Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/16506/head
Alexander Alekhin 5 years ago
commit 225566da7b
  1. 4
      cmake/OpenCVUtils.cmake
  2. 4
      doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.markdown
  3. 6
      modules/calib3d/include/opencv2/calib3d.hpp
  4. 2
      modules/calib3d/src/ap3p.cpp
  5. 92
      modules/dnn/src/layers/resize_layer.cpp
  6. 31
      modules/dnn/test/test_layers.cpp
  7. 9
      modules/highgui/src/window_QT.cpp
  8. 35
      modules/imgproc/include/opencv2/imgproc.hpp
  9. 195
      modules/imgproc/src/drawing.cpp
  10. 86
      modules/imgproc/src/resize.cpp
  11. 10
      modules/imgproc/test/test_drawing.cpp
  12. 3
      modules/objdetect/src/qrcode.cpp
  13. 20
      modules/objdetect/test/test_qrcode.cpp
  14. 673
      modules/videoio/src/cap_avfoundation.mm

@ -402,8 +402,8 @@ endmacro()
set(OCV_COMPILER_FAIL_REGEX
"argument .* is not valid" # GCC 9+ (including support of unicode quotes)
"command line option .* is valid for .* but not for C\\+\\+" # GNU
"command line option .* is valid for .* but not for C" # GNU
"command[- ]line option .* is valid for .* but not for C\\+\\+" # GNU
"command[- ]line option .* is valid for .* but not for C" # GNU
"unrecognized .*option" # GNU
"unknown .*option" # Clang
"ignoring unknown option" # MSVC

@ -188,7 +188,7 @@ blur = cv.GaussianBlur(img,(5,5),0)
# find normalized_histogram, and its cumulative distribution function
hist = cv.calcHist([blur],[0],None,[256],[0,256])
hist_norm = hist.ravel()/hist.max()
hist_norm = hist.ravel()/hist.sum()
Q = hist_norm.cumsum()
bins = np.arange(256)
@ -199,6 +199,8 @@ thresh = -1
for i in xrange(1,256):
p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes
if q1 < 1.e-6 or q2 < 1.e-6:
continue
b1,b2 = np.hsplit(bins,[i]) # weights
# finding means and variances

@ -2388,7 +2388,7 @@ CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
int minDisparity, int numberOfDisparities,
int SADWindowSize );
int blockSize );
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
@ -2813,8 +2813,8 @@ public:
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
32\*number_of_image_channels\*blockSize\*blockSize , respectively).
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first

@ -46,7 +46,7 @@ void solveQuartic(const double *factors, double *realRoots) {
complex<double> sqrt_2m = sqrt(static_cast<complex<double> >(-2 * p4 / 3 + t));
double B_4A = -a3 / (4 * a4);
double complex1 = 4 * p4 / 3 + t;
#if defined(__clang__) && defined(__arm__) && (__clang_major__ == 3 || __clang_minor__ == 4) && !defined(__ANDROID__)
#if defined(__clang__) && defined(__arm__) && (__clang_major__ == 3 || __clang_major__ == 4) && !defined(__ANDROID__)
// details: https://github.com/opencv/opencv/issues/11135
// details: https://github.com/opencv/opencv/issues/11056
complex<double> complex2 = 2 * q4;

@ -25,7 +25,9 @@ namespace cv { namespace dnn {
class ResizeLayerImpl : public ResizeLayer
{
public:
ResizeLayerImpl(const LayerParams& params) : zoomFactorWidth(0), zoomFactorHeight(0), scaleWidth(0), scaleHeight(0)
ResizeLayerImpl(const LayerParams& params) : zoomFactorWidth(params.get<int>("zoom_factor_x", params.get<int>("zoom_factor", 0))),
zoomFactorHeight(params.get<int>("zoom_factor_y", params.get<int>("zoom_factor", 0))),
scaleWidth(0), scaleHeight(0)
{
setParamsFrom(params);
outWidth = params.get<float>("width", 0);
@ -33,13 +35,10 @@ public:
if (params.has("zoom_factor"))
{
CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y"));
zoomFactorWidth = zoomFactorHeight = params.get<int>("zoom_factor");
}
else if (params.has("zoom_factor_x") || params.has("zoom_factor_y"))
{
CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y"));
zoomFactorWidth = params.get<int>("zoom_factor_x");
zoomFactorHeight = params.get<int>("zoom_factor_y");
}
interpolation = params.get<String>("interpolation");
CV_Assert(interpolation == "nearest" || interpolation == "bilinear");
@ -54,8 +53,8 @@ public:
{
CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
outputs.resize(1, inputs[0]);
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight);
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth);
outputs[0][2] = zoomFactorHeight > 0 ? (outputs[0][2] * zoomFactorHeight) : outHeight;
outputs[0][3] = zoomFactorWidth > 0 ? (outputs[0][3] * zoomFactorWidth) : outWidth;
// We can work in-place (do nothing) if input shape == output shape.
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
}
@ -82,11 +81,8 @@ public:
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
if (!outWidth && !outHeight)
{
outHeight = outputs[0].size[2];
outWidth = outputs[0].size[3];
}
outHeight = outputs[0].size[2];
outWidth = outputs[0].size[3];
if (alignCorners && outHeight > 1)
scaleHeight = static_cast<float>(inputs[0].size[2] - 1) / (outHeight - 1);
else
@ -214,7 +210,7 @@ public:
ieLayer.setType("Interp");
ieLayer.getParameters()["pad_beg"] = 0;
ieLayer.getParameters()["pad_end"] = 0;
ieLayer.getParameters()["align_corners"] = false;
ieLayer.getParameters()["align_corners"] = alignCorners;
}
else
CV_Error(Error::StsNotImplemented, "Unsupported interpolation: " + interpolation);
@ -238,7 +234,7 @@ public:
attrs.pads_begin.push_back(0);
attrs.pads_end.push_back(0);
attrs.axes = ngraph::AxisSet{2, 3};
attrs.align_corners = false;
attrs.align_corners = alignCorners;
if (interpolation == "nearest") {
attrs.mode = "nearest";
@ -257,7 +253,8 @@ public:
#endif // HAVE_DNN_NGRAPH
protected:
int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight;
int outWidth, outHeight;
const int zoomFactorWidth, zoomFactorHeight;
String interpolation;
float scaleWidth, scaleHeight;
bool alignCorners;
@ -281,79 +278,18 @@ public:
{
CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
outputs.resize(1, inputs[0]);
outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1));
outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1));
outputs[0][2] = zoomFactorHeight > 0 ? (1 + zoomFactorHeight * (outputs[0][2] - 1)) : outHeight;
outputs[0][3] = zoomFactorWidth > 0 ? (1 + zoomFactorWidth * (outputs[0][3] - 1)) : outWidth;
// We can work in-place (do nothing) if input shape == output shape.
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
|| backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
if (!outWidth && !outHeight)
{
outHeight = outputs[0].size[2];
outWidth = outputs[0].size[3];
}
int inpHeight = inputs[0].size[2];
int inpWidth = inputs[0].size[3];
scaleHeight = (outHeight > 1) ? (static_cast<float>(inpHeight - 1) / (outHeight - 1)) : 0.f;
scaleWidth = (outWidth > 1) ? (static_cast<float>(inpWidth - 1) / (outWidth - 1)) : 0.f;
}
#ifdef HAVE_INF_ENGINE
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
InferenceEngine::Builder::Layer ieLayer(name);
ieLayer.setName(name);
ieLayer.setType("Interp");
ieLayer.getParameters()["pad_beg"] = 0;
ieLayer.getParameters()["pad_end"] = 0;
ieLayer.getParameters()["width"] = outWidth;
ieLayer.getParameters()["height"] = outHeight;
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(1));
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1));
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
}
#endif // HAVE_INF_ENGINE
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
ngraph::op::InterpolateAttrs attrs;
attrs.pads_begin.push_back(0);
attrs.pads_end.push_back(0);
attrs.axes = ngraph::AxisSet{2, 3};
attrs.mode = "linear";
std::vector<int64_t> shape = {outHeight, outWidth};
auto out_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, shape.data());
auto interp = std::make_shared<ngraph::op::Interpolate>(ieInpNode, out_shape, attrs);
return Ptr<BackendNode>(new InfEngineNgraphNode(interp));
}
#endif // HAVE_DNN_NGRAPH
};
Ptr<Layer> InterpLayer::create(const LayerParams& params)
{
LayerParams lp(params);
lp.set("interpolation", "bilinear");
lp.set("align_corners", true);
return Ptr<Layer>(new InterpLayerImpl(lp));
}

