|
|
|
@ -563,116 +563,6 @@ typedef Scalar_<double> Scalar; |
|
|
|
|
|
|
|
|
|
CV_EXPORTS void scalarToRawData(const Scalar& s, void* buf, int type, int unroll_to=0); |
|
|
|
|
|
|
|
|
|
//////////////////////////////// Range /////////////////////////////////
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
The 2D range class
|
|
|
|
|
|
|
|
|
|
This is the class used to specify a continuous subsequence, i.e. part of a contour, or a column span in a matrix. |
|
|
|
|
*/ |
|
|
|
|
class CV_EXPORTS Range |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
Range(); |
|
|
|
|
Range(int _start, int _end); |
|
|
|
|
Range(const CvSlice& slice); |
|
|
|
|
int size() const; |
|
|
|
|
bool empty() const; |
|
|
|
|
static Range all(); |
|
|
|
|
operator CvSlice() const; |
|
|
|
|
|
|
|
|
|
int start, end; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/////////////////////////////// KeyPoint ////////////////////////////////
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
The Keypoint Class |
|
|
|
|
|
|
|
|
|
The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as |
|
|
|
|
Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc. |
|
|
|
|
|
|
|
|
|
The keypoint is characterized by the 2D position, scale |
|
|
|
|
(proportional to the diameter of the neighborhood that needs to be taken into account), |
|
|
|
|
orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor |
|
|
|
|
(usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using |
|
|
|
|
cv::KDTree or another method. |
|
|
|
|
*/ |
|
|
|
|
class CV_EXPORTS_W_SIMPLE KeyPoint |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
//! the default constructor
|
|
|
|
|
CV_WRAP KeyPoint(); |
|
|
|
|
//! the full constructor
|
|
|
|
|
KeyPoint(Point2f _pt, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); |
|
|
|
|
//! another form of the full constructor
|
|
|
|
|
CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); |
|
|
|
|
|
|
|
|
|
size_t hash() const; |
|
|
|
|
|
|
|
|
|
//! converts vector of keypoints to vector of points
|
|
|
|
|
static void convert(const std::vector<KeyPoint>& keypoints, |
|
|
|
|
CV_OUT std::vector<Point2f>& points2f, |
|
|
|
|
const std::vector<int>& keypointIndexes=std::vector<int>()); |
|
|
|
|
//! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
|
|
|
|
|
static void convert(const std::vector<Point2f>& points2f, |
|
|
|
|
CV_OUT std::vector<KeyPoint>& keypoints, |
|
|
|
|
float size=1, float response=1, int octave=0, int class_id=-1); |
|
|
|
|
|
|
|
|
|
//! computes overlap for pair of keypoints;
|
|
|
|
|
//! overlap is a ratio between area of keypoint regions intersection and
|
|
|
|
|
//! area of keypoint regions union (now keypoint region is circle)
|
|
|
|
|
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); |
|
|
|
|
|
|
|
|
|
CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
|
|
|
|
|
CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
|
|
|
|
|
CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable);
|
|
|
|
|
//!< it's in [0,360) degrees and measured relative to
|
|
|
|
|
//!< image coordinate system, ie in clockwise.
|
|
|
|
|
CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
|
|
|
|
|
CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
|
|
|
|
|
CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
inline KeyPoint::KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {} |
|
|
|
|
inline KeyPoint::KeyPoint(Point2f _pt, float _size, float _angle, float _response, int _octave, int _class_id) |
|
|
|
|
: pt(_pt), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} |
|
|
|
|
inline KeyPoint::KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave, int _class_id) |
|
|
|
|
: pt(x, y), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////// DMatch /////////////////////////////////
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors. |
|
|
|
|
*/ |
|
|
|
|
struct CV_EXPORTS_W_SIMPLE DMatch |
|
|
|
|
{ |
|
|
|
|
CV_WRAP DMatch(); |
|
|
|
|
CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance); |
|
|
|
|
CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance); |
|
|
|
|
|
|
|
|
|
CV_PROP_RW int queryIdx; // query descriptor index
|
|
|
|
|
CV_PROP_RW int trainIdx; // train descriptor index
|
|
|
|
|
CV_PROP_RW int imgIdx; // train image index
|
|
|
|
|
|
|
|
|
|
CV_PROP_RW float distance; |
|
|
|
|
|
|
|
|
|
// less is better
|
|
|
|
|
bool operator<(const DMatch &m) const; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
inline DMatch::DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {} |
|
|
|
|
inline DMatch::DMatch(int _queryIdx, int _trainIdx, float _distance) |
|
|
|
|
: queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {} |
|
|
|
|
inline DMatch::DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) |
|
|
|
|
: queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {} |
|
|
|
|
inline bool DMatch::operator<(const DMatch &m) const { return distance < m.distance; } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/////////////////////////////// DataType ////////////////////////////////
|
|
|
|
|
|
|
|
|
|