|
|
|
|
{ |
|
|
|
|
float result = 0; |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int j = 0 ; j < block_size ; j++) |
|
|
|
|
for (int j = 0 ; j < BLOCK_SIZE ; j++) |
|
|
|
|
{ |
|
|
|
|
result += DIST(s_query[lidy * block_size + j], s_train[j * block_size + lidx]); |
|
|
|
|
result += DIST(s_query[lidy * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + lidx]); |
|
|
|
|
} |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
@ -103,15 +103,15 @@ float reduce_multi_block(__local float *s_query, |
|
|
|
|
{ |
|
|
|
|
float result = 0; |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int j = 0 ; j < block_size ; j++) |
|
|
|
|
for (int j = 0 ; j < BLOCK_SIZE ; j++) |
|
|
|
|
{ |
|
|
|
|
result += DIST(s_query[lidy * max_desc_len + block_index * block_size + j], s_train[j * block_size + lidx]); |
|
|
|
|
result += DIST(s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + lidx]); |
|
|
|
|
} |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* 2dim launch, global size: dim0 is (query rows + block_size - 1) / block_size * block_size, dim1 is block_size |
|
|
|
|
local size: dim0 is block_size, dim1 is block_size. |
|
|
|
|
/* 2dim launch, global size: dim0 is (query rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, dim1 is BLOCK_SIZE |
|
|
|
|
local size: dim0 is BLOCK_SIZE, dim1 is BLOCK_SIZE. |
|
|
|
|
*/ |
|
|
|
|
__kernel void BruteForceMatch_UnrollMatch_D5( |
|
|
|
|
__global float *query, |
|
|
|
@ -133,15 +133,15 @@ __kernel void BruteForceMatch_UnrollMatch_D5( |
|
|
|
|
const int groupidx = get_group_id(0); |
|
|
|
|
|
|
|
|
|
__local float *s_query = sharebuffer; |
|
|
|
|
__local float *s_train = sharebuffer + block_size * max_desc_len; |
|
|
|
|
__local float *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN; |
|
|
|
|
|
|
|
|
|
int queryIdx = groupidx * block_size + lidy; |
|
|
|
|
int queryIdx = groupidx * BLOCK_SIZE + lidy; |
|
|
|
|
// load the query into local memory. |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size; i ++) |
|
|
|
|
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++) |
|
|
|
|
{ |
|
|
|
|
int loadx = lidx + i * block_size; |
|
|
|
|
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float myBestDistance = MAX_FLOAT; |
|
|
|
@ -149,15 +149,15 @@ __kernel void BruteForceMatch_UnrollMatch_D5( |
|
|
|
|
|
|
|
|
|
// loopUnrolledCached to find the best trainIdx and best distance. |
|
|
|
|
volatile int imgIdx = 0; |
|
|
|
|
for (int t = 0, endt = (train_rows + block_size - 1) / block_size; t < endt; t++) |
|
|
|
|
for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; t++) |
|
|
|
|
{ |
|
|
|
|
float result = 0; |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
//load a block_size * block_size block into local train. |
|
|
|
|
const int loadx = lidx + i * block_size; |
|
|
|
|
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -167,7 +167,7 @@ __kernel void BruteForceMatch_UnrollMatch_D5( |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int trainIdx = t * block_size + lidx; |
|
|
|
|
int trainIdx = t * BLOCK_SIZE + lidx; |
|
|
|
|
|
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance/* && mask(queryIdx, trainIdx)*/) |
|
|
|
|
{ |
|
|
|
@ -179,11 +179,11 @@ __kernel void BruteForceMatch_UnrollMatch_D5( |
|
|
|
|
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
__local float *s_distance = (__local float*)(sharebuffer); |
|
|
|
|
__local int* s_trainIdx = (__local int *)(sharebuffer + block_size * block_size); |
|
|
|
|
__local int* s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE); |
|
|
|
|
|
|
|
|
|
//find BestMatch |
|
|
|
|
s_distance += lidy * block_size; |
|
|
|
|
s_trainIdx += lidy * block_size; |
|
|
|