@ -1760,4 +1760,35 @@ INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Eltwise_unequal, Combine(
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Resize;
TEST_P(Layer_Test_Resize, change_input)
{
int backendId = get<0>(GetParam());
int targetId = get<1>(GetParam());
Net net;
LayerParams lp;
lp.type = "Resize";
lp.name = "testLayer";
lp.set("zoom_factor", 2);
lp.set("interpolation", "nearest");
net.addLayerToPrev(lp.name, lp.type, lp);
for (int i = 0; i < 2; ++i)
{
Mat inp(4 + i, 5 + i, CV_8UC3), ref;
randu(inp, 0, 255);
resize(inp, ref, Size(0, 0), 2, 2, INTER_NEAREST);
ref = blobFromImage(ref);
net.setInput(blobFromImage(inp));
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
normAssert(out, ref);
}
}
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Resize, dnnBackendsAndTargets());
}} // namespace

@ -54,9 +54,12 @@
#include <unistd.h>
#endif
// Get GL_PERSPECTIVE_CORRECTION_HINT definition, not available in GLES 2 or
// OpenGL 3 core profile or later
#ifdef HAVE_QT_OPENGL
#if defined Q_WS_X11 /* Qt4 */ || defined Q_OS_LINUX /* Qt5 */
#include <GL/glx.h>
#if defined Q_WS_X11 /* Qt4 */ || \
(!defined(QT_OPENGL_ES_2) && defined Q_OS_LINUX) /* Qt5 with desktop OpenGL */
#include <GL/gl.h>
#endif
#endif
@ -3225,7 +3228,9 @@ void OpenGlViewPort::updateGl()
void OpenGlViewPort::initializeGL()
{
#ifdef GL_PERSPECTIVE_CORRECTION_HINT
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
#endif
}
void OpenGlViewPort::resizeGL(int w, int h)

@ -1446,7 +1446,7 @@ equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width an
respectively (see #getGaussianKernel for details); to fully control the result regardless of
possible future modifications of all this semantics, it is recommended to specify all of ksize,
sigmaX, and sigmaY.
@param borderType pixel extrapolation method, see #BorderTypes
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
*/
@ -1507,7 +1507,7 @@ algorithms, and so on). If you need to compute pixel sums over variable-size win
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.
@param normalize flag, specifying whether the kernel is normalized by its area or not.
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
@sa blur, bilateralFilter, GaussianBlur, medianBlur, integral
*/
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
@ -1530,7 +1530,7 @@ variance and standard deviation around the neighborhood of a pixel.
@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
center.
@param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
@sa boxFilter
*/
CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth,
@ -1553,7 +1553,7 @@ the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
@param ksize blurring kernel size.
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
@sa boxFilter, bilateralFilter, GaussianBlur, medianBlur
*/
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
@ -1587,7 +1587,7 @@ separate color planes using split and process them individually.
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
is at the kernel center.
@param delta optional value added to the filtered pixels before storing them in dst.
@param borderType pixel extrapolation method, see #BorderTypes
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@sa sepFilter2D, dft, matchTemplate
*/
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
@ -1608,7 +1608,7 @@ kernel kernelY. The final result shifted by delta is stored in dst .
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.
@param delta Value added to the filtered results before storing them.
@param borderType Pixel extrapolation method, see #BorderTypes
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@sa filter2D, Sobel, GaussianBlur, boxFilter, blur
*/
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
@ -1661,7 +1661,7 @@ The second case corresponds to a kernel of:
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see #getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see #BorderTypes
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
*/
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
@ -1682,7 +1682,8 @@ Sobel( src, dy, CV_16SC1, 0, 1, 3 );
@param dx output image with first-order derivative in x.
@param dy output image with first-order derivative in y.
@param ksize size of Sobel kernel. It must be 3.
@param borderType pixel extrapolation method, see #BorderTypes
@param borderType pixel extrapolation method, see #BorderTypes.
Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
@sa Sobel
*/
@ -1710,7 +1711,7 @@ is equivalent to
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see #getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see #BorderTypes
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@sa cartToPolar
*/
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
@ -1741,7 +1742,7 @@ details. The size must be positive and odd.
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
applied. See #getDerivKernels for details.
@param delta Optional delta value that is added to the results prior to storing them in dst .
@param borderType Pixel extrapolation method, see #BorderTypes
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@sa Sobel, Scharr
*/
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
@ -1810,7 +1811,7 @@ of the formulae in the cornerEigenValsAndVecs description.
src .
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. See #BorderTypes.
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
*/
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
int blockSize, int ksize = 3,
@ -1833,7 +1834,7 @@ size as src .
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
@param ksize Aperture parameter for the Sobel operator.
@param k Harris detector free parameter. See the formula above.
@param borderType Pixel extrapolation method. See #BorderTypes.
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
*/
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
int ksize, double k,
@ -1861,7 +1862,7 @@ The output of the function can be used for robust edge or corner detection.
@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
@param blockSize Neighborhood size (see details below).
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. See #BorderTypes.
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
@sa cornerMinEigenVal, cornerHarris, preCornerDetect
*/
@ -1890,7 +1891,7 @@ The corners can be found as local maximums of the functions, as shown below:
@param src Source single-channel 8-bit of floating-point image.
@param dst Output image that has the type CV_32F and the same size as src .
@param ksize %Aperture size of the Sobel .
@param borderType Pixel extrapolation method. See #BorderTypes.
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
*/
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
int borderType = BORDER_DEFAULT );
@ -2154,7 +2155,7 @@ structuring element is used. Kernel can be created using #getStructuringElement.
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times erosion is applied.
@param borderType pixel extrapolation method, see #BorderTypes
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@param borderValue border value in case of a constant border
@sa dilate, morphologyEx, getStructuringElement
*/
@ -2186,7 +2187,7 @@ structuring element is used. Kernel can be created using #getStructuringElement
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times dilation is applied.
@param borderType pixel extrapolation method, see #BorderTypes
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
@param borderValue border value in case of a constant border
@sa erode, morphologyEx, getStructuringElement
*/
@ -2211,7 +2212,7 @@ CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
kernel center.
@param iterations Number of times erosion and dilation are applied.
@param borderType Pixel extrapolation method, see #BorderTypes
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@param borderValue Border value in case of a constant border. The default value has a special
meaning.
@sa dilate, erode, getStructuringElement

@ -308,7 +308,7 @@ LineAA( Mat& img, Point2l pt1, Point2l pt2, const void* color )
int nch = img.channels();
uchar* ptr = img.ptr();
size_t step = img.step;
Size2l size(img.size());
Size2l size0(img.size()), size = size0;
if( !((nch == 1 || nch == 3 || nch == 4) && img.depth() == CV_8U) )
{
@ -316,15 +316,8 @@ LineAA( Mat& img, Point2l pt1, Point2l pt2, const void* color )
return;
}
pt1.x -= XY_ONE*2;
pt1.y -= XY_ONE*2;
pt2.x -= XY_ONE*2;
pt2.y -= XY_ONE*2;
ptr += img.step*2 + 2*nch;
size.width = ((size.width - 5) << XY_SHIFT) + 1;
size.height = ((size.height - 5) << XY_SHIFT) + 1;
size.width <<= XY_SHIFT;
size.height <<= XY_SHIFT;
if( !clipLine( size, pt1, pt2 ))
return;
@ -403,171 +396,160 @@ LineAA( Mat& img, Point2l pt1, Point2l pt2, const void* color )
if( nch == 3 )
{
#define ICV_PUT_POINT() \
#define ICV_PUT_POINT(x, y) \
{ \
uchar* tptr = ptr + (x)*3 + (y)*step; \
_cb = tptr[0]; \
_cb += ((cb - _cb)*a + 127)>> 8;\
_cb += ((cb - _cb)*a + 127)>> 8;\
_cg = tptr[1]; \
_cg += ((cg - _cg)*a + 127)>> 8;\
_cg += ((cg - _cg)*a + 127)>> 8;\
_cr = tptr[2]; \
_cr += ((cr - _cr)*a + 127)>> 8;\
_cr += ((cr - _cr)*a + 127)>> 8;\
tptr[0] = (uchar)_cb; \
tptr[1] = (uchar)_cg; \
tptr[2] = (uchar)_cr; \
}
if( ax > ay )
{
ptr += (pt1.x >> XY_SHIFT) * 3;
int x = (int)(pt1.x >> XY_SHIFT);
while( ecount >= 0 )
for( ; ecount >= 0; x++, pt1.y += y_step, scount++, ecount-- )
{
uchar *tptr = ptr + ((pt1.y >> XY_SHIFT) - 1) * step;
if( (unsigned)x >= (unsigned)size0.width )
continue;
int y = (int)((pt1.y >> XY_SHIFT) - 1);
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.y >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)y < (unsigned)size0.height )
ICV_PUT_POINT(x, y)
tptr += step;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)(y+1) < (unsigned)size0.height )
ICV_PUT_POINT(x, y+1)
tptr += step;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.y += y_step;
ptr += 3;
scount++;
ecount--;
if( (unsigned)(y+2) < (unsigned)size0.height )
ICV_PUT_POINT(x, y+2)
}
}
else
{
ptr += (pt1.y >> XY_SHIFT) * step;
int y = (int)(pt1.y >> XY_SHIFT);
while( ecount >= 0 )
for( ; ecount >= 0; y++, pt1.x += x_step, scount++, ecount-- )
{
uchar *tptr = ptr + ((pt1.x >> XY_SHIFT) - 1) * 3;
if( (unsigned)y >= (unsigned)size0.height )
continue;
int x = (int)((pt1.x >> XY_SHIFT) - 1);
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.x >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)x < (unsigned)size0.width )
ICV_PUT_POINT(x, y)
tptr += 3;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)(x+1) < (unsigned)size0.width )
ICV_PUT_POINT(x+1, y)
tptr += 3;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.x += x_step;
ptr += step;
scount++;
ecount--;
if( (unsigned)(x+2) < (unsigned)size0.width )
ICV_PUT_POINT(x+2, y)
}
}
#undef ICV_PUT_POINT
}
else if(nch == 1)
{
#define ICV_PUT_POINT() \
#define ICV_PUT_POINT(x, y) \
{ \
uchar* tptr = ptr + (x) + (y) * step; \
_cb = tptr[0]; \
_cb += ((cb - _cb)*a + 127)>> 8;\
_cb += ((cb - _cb)*a + 127)>> 8;\
tptr[0] = (uchar)_cb; \
}
if( ax > ay )
{
ptr += (pt1.x >> XY_SHIFT);
int x = (int)(pt1.x >> XY_SHIFT);
while( ecount >= 0 )
for( ; ecount >= 0; x++, pt1.y += y_step, scount++, ecount-- )
{
uchar *tptr = ptr + ((pt1.y >> XY_SHIFT) - 1) * step;
if( (unsigned)x >= (unsigned)size0.width )
continue;
int y = (int)((pt1.y >> XY_SHIFT) - 1);
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.y >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)y < (unsigned)size0.height )
ICV_PUT_POINT(x, y)
tptr += step;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)(y+1) < (unsigned)size0.height )
ICV_PUT_POINT(x, y+1)
tptr += step;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.y += y_step;
ptr++;
scount++;
ecount--;
if( (unsigned)(y+2) < (unsigned)size0.height )
ICV_PUT_POINT(x, y+2)
}
}
else
{
ptr += (pt1.y >> XY_SHIFT) * step;
int y = (int)(pt1.y >> XY_SHIFT);
while( ecount >= 0 )
for( ; ecount >= 0; y++, pt1.x += x_step, scount++, ecount-- )
{
uchar *tptr = ptr + ((pt1.x >> XY_SHIFT) - 1);
if( (unsigned)y >= (unsigned)size0.height )
continue;
int x = (int)((pt1.x >> XY_SHIFT) - 1);
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.x >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)x < (unsigned)size0.width )
ICV_PUT_POINT(x, y)
tptr++;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)(x+1) < (unsigned)size0.width )
ICV_PUT_POINT(x+1, y)
tptr++;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.x += x_step;
ptr += step;
scount++;
ecount--;
if( (unsigned)(x+2) < (unsigned)size0.width )
ICV_PUT_POINT(x+2, y)
}
}
#undef ICV_PUT_POINT
}
else
{
#define ICV_PUT_POINT() \
#define ICV_PUT_POINT(x, y) \
{ \
uchar* tptr = ptr + (x)*4 + (y)*step; \
_cb = tptr[0]; \
_cb += ((cb - _cb)*a + 127)>> 8;\
_cb += ((cb - _cb)*a + 127)>> 8;\
_cg = tptr[1]; \
_cg += ((cg - _cg)*a + 127)>> 8;\
_cg += ((cg - _cg)*a + 127)>> 8;\
_cr = tptr[2]; \
_cr += ((cr - _cr)*a + 127)>> 8;\
_cr += ((cr - _cr)*a + 127)>> 8;\
_ca = tptr[3]; \
_ca += ((ca - _ca)*a + 127)>> 8;\
_ca += ((ca - _ca)*a + 127)>> 8;\
tptr[0] = (uchar)_cb; \
tptr[1] = (uchar)_cg; \
tptr[2] = (uchar)_cr; \
@ -575,66 +557,55 @@ LineAA( Mat& img, Point2l pt1, Point2l pt2, const void* color )
}
if( ax > ay )
{
ptr += (pt1.x >> XY_SHIFT) * 4;
int x = (int)(pt1.x >> XY_SHIFT);
while( ecount >= 0 )
for( ; ecount >= 0; x++, pt1.y += y_step, scount++, ecount-- )
{
uchar *tptr = ptr + ((pt1.y >> XY_SHIFT) - 1) * step;
if( (unsigned)x >= (unsigned)size0.width )
continue;
int y = (int)((pt1.y >> XY_SHIFT) - 1);
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.y >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)y < (unsigned)size0.height )
ICV_PUT_POINT(x, y)
tptr += step;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)(y+1) < (unsigned)size0.height )
ICV_PUT_POINT(x, y+1)
tptr += step;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.y += y_step;
ptr += 4;
scount++;
ecount--;
if( (unsigned)(y+2) < (unsigned)size0.height )
ICV_PUT_POINT(x, y+2)
}
}
else
{
ptr += (pt1.y >> XY_SHIFT) * step;
int y = (int)(pt1.y >> XY_SHIFT);
while( ecount >= 0 )
for( ; ecount >= 0; y++, pt1.x += x_step, scount++, ecount-- )
{
uchar *tptr = ptr + ((pt1.x >> XY_SHIFT) - 1) * 4;
if( (unsigned)y >= (unsigned)size0.height )
continue;
int x = (int)((pt1.x >> XY_SHIFT) - 1);
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.x >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)x < (unsigned)size0.width )
ICV_PUT_POINT(x, y)
tptr += 4;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
if( (unsigned)(x+1) < (unsigned)size0.width )
ICV_PUT_POINT(x+1, y)
tptr += 4;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.x += x_step;
ptr += step;
scount++;
ecount--;
if( (unsigned)(x+2) < (unsigned)size0.width )
ICV_PUT_POINT(x+2, y)
}
}
#undef ICV_PUT_POINT