|
s_distance += lidy * BLOCK_SIZE; |
|
|
|
|
s_trainIdx += lidy * BLOCK_SIZE; |
|
|
|
|
s_distance[lidx] = myBestDistance; |
|
|
|
|
s_trainIdx[lidx] = myBestTrainIdx; |
|
|
|
|
|
|
|
|
@ -191,7 +191,7 @@ __kernel void BruteForceMatch_UnrollMatch_D5( |
|
|
|
|
|
|
|
|
|
//reduce -- now all reduce implement in each threads. |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int k = 0 ; k < block_size; k++) |
|
|
|
|
for (int k = 0 ; k < BLOCK_SIZE; k++) |
|
|
|
|
{ |
|
|
|
|
if (myBestDistance > s_distance[k]) |
|
|
|
|
{ |
|
|
|
@ -225,30 +225,30 @@ __kernel void BruteForceMatch_Match_D5( |
|
|
|
|
const int lidy = get_local_id(1); |
|
|
|
|
const int groupidx = get_group_id(0); |
|
|
|
|
|
|
|
|
|
const int queryIdx = groupidx * block_size + lidy; |
|
|
|
|
const int queryIdx = groupidx * BLOCK_SIZE + lidy; |
|
|
|
|
|
|
|
|
|
float myBestDistance = MAX_FLOAT; |
|
|
|
|
int myBestTrainIdx = -1; |
|
|
|
|
|
|
|
|
|
__local float *s_query = sharebuffer; |
|
|
|
|
__local float *s_train = sharebuffer + block_size * block_size; |
|
|
|
|
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
// loop |
|
|
|
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++) |
|
|
|
|
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++) |
|
|
|
|
{ |
|
|
|
|
//Dist dist; |
|
|
|
|
float result = 0; |
|
|
|
|
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
const int loadx = lidx + i * block_size; |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
//load query and train into local memory |
|
|
|
|
s_query[lidy * block_size + lidx] = 0; |
|
|
|
|
s_train[lidx * block_size + lidy] = 0; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = 0; |
|
|
|
|
|
|
|
|
|
if (loadx < query_cols) |
|
|
|
|
{ |
|
|
|
|
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -258,7 +258,7 @@ __kernel void BruteForceMatch_Match_D5( |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int trainIdx = t * block_size + lidx; |
|
|
|
|
const int trainIdx = t * BLOCK_SIZE + lidx; |
|
|
|
|
|
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance /*&& mask(queryIdx, trainIdx)*/) |
|
|
|
|
{ |
|
|
|
@ -271,18 +271,18 @@ __kernel void BruteForceMatch_Match_D5( |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
|
|
|
|
|
__local float *s_distance = (__local float *)sharebuffer; |
|
|
|
|
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size); |
|
|
|
|
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE); |
|
|
|
|
|
|
|
|
|
//findBestMatch |
|
|
|
|
s_distance += lidy * block_size; |
|
|
|
|
s_trainIdx += lidy * block_size; |
|
|
|
|
s_distance += lidy * BLOCK_SIZE; |
|
|
|
|
s_trainIdx += lidy * BLOCK_SIZE; |
|
|
|
|
s_distance[lidx] = myBestDistance; |
|
|
|
|
s_trainIdx[lidx] = myBestTrainIdx; |
|
|
|
|
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
|
|
|
|
|
//reduce -- now all reduce implement in each threads. |
|
|
|
|
for (int k = 0 ; k < block_size; k++) |
|
|
|
|
for (int k = 0 ; k < BLOCK_SIZE; k++) |
|
|
|
|
{ |
|
|
|
|
if (myBestDistance > s_distance[k]) |
|
|
|
|
{ |
|
|
|
@ -322,20 +322,20 @@ __kernel void BruteForceMatch_RadiusUnrollMatch_D5( |
|
|
|
|
const int groupidx = get_group_id(0); |
|
|
|
|
const int groupidy = get_group_id(1); |
|
|
|
|
|
|
|
|
|
const int queryIdx = groupidy * block_size + lidy; |
|
|
|
|
const int trainIdx = groupidx * block_size + lidx; |
|
|
|
|
const int queryIdx = groupidy * BLOCK_SIZE + lidy; |
|
|
|
|
const int trainIdx = groupidx * BLOCK_SIZE + lidx; |
|
|
|
|
|
|
|
|
|
__local float *s_query = sharebuffer; |
|
|
|
|
__local float *s_train = sharebuffer + block_size * block_size; |
|
|
|
|
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
float result = 0; |