@ -1674,93 +1674,9 @@ struct HResizeLinearVecU8_X4
}
}
}
else if(cn < 9)
{
const int step = 8;
const int len0 = xmax & -step;
for( ; k <= (count - 2); k+=2 )
{
const uchar *S0 = src[k];
int *D0 = dst[k];
const uchar *S1 = src[k+1];
int *D1 = dst[k+1];
for( dx = 0; dx < len0; dx += cn )
{
v_int16x8 a0 = v_load(alpha+dx*2);
v_int16x8 a1 = v_load(alpha+dx*2 + 8);
v_uint16x8 s0, s1;
v_zip(v_load_expand(S0+xofs[dx]), v_load_expand(S0+xofs[dx]+cn), s0, s1);
v_store(&D0[dx], v_dotprod(v_reinterpret_as_s16(s0), a0));
v_store(&D0[dx+4], v_dotprod(v_reinterpret_as_s16(s1), a1));
v_zip(v_load_expand(S1+xofs[dx]), v_load_expand(S1+xofs[dx]+cn), s0, s1);
v_store(&D1[dx], v_dotprod(v_reinterpret_as_s16(s0), a0));
v_store(&D1[dx+4], v_dotprod(v_reinterpret_as_s16(s1), a1));
}
}
for( ; k < count; k++ )
{
const uchar *S = src[k];
int *D = dst[k];
for( dx = 0; dx < len0; dx += cn )
{
v_int16x8 a0 = v_load(alpha+dx*2);
v_int16x8 a1 = v_load(alpha+dx*2 + 8);
v_uint16x8 s0, s1;
v_zip(v_load_expand(S+xofs[dx]), v_load_expand(S+xofs[dx]+cn), s0, s1);
v_store(&D[dx], v_dotprod(v_reinterpret_as_s16(s0), a0));
v_store(&D[dx+4], v_dotprod(v_reinterpret_as_s16(s1), a1));
}
}
}
else
{
const int step = 16;
const int len0 = (xmax - cn) & -step;
for( ; k <= (count - 2); k+=2 )
{
const uchar *S0 = src[k];
int *D0 = dst[k];
const uchar *S1 = src[k+1];
int *D1 = dst[k+1];
for( dx = 0; dx < len0; dx += step )
{
v_int16x8 a0 = v_load(alpha+dx*2);
v_int16x8 a1 = v_load(alpha+dx*2 + 8);
v_int16x8 a2 = v_load(alpha+dx*2 + 16);
v_int16x8 a3 = v_load(alpha+dx*2 + 24);
v_uint8x16 s01, s23;
v_zip(v_lut(S0, xofs+dx), v_lut(S0+cn, xofs+dx), s01, s23);
v_store(&D0[dx], v_dotprod(v_reinterpret_as_s16(v_expand_low(s01)), a0));
v_store(&D0[dx+4], v_dotprod(v_reinterpret_as_s16(v_expand_high(s01)), a1));
v_store(&D0[dx+8], v_dotprod(v_reinterpret_as_s16(v_expand_low(s23)), a2));
v_store(&D0[dx+12], v_dotprod(v_reinterpret_as_s16(v_expand_high(s23)), a3));
v_zip(v_lut(S1, xofs+dx), v_lut(S1+cn, xofs+dx), s01, s23);
v_store(&D1[dx], v_dotprod(v_reinterpret_as_s16(v_expand_low(s01)), a0));
v_store(&D1[dx+4], v_dotprod(v_reinterpret_as_s16(v_expand_high(s01)), a1));
v_store(&D1[dx+8], v_dotprod(v_reinterpret_as_s16(v_expand_low(s23)), a2));
v_store(&D1[dx+12], v_dotprod(v_reinterpret_as_s16(v_expand_high(s23)), a3));
}
}
for( ; k < count; k++ )
{
const uchar *S = src[k];
int *D = dst[k];
for( dx = 0; dx < len0; dx += step )
{
v_int16x8 a0 = v_load(alpha+dx*2);
v_int16x8 a1 = v_load(alpha+dx*2 + 8);
v_int16x8 a2 = v_load(alpha+dx*2 + 16);
v_int16x8 a3 = v_load(alpha+dx*2 + 24);
v_uint8x16 s01, s23;
v_zip(v_lut(S, xofs+dx), v_lut(S+cn, xofs+dx), s01, s23);
v_store(&D[dx], v_dotprod(v_reinterpret_as_s16(v_expand_low(s01)), a0));
v_store(&D[dx+4], v_dotprod(v_reinterpret_as_s16(v_expand_high(s01)), a1));
v_store(&D[dx+8], v_dotprod(v_reinterpret_as_s16(v_expand_low(s23)), a2));
v_store(&D[dx+12], v_dotprod(v_reinterpret_as_s16(v_expand_high(s23)), a3));
}
}
return 0; // images with channels >4 are out of optimization scope
}
return dx;
}

@ -583,4 +583,14 @@ TEST(Drawing, line)
ASSERT_THROW(line(mat, Point(1,1),Point(99,99),Scalar(255),0), cv::Exception);
}
TEST(Drawing, regression_16308)
{
Mat_<uchar> img(Size(100, 100), (uchar)0);
circle(img, Point(50, 50), 50, 255, 1, LINE_AA);
EXPECT_NE(0, (int)img.at<uchar>(0, 50));
EXPECT_NE(0, (int)img.at<uchar>(50, 0));
EXPECT_NE(0, (int)img.at<uchar>(50, 99));
EXPECT_NE(0, (int)img.at<uchar>(99, 50));
}
}} // namespace

@ -2289,7 +2289,8 @@ bool QRCodeDetector::decodeMulti(
CV_Assert((points.size().width % 4) == 0);
vector< vector< Point2f > > src_points ;
Mat qr_points = points.getMat();
for (int i = 0; i < points.size().width ; i += 4)
qr_points = qr_points.reshape(2, 1);
for (int i = 0; i < qr_points.size().width ; i += 4)
{
vector<Point2f> tempMat = qr_points.colRange(i, i + 4);
if (contourArea(tempMat) > 0.0)

@ -481,6 +481,26 @@ INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Close, testing::ValuesIn(qrcode_i
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Monitor, testing::ValuesIn(qrcode_images_monitor));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Multi, testing::ValuesIn(qrcode_images_multiple));
TEST(Objdetect_QRCode_decodeMulti, decode_regression_16491)
{
#ifdef HAVE_QUIRC
Mat zero_image = Mat::zeros(256, 256, CV_8UC1);
Point corners_[] = {Point(16, 16), Point(128, 16), Point(128, 128), Point(16, 128),
Point(16, 16), Point(128, 16), Point(128, 128), Point(16, 128)};
std::vector<Point> vec_corners;
int array_size = 8;
vec_corners.assign(corners_, corners_ + array_size);
std::vector<cv::String> decoded_info;
std::vector<Mat> straight_barcode;
QRCodeDetector vec_qrcode;
EXPECT_NO_THROW(vec_qrcode.decodeMulti(zero_image, vec_corners, decoded_info, straight_barcode));
Mat mat_corners(2, 4, CV_32SC2, (void*)&vec_corners[0]);
QRCodeDetector mat_qrcode;
EXPECT_NO_THROW(mat_qrcode.decodeMulti(zero_image, mat_corners, decoded_info, straight_barcode));
#endif
}
TEST(Objdetect_QRCode_basic, not_found_qrcode)
{
std::vector<Point> corners;