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size ; ++i) |
|
|
|
|
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; ++i) |
|
|
|
|
{ |
|
|
|
|
//load a block_size * block_size block into local train. |
|
|
|
|
const int loadx = lidx + i * block_size; |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -382,20 +382,20 @@ __kernel void BruteForceMatch_RadiusMatch_D5( |
|
|
|
|
const int groupidx = get_group_id(0); |
|
|
|
|
const int groupidy = get_group_id(1); |
|
|
|
|
|
|
|
|
|
const int queryIdx = groupidy * block_size + lidy; |
|
|
|
|
const int trainIdx = groupidx * block_size + lidx; |
|
|
|
|
const int queryIdx = groupidy * BLOCK_SIZE + lidy; |
|
|
|
|
const int trainIdx = groupidx * BLOCK_SIZE + lidx; |
|
|
|
|
|
|
|
|
|
__local float *s_query = sharebuffer; |
|
|
|
|
__local float *s_train = sharebuffer + block_size * block_size; |
|
|
|
|
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
float result = 0; |
|
|
|
|
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; ++i) |
|
|
|
|
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i) |
|
|
|
|
{ |
|
|
|
|
//load a block_size * block_size block into local train. |
|
|
|
|
const int loadx = lidx + i * block_size; |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -437,15 +437,15 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5( |
|
|
|
|
const int lidy = get_local_id(1); |
|
|
|
|
const int groupidx = get_group_id(0); |
|
|
|
|
|
|
|
|
|
const int queryIdx = groupidx * block_size + lidy; |
|
|
|
|
const int queryIdx = groupidx * BLOCK_SIZE + lidy; |
|
|
|
|
local float *s_query = sharebuffer; |
|
|
|
|
local float *s_train = sharebuffer + block_size * max_desc_len; |
|
|
|
|
local float *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN; |
|
|
|
|
|
|
|
|
|
// load the query into local memory. |
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size; i ++) |
|
|
|
|
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++) |
|
|
|
|
{ |
|
|
|
|
int loadx = lidx + i * block_size; |
|
|
|
|
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float myBestDistance1 = MAX_FLOAT; |
|
|
|
@ -455,15 +455,15 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5( |
|
|
|
|
|
|
|
|
|
//loopUnrolledCached |
|
|
|
|
volatile int imgIdx = 0; |
|
|
|
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++) |
|
|
|
|
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++) |
|
|
|
|
{ |
|
|
|
|
float result = 0; |
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
const int loadX = lidx + i * block_size; |
|
|
|
|
//load a block_size * block_size block into local train. |
|
|
|
|
const int loadx = lidx + i * block_size; |
|
|
|
|
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
const int loadX = lidx + i * BLOCK_SIZE; |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -473,7 +473,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5( |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int trainIdx = t * block_size + lidx; |
|
|
|
|
const int trainIdx = t * BLOCK_SIZE + lidx; |
|
|
|
|
|
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows) |
|
|
|
|
{ |
|
|
|
@ -495,11 +495,11 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5( |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
|
|
|
|
|
local float *s_distance = (local float *)sharebuffer; |
|
|
|
|
local int *s_trainIdx = (local int *)(sharebuffer + block_size * block_size); |
|
|
|
|
local int *s_trainIdx = (local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE); |
|
|
|
|
|
|
|
|
|
// find BestMatch |
|
|
|
|
s_distance += lidy * block_size; |
|
|
|
|
s_trainIdx += lidy * block_size; |
|
|
|
|
s_distance += lidy * BLOCK_SIZE; |
|
|
|
|
s_trainIdx += lidy * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
s_distance[lidx] = myBestDistance1; |
|
|
|
|
s_trainIdx[lidx] = myBestTrainIdx1; |
|
|
|
@ -512,7 +512,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5( |
|
|
|
|
|
|
|
|
|
if (lidx == 0) |
|
|
|
|
{ |
|
|
|
|
for (int i = 0 ; i < block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
float val = s_distance[i]; |
|
|
|
|
if (val < bestDistance1) |
|
|
|
@ -540,7 +540,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5( |
|
|
|
|
|
|
|
|
|
if (lidx == 0) |
|
|
|
|
{ |
|
|
|
|
for (int i = 0 ; i < block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
float val = s_distance[i]; |
|
|
|
|
|
|
|
|
@ -583,9 +583,9 @@ __kernel void BruteForceMatch_knnMatch_D5( |
|
|
|
|
const int lidy = get_local_id(1); |
|
|
|
|
const int groupidx = get_group_id(0); |
|
|
|
|
|
|
|
|
|
const int queryIdx = groupidx * block_size + lidy; |
|
|
|
|
const int queryIdx = groupidx * BLOCK_SIZE + lidy; |
|
|
|
|
local float *s_query = sharebuffer; |
|
|
|
|
local float *s_train = sharebuffer + block_size * block_size; |
|
|
|
|
local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
float myBestDistance1 = MAX_FLOAT; |
|
|
|
|
float myBestDistance2 = MAX_FLOAT; |
|
|
|
@ -593,20 +593,20 @@ __kernel void BruteForceMatch_knnMatch_D5( |
|
|
|
|
int myBestTrainIdx2 = -1; |
|
|
|
|
|
|
|
|
|
//loop |
|
|
|
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++) |
|
|
|
|
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++) |
|
|
|
|
{ |
|
|
|
|
float result = 0.0f; |
|
|
|
|
for (int i = 0 ; i < (query_cols + block_size -1) / block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < (query_cols + BLOCK_SIZE -1) / BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
const int loadx = lidx + i * block_size; |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
//load query and train into local memory |
|
|
|
|
s_query[lidy * block_size + lidx] = 0; |
|
|
|
|
s_train[lidx * block_size + lidy] = 0; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = 0; |
|
|
|
|
|
|
|
|
|
if (loadx < query_cols) |
|
|
|
|
{ |
|
|
|
|
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -616,7 +616,7 @@ __kernel void BruteForceMatch_knnMatch_D5( |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int trainIdx = t * block_size + lidx; |
|
|
|
|
const int trainIdx = t * BLOCK_SIZE + lidx; |
|
|
|
|
|
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows /*&& mask(queryIdx, trainIdx)*/) |
|
|
|
|
{ |
|
|
|
@ -638,11 +638,11 @@ __kernel void BruteForceMatch_knnMatch_D5( |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|
|
|
|
|
|
__local float *s_distance = (__local float *)sharebuffer; |
|
|
|
|
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size); |
|
|
|
|
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE); |
|
|
|
|
|
|
|
|
|
//findBestMatch |
|
|
|
|
s_distance += lidy * block_size; |
|
|
|
|
s_trainIdx += lidy * block_size; |
|
|
|
|
s_distance += lidy * BLOCK_SIZE; |
|
|
|
|
s_trainIdx += lidy * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
s_distance[lidx] = myBestDistance1; |
|
|
|
|
s_trainIdx[lidx] = myBestTrainIdx1; |
|
|
|
@ -655,7 +655,7 @@ __kernel void BruteForceMatch_knnMatch_D5( |
|
|
|
|
|
|
|
|
|
if (lidx == 0) |
|
|
|
|
{ |
|
|
|
|
for (int i = 0 ; i < block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
float val = s_distance[i]; |
|
|
|
|
if (val < bestDistance1) |
|
|
|
@ -683,7 +683,7 @@ __kernel void BruteForceMatch_knnMatch_D5( |
|
|
|
|
|
|
|
|
|
if (lidx == 0) |
|
|
|
|
{ |
|
|
|
|
for (int i = 0 ; i < block_size ; i++) |
|
|
|
|
for (int i = 0 ; i < BLOCK_SIZE ; i++) |
|
|
|
|
{ |
|
|
|
|
float val = s_distance[i]; |
|
|
|
|
|
|
|
|
|