@ -39,6 +39,11 @@
#import <AVFoundation/AVFoundation.h>
#import <Foundation/NSException.h>
#define CV_CAP_MODE_BGR CV_FOURCC_MACRO('B','G','R','3')
#define CV_CAP_MODE_RGB CV_FOURCC_MACRO('R','G','B','3')
#define CV_CAP_MODE_GRAY CV_FOURCC_MACRO('G','R','E','Y')
#define CV_CAP_MODE_YUYV CV_FOURCC_MACRO('Y', 'U', 'Y', 'V')
/********************** Declaration of class headers ************************/
/*****************************************************************************
@ -128,37 +133,36 @@ class CvCaptureCAM : public CvCapture {
*****************************************************************************/
class CvCaptureFile : public CvCapture {
public:
CvCaptureFile(const char* filename) ;
~CvCaptureFile();
virtual bool grabFrame();
virtual IplImage* retrieveFrame(int);
virtual IplImage* queryFrame();
virtual double getProperty(int property_id) const;
virtual bool setProperty(int property_id, double value);
virtual int didStart();
private:
AVAssetReader *mMovieReader;
char* imagedata;
IplImage* image;
char* bgr_imagedata;
IplImage* bgr_image;
size_t currSize;
IplImage* retrieveFramePixelBuffer();
double getFPS();
int movieWidth;
int movieHeight;
double movieFPS;
double currentFPS;
double movieDuration;
int changedPos;
int started;
public:
CvCaptureFile(const char* filename) ;
~CvCaptureFile();
virtual bool grabFrame();
virtual IplImage* retrieveFrame(int);
virtual double getProperty(int property_id) const;
virtual bool setProperty(int property_id, double value);
virtual int didStart();
private:
AVAsset *mAsset;
AVAssetTrack *mAssetTrack;
AVAssetReader *mAssetReader;
AVAssetReaderTrackOutput *mTrackOutput;
CMSampleBufferRef mCurrentSampleBuffer;
CVImageBufferRef mGrabbedPixels;
IplImage *mDeviceImage;
uint8_t *mOutImagedata;
IplImage *mOutImage;
size_t currSize;
uint32_t mMode;
int mFormat;
bool setupReadingAt(CMTime position);
IplImage* retrieveFramePixelBuffer();
CMTime mFrameTimestamp;
size_t mFrameNum;
int started;
};
@ -771,114 +775,128 @@ fromConnection:(AVCaptureConnection *)connection{
*****************************************************************************/
CvCaptureFile::CvCaptureFile(const char* filename) {
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
mMovieReader = nil;
image = NULL;
bgr_image = NULL;
imagedata = NULL;
bgr_imagedata = NULL;
NSAutoreleasePool *localpool = [[NSAutoreleasePool alloc] init];
mAsset = nil;
mAssetTrack = nil;
mAssetReader = nil;
mTrackOutput = nil;
mDeviceImage = NULL;
mOutImage = NULL;
mOutImagedata = NULL;
currSize = 0;
movieWidth = 0;
movieHeight = 0;
movieFPS = 0;
currentFPS = 0;
movieDuration = 0;
changedPos = 0;
mMode = CV_CAP_MODE_BGR;
mFormat = CV_8UC3;
mCurrentSampleBuffer = NULL;
mGrabbedPixels = NULL;
mFrameTimestamp = kCMTimeZero;
mFrameNum = 0;
started = 0;
AVURLAsset *asset = [AVURLAsset URLAssetWithURL:
[NSURL fileURLWithPath: [NSString stringWithUTF8String:filename]]
options:nil];
AVAssetTrack* videoTrack = nil;
NSArray* tracks = [asset tracksWithMediaType:AVMediaTypeVideo];
if ([tracks count] == 1)
{
videoTrack = [tracks objectAtIndex:0];
mAsset = [[AVAsset assetWithURL:[NSURL fileURLWithPath: @(filename)]] retain];
movieWidth = videoTrack.naturalSize.width;
movieHeight = videoTrack.naturalSize.height;
movieFPS = videoTrack.nominalFrameRate;
if ( mAsset == nil ) {
fprintf(stderr, "OpenCV: Couldn't read movie file \"%s\"\n", filename);
[localpool drain];
started = 0;
return;
}
currentFPS = movieFPS; //Debugging !! should be getFPS();
//Debugging. need to be checked
NSArray *tracks = [mAsset tracksWithMediaType:AVMediaTypeVideo];
if ([tracks count] == 0) {
fprintf(stderr, "OpenCV: Couldn't read video stream from file \"%s\"\n", filename);
[localpool drain];
started = 0;
return;
}
// In ms
movieDuration = videoTrack.timeRange.duration.value/videoTrack.timeRange.duration.timescale * 1000;
mAssetTrack = [tracks[0] retain];
started = 1;
NSError* error = nil;
mMovieReader = [[AVAssetReader alloc] initWithAsset:asset error:&error];
if (error)
NSLog(@"%@", [error localizedDescription]);
NSDictionary* videoSettings =
[NSDictionary dictionaryWithObject:[NSNumber numberWithUnsignedInt:kCVPixelFormatType_32BGRA]
forKey:(NSString*)kCVPixelBufferPixelFormatTypeKey];
[mMovieReader addOutput:[AVAssetReaderTrackOutput
assetReaderTrackOutputWithTrack:videoTrack
outputSettings:videoSettings]];
[mMovieReader startReading];
if ( ! setupReadingAt(kCMTimeZero) ) {
fprintf(stderr, "OpenCV: Couldn't read movie file \"%s\"\n", filename);
[localpool drain];
started = 0;
return;
}
/*
// Asynchronously open the video in another thread. Always fail.
[asset loadValuesAsynchronouslyForKeys:[NSArray arrayWithObject:@"tracks"] completionHandler:
^{
// The completion block goes here.
dispatch_async(dispatch_get_main_queue(),
^{
AVAssetTrack* ::videoTrack = nil;
NSArray* ::tracks = [asset tracksWithMediaType:AVMediaTypeVideo];
if ([tracks count] == 1)
{
videoTrack = [tracks objectAtIndex:0];
movieWidth = videoTrack.naturalSize.width;
movieHeight = videoTrack.naturalSize.height;
movieFPS = videoTrack.nominalFrameRate;
currentFPS = movieFPS; //Debugging !! should be getFPS();
//Debugging. need to be checked
movieDuration = videoTrack.timeRange.duration.value/videoTrack.timeRange.duration.timescale * 1000;
started = 1;
[localpool drain];
}
NSError* ::error = nil;
// mMovieReader is a member variable
mMovieReader = [[AVAssetReader alloc] initWithAsset:asset error:&error];
if (error)
NSLog(@"%@", [error localizedDescription]);
NSDictionary* ::videoSettings =
[NSDictionary dictionaryWithObject:[NSNumber numberWithUnsignedInt:kCVPixelFormatType_32BGRA]
forKey:(NSString*)kCVPixelBufferPixelFormatTypeKey];
CvCaptureFile::~CvCaptureFile() {
NSAutoreleasePool *localpool = [[NSAutoreleasePool alloc] init];
free(mOutImagedata);
cvReleaseImage(&mOutImage);
cvReleaseImage(&mDeviceImage);
[mAssetReader release];
[mTrackOutput release];
[mAssetTrack release];
[mAsset release];
CVBufferRelease(mGrabbedPixels);
if ( mCurrentSampleBuffer ) {
CFRelease(mCurrentSampleBuffer);
}
[mMovieReader addOutput:[AVAssetReaderTrackOutput
assetReaderTrackOutputWithTrack:videoTrack
outputSettings:videoSettings]];
[mMovieReader startReading];
[localpool drain];
}
});
}];
*/
bool CvCaptureFile::setupReadingAt(CMTime position) {
if (mAssetReader) {
if (mAssetReader.status == AVAssetReaderStatusReading) {
[mAssetReader cancelReading];
}
[mAssetReader release];
mAssetReader = nil;
}
if (mTrackOutput) {
[mTrackOutput release];
mTrackOutput = nil;
}
[localpool drain];
}
// Capture in a pixel format that can be converted efficiently to the output mode.
OSType pixelFormat;
if (mMode == CV_CAP_MODE_BGR || mMode == CV_CAP_MODE_RGB) {
pixelFormat = kCVPixelFormatType_32BGRA;
mFormat = CV_8UC3;
} else if (mMode == CV_CAP_MODE_GRAY) {
pixelFormat = kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange;
mFormat = CV_8UC1;
} else if (mMode == CV_CAP_MODE_YUYV) {
pixelFormat = kCVPixelFormatType_422YpCbCr8;
mFormat = CV_8UC2;
} else {
fprintf(stderr, "VIDEOIO ERROR: AVF Mac: Unsupported mode: %d\n", mMode);
return false;
}
CvCaptureFile::~CvCaptureFile() {
NSDictionary *settings =
@{
(id)kCVPixelBufferPixelFormatTypeKey: @(pixelFormat)
};
mTrackOutput = [[AVAssetReaderTrackOutput assetReaderTrackOutputWithTrack: mAssetTrack
outputSettings: settings] retain];
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
if (imagedata != NULL) free(imagedata);
if (bgr_imagedata != NULL) free(bgr_imagedata);
cvReleaseImage(&image);
cvReleaseImage(&bgr_image);
[mMovieReader release];
[localpool drain];
if ( !mTrackOutput ) {
fprintf(stderr, "OpenCV: error in [AVAssetReaderTrackOutput assetReaderTrackOutputWithTrack:outputSettings:]\n");
return false;
}
NSError *error = nil;
mAssetReader = [[AVAssetReader assetReaderWithAsset: mAsset
error: &error] retain];
if ( error ) {
fprintf(stderr, "OpenCV: error in [AVAssetReader assetReaderWithAsset:error:]\n");
NSLog(@"OpenCV: %@", error.localizedDescription);
return false;
}
mAssetReader.timeRange = CMTimeRangeMake(position, kCMTimePositiveInfinity);
mFrameTimestamp = position;
mFrameNum = round((mFrameTimestamp.value * mAssetTrack.nominalFrameRate) / double(mFrameTimestamp.timescale));
[mAssetReader addOutput: mTrackOutput];
return [mAssetReader startReading];
}
int CvCaptureFile::didStart() {
@ -886,101 +904,191 @@ int CvCaptureFile::didStart() {
}
bool CvCaptureFile::grabFrame() {
NSAutoreleasePool *localpool = [[NSAutoreleasePool alloc] init];
//everything is done in queryFrame;
currentFPS = movieFPS;
return 1;
/*
double t1 = getProperty(CV_CAP_PROP_POS_MSEC);
[mCaptureSession stepForward];
double t2 = getProperty(CV_CAP_PROP_POS_MSEC);
if (t2>t1 && !changedPos) {
currentFPS = 1000.0/(t2-t1);
} else {
currentFPS = movieFPS;
}
changedPos = 0;
*/
CVBufferRelease(mGrabbedPixels);
if ( mCurrentSampleBuffer ) {
CFRelease(mCurrentSampleBuffer);
}
mCurrentSampleBuffer = [mTrackOutput copyNextSampleBuffer];
mGrabbedPixels = CMSampleBufferGetImageBuffer(mCurrentSampleBuffer);
CVBufferRetain(mGrabbedPixels);
mFrameTimestamp = CMSampleBufferGetOutputPresentationTimeStamp(mCurrentSampleBuffer);
mFrameNum++;
bool isReading = (mAssetReader.status == AVAssetReaderStatusReading);
[localpool drain];
return isReading;
}
IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
if ( ! mGrabbedPixels ) {
return 0;
}
if (mMovieReader.status != AVAssetReaderStatusReading){
NSAutoreleasePool *localpool = [[NSAutoreleasePool alloc] init];
return NULL;
}
CVPixelBufferLockBaseAddress(mGrabbedPixels, 0);
void *baseaddress;
size_t width, height, rowBytes;
OSType pixelFormat = CVPixelBufferGetPixelFormatType(mGrabbedPixels);
AVAssetReaderOutput * output = [mMovieReader.outputs objectAtIndex:0];
CMSampleBufferRef sampleBuffer = [output copyNextSampleBuffer];
if (!sampleBuffer) {
[localpool drain];
return NULL;
if (CVPixelBufferIsPlanar(mGrabbedPixels)) {
baseaddress = CVPixelBufferGetBaseAddressOfPlane(mGrabbedPixels, 0);
width = CVPixelBufferGetWidthOfPlane(mGrabbedPixels, 0);
height = CVPixelBufferGetHeightOfPlane(mGrabbedPixels, 0);
rowBytes = CVPixelBufferGetBytesPerRowOfPlane(mGrabbedPixels, 0);
} else {
baseaddress = CVPixelBufferGetBaseAddress(mGrabbedPixels);
width = CVPixelBufferGetWidth(mGrabbedPixels);
height = CVPixelBufferGetHeight(mGrabbedPixels);
rowBytes = CVPixelBufferGetBytesPerRow(mGrabbedPixels);
}
CVPixelBufferRef frame = CMSampleBufferGetImageBuffer(sampleBuffer);
CVPixelBufferRef pixels = CVBufferRetain(frame);
CVPixelBufferLockBaseAddress(pixels, 0);
if ( rowBytes == 0 ) {
fprintf(stderr, "OpenCV: error: rowBytes == 0\n");
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
CVBufferRelease(mGrabbedPixels);
mGrabbedPixels = NULL;
return 0;
}
uint32_t* baseaddress = (uint32_t*)CVPixelBufferGetBaseAddress(pixels);
size_t width = CVPixelBufferGetWidth(pixels);
size_t height = CVPixelBufferGetHeight(pixels);
size_t rowBytes = CVPixelBufferGetBytesPerRow(pixels);
int outChannels;
if (mMode == CV_CAP_MODE_BGR || mMode == CV_CAP_MODE_RGB) {
outChannels = 3;
} else if (mMode == CV_CAP_MODE_GRAY) {
outChannels = 1;
} else if (mMode == CV_CAP_MODE_YUYV) {
outChannels = 2;
} else {
fprintf(stderr, "VIDEOIO ERROR: AVF Mac: Unsupported mode: %d\n", mMode);
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
CVBufferRelease(mGrabbedPixels);
mGrabbedPixels = NULL;
return 0;
}
if (rowBytes != 0) {
if ( currSize != width*outChannels*height ) {
currSize = width*outChannels*height;
free(mOutImagedata);
mOutImagedata = reinterpret_cast<uint8_t*>(malloc(currSize));
}
if (currSize != rowBytes*height*sizeof(char)) {
currSize = rowBytes*height*sizeof(char);
if (imagedata != NULL) free(imagedata);
if (bgr_imagedata != NULL) free(bgr_imagedata);
imagedata = (char*)malloc(currSize);
bgr_imagedata = (char*)malloc(currSize);
if (mOutImage == NULL) {
mOutImage = cvCreateImageHeader(cvSize((int)width,(int)height), IPL_DEPTH_8U, outChannels);
}
mOutImage->width = int(width);
mOutImage->height = int(height);
mOutImage->nChannels = outChannels;
mOutImage->depth = IPL_DEPTH_8U;
mOutImage->widthStep = int(width*outChannels);
mOutImage->imageData = reinterpret_cast<char *>(mOutImagedata);
mOutImage->imageSize = int(currSize);
int deviceChannels;
int cvtCode;
if ( pixelFormat == kCVPixelFormatType_32BGRA ) {
deviceChannels = 4;
if (mMode == CV_CAP_MODE_BGR) {
cvtCode = CV_BGRA2BGR;
} else if (mMode == CV_CAP_MODE_RGB) {
cvtCode = CV_BGRA2RGB;
} else if (mMode == CV_CAP_MODE_GRAY) {
cvtCode = CV_BGRA2GRAY;
} else {
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
CVBufferRelease(mGrabbedPixels);
mGrabbedPixels = NULL;
fprintf(stderr, "OpenCV: unsupported pixel conversion mode\n");
return 0;
}
memcpy(imagedata, baseaddress, currSize);
if (image == NULL) {
image = cvCreateImageHeader(cvSize((int)width,(int)height), IPL_DEPTH_8U, 4);
} else if ( pixelFormat == kCVPixelFormatType_24RGB ) {
deviceChannels = 3;
if (mMode == CV_CAP_MODE_BGR) {
cvtCode = CV_RGB2BGR;
} else if (mMode == CV_CAP_MODE_RGB) {
cvtCode = 0;
} else if (mMode == CV_CAP_MODE_GRAY) {
cvtCode = CV_RGB2GRAY;
} else {
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
CVBufferRelease(mGrabbedPixels);
mGrabbedPixels = NULL;
fprintf(stderr, "OpenCV: unsupported pixel conversion mode\n");
return 0;
}
image->width = (int)width;
image->height = (int)height;
image->nChannels = 4;
image->depth = IPL_DEPTH_8U;
image->widthStep = (int)rowBytes;
image->imageData = imagedata;
image->imageSize = (int)currSize;
if (bgr_image == NULL) {
bgr_image = cvCreateImageHeader(cvSize((int)width,(int)height), IPL_DEPTH_8U, 3);
} else if ( pixelFormat == kCVPixelFormatType_422YpCbCr8 ) { // 422 (2vuy, UYVY)
deviceChannels = 2;
if (mMode == CV_CAP_MODE_BGR) {
cvtCode = CV_YUV2BGR_UYVY;
} else if (mMode == CV_CAP_MODE_RGB) {
cvtCode = CV_YUV2RGB_UYVY;
} else if (mMode == CV_CAP_MODE_GRAY) {
cvtCode = CV_YUV2GRAY_UYVY;
} else if (mMode == CV_CAP_MODE_YUYV) {
cvtCode = -1; // Copy
} else {
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
CVBufferRelease(mGrabbedPixels);
mGrabbedPixels = NULL;
fprintf(stderr, "OpenCV: unsupported pixel conversion mode\n");
return 0;
}
} else if ( pixelFormat == kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange || // 420v
pixelFormat == kCVPixelFormatType_420YpCbCr8BiPlanarFullRange ) { // 420f
height = height * 3 / 2;
deviceChannels = 1;
if (mMode == CV_CAP_MODE_BGR) {
cvtCode = CV_YUV2BGR_YV12;
} else if (mMode == CV_CAP_MODE_RGB) {
cvtCode = CV_YUV2RGB_YV12;
} else if (mMode == CV_CAP_MODE_GRAY) {
cvtCode = CV_YUV2GRAY_420;
} else {
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
CVBufferRelease(mGrabbedPixels);
mGrabbedPixels = NULL;
fprintf(stderr, "OpenCV: unsupported pixel conversion mode\n");
return 0;
}
} else {
char pfBuf[] = { (char)pixelFormat, (char)(pixelFormat >> 8),
(char)(pixelFormat >> 16), (char)(pixelFormat >> 24), '\0' };
fprintf(stderr, "OpenCV: unsupported pixel format '%s'\n", pfBuf);
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
CVBufferRelease(mGrabbedPixels);
mGrabbedPixels = NULL;
return 0;
}
bgr_image->width = (int)width;
bgr_image->height = (int)height;
bgr_image->nChannels = 3;
bgr_image->depth = IPL_DEPTH_8U;
bgr_image->widthStep = (int)rowBytes;
bgr_image->imageData = bgr_imagedata;
bgr_image->imageSize = (int)currSize;
cvCvtColor(image, bgr_image,CV_BGRA2BGR);
if (mDeviceImage == NULL) {
mDeviceImage = cvCreateImageHeader(cvSize(int(width),int(height)), IPL_DEPTH_8U, deviceChannels);
}
mDeviceImage->width = int(width);
mDeviceImage->height = int(height);
mDeviceImage->nChannels = deviceChannels;
mDeviceImage->depth = IPL_DEPTH_8U;
mDeviceImage->widthStep = int(rowBytes);
mDeviceImage->imageData = reinterpret_cast<char *>(baseaddress);
mDeviceImage->imageSize = int(rowBytes*height);
if (cvtCode == -1) {
cv::cvarrToMat(mDeviceImage).copyTo(cv::cvarrToMat(mOutImage));
} else {
cvCvtColor(mDeviceImage, mOutImage, cvtCode);
}
CVPixelBufferUnlockBaseAddress(pixels, 0);
CVBufferRelease(pixels);
CMSampleBufferInvalidate(sampleBuffer);
CFRelease(sampleBuffer);
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
[localpool drain];
return bgr_image;
return mOutImage;
}
@ -988,123 +1096,88 @@ IplImage* CvCaptureFile::retrieveFrame(int) {
return retrieveFramePixelBuffer();
}
IplImage* CvCaptureFile::queryFrame() {
grabFrame();
return retrieveFrame(0);
}
double CvCaptureFile::getProperty(int property_id) const{
if (mAsset == nil) return 0;
double CvCaptureFile::getFPS() {
CMTime t;
/*
if (mCaptureSession == nil) return 0;
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
double now = getProperty(CV_CAP_PROP_POS_MSEC);
double retval = 0;
if (now == 0) {
[mCaptureSession stepForward];
double t2 = getProperty(CV_CAP_PROP_POS_MSEC);
[mCaptureSession stepBackward];
retval = 1000.0 / (t2-now);
} else {
[mCaptureSession stepBackward];
double t2 = getProperty(CV_CAP_PROP_POS_MSEC);
[mCaptureSession stepForward];
retval = 1000.0 / (now-t2);
}
[localpool drain];
return retval;
*/
return 30.0; //TODO: Debugging
switch (property_id) {
case CV_CAP_PROP_POS_MSEC:
return mFrameTimestamp.value * 1000.0 / mFrameTimestamp.timescale;
case CV_CAP_PROP_POS_FRAMES:
return mAssetTrack.nominalFrameRate > 0 ? mFrameNum : 0;
case CV_CAP_PROP_POS_AVI_RATIO:
t = [mAsset duration];
return (mFrameTimestamp.value * t.timescale) / double(mFrameTimestamp.timescale * t.value);
case CV_CAP_PROP_FRAME_WIDTH:
return mAssetTrack.naturalSize.width;
case CV_CAP_PROP_FRAME_HEIGHT:
return mAssetTrack.naturalSize.height;
case CV_CAP_PROP_FPS:
return mAssetTrack.nominalFrameRate;
case CV_CAP_PROP_FRAME_COUNT:
t = [mAsset duration];
return round((t.value * mAssetTrack.nominalFrameRate) / double(t.timescale));
case CV_CAP_PROP_FORMAT:
return mFormat;
case CV_CAP_PROP_FOURCC:
return mMode;
default:
break;
}
return 0;
}
double CvCaptureFile::getProperty(int /*property_id*/) const{
bool CvCaptureFile::setProperty(int property_id, double value) {
if (mAsset == nil) return false;
/*
if (mCaptureSession == nil) return 0;
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
double retval;
QTTime t;
switch (property_id) {
case CV_CAP_PROP_POS_MSEC:
[[mCaptureSession attributeForKey:QTMovieCurrentTimeAttribute] getValue:&t];
retval = t.timeValue * 1000.0 / t.timeScale;
break;
case CV_CAP_PROP_POS_FRAMES:
retval = movieFPS * getProperty(CV_CAP_PROP_POS_MSEC) / 1000;
break;
case CV_CAP_PROP_POS_AVI_RATIO:
retval = (getProperty(CV_CAP_PROP_POS_MSEC)) / (movieDuration );
break;
case CV_CAP_PROP_FRAME_WIDTH:
retval = movieWidth;
break;
case CV_CAP_PROP_FRAME_HEIGHT:
retval = movieHeight;
break;
case CV_CAP_PROP_FPS:
retval = currentFPS;
break;
case CV_CAP_PROP_FOURCC:
default:
retval = 0;
}
[localpool drain];
return retval;
*/
return 1.0; //Debugging
}
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
bool CvCaptureFile::setProperty(int /*property_id*/, double /*value*/) {
bool retval = false;
CMTime t;
/*
if (mCaptureSession == nil) return false;
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
bool retval = false;
QTTime t;
double ms;
switch (property_id) {
case CV_CAP_PROP_POS_MSEC:
[[mCaptureSession attributeForKey:QTMovieCurrentTimeAttribute] getValue:&t];
t.timeValue = value * t.timeScale / 1000;
[mCaptureSession setCurrentTime:t];
changedPos = 1;
retval = true;
break;
case CV_CAP_PROP_POS_FRAMES:
ms = (value*1000.0 -5)/ currentFPS;
retval = setProperty(CV_CAP_PROP_POS_MSEC, ms);
break;
case CV_CAP_PROP_POS_AVI_RATIO:
ms = value * movieDuration;
retval = setProperty(CV_CAP_PROP_POS_MSEC, ms);
break;
case CV_CAP_PROP_FRAME_WIDTH:
//retval = movieWidth;
break;
case CV_CAP_PROP_FRAME_HEIGHT:
//retval = movieHeight;
break;
case CV_CAP_PROP_FPS:
//etval = currentFPS;
break;
case CV_CAP_PROP_FOURCC:
default:
retval = false;
switch (property_id) {
case CV_CAP_PROP_POS_MSEC:
t = mAsset.duration;
t.value = value * t.timescale / 1000;
retval = setupReadingAt(t);
break;
case CV_CAP_PROP_POS_FRAMES:
retval = mAssetTrack.nominalFrameRate > 0 ? setupReadingAt(CMTimeMake(value, mAssetTrack.nominalFrameRate)) : false;
break;
case CV_CAP_PROP_POS_AVI_RATIO:
t = mAsset.duration;
t.value = round(t.value * value);
retval = setupReadingAt(t);
break;
case CV_CAP_PROP_FOURCC:
uint32_t mode;
mode = cvRound(value);
if (mMode == mode) {
retval = true;
} else {
switch (mode) {
case CV_CAP_MODE_BGR:
case CV_CAP_MODE_RGB:
case CV_CAP_MODE_GRAY:
case CV_CAP_MODE_YUYV:
mMode = mode;
retval = setupReadingAt(mFrameTimestamp);
break;
default:
fprintf(stderr, "VIDEOIO ERROR: AVF iOS: Unsupported mode: %d\n", mode);
retval=false;
break;
}
}
break;
default:
break;
}
[localpool drain];
return retval;
*/
return true;
}

Loading…
Cancel
Save