mirror of https://github.com/opencv/opencv.git
Merge pull request #8754 from berak:fix_py_hog_svm_tut
commit
2186ec7665
2 changed files with 81 additions and 93 deletions
@ -0,0 +1,71 @@ |
||||
import cv2 |
||||
import numpy as np |
||||
|
||||
SZ=20 |
||||
bin_n = 16 # Number of bins |
||||
|
||||
|
||||
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR |
||||
|
||||
## [deskew] |
||||
def deskew(img): |
||||
m = cv2.moments(img) |
||||
if abs(m['mu02']) < 1e-2: |
||||
return img.copy() |
||||
skew = m['mu11']/m['mu02'] |
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) |
||||
img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags) |
||||
return img |
||||
## [deskew] |
||||
|
||||
## [hog] |
||||
def hog(img): |
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) |
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) |
||||
mag, ang = cv2.cartToPolar(gx, gy) |
||||
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16) |
||||
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:] |
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] |
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] |
||||
hist = np.hstack(hists) # hist is a 64 bit vector |
||||
return hist |
||||
## [hog] |
||||
|
||||
img = cv2.imread('digits.png',0) |
||||
if img is None: |
||||
raise Exception("we need the digits.png image from samples/data here !") |
||||
|
||||
|
||||
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)] |
||||
|
||||
# First half is trainData, remaining is testData |
||||
train_cells = [ i[:50] for i in cells ] |
||||
test_cells = [ i[50:] for i in cells] |
||||
|
||||
###### Now training ######################## |
||||
|
||||
deskewed = [map(deskew,row) for row in train_cells] |
||||
hogdata = [map(hog,row) for row in deskewed] |
||||
trainData = np.float32(hogdata).reshape(-1,64) |
||||
responses = np.repeat(np.arange(10),250)[:,np.newaxis] |
||||
|
||||
svm = cv2.ml.SVM_create() |
||||
svm.setKernel(cv2.ml.SVM_LINEAR) |
||||
svm.setType(cv2.ml.SVM_C_SVC) |
||||
svm.setC(2.67) |
||||
svm.setGamma(5.383) |
||||
|
||||
svm.train(trainData, cv2.ml.ROW_SAMPLE, responses) |
||||
svm.save('svm_data.dat') |
||||
|
||||
###### Now testing ######################## |
||||
|
||||
deskewed = [map(deskew,row) for row in test_cells] |
||||
hogdata = [map(hog,row) for row in deskewed] |
||||
testData = np.float32(hogdata).reshape(-1,bin_n*4) |
||||
result = svm.predict(testData)[1] |
||||
|
||||
####### Check Accuracy ######################## |
||||
mask = result==responses |
||||
correct = np.count_nonzero(mask) |
||||
print correct*100.0/result.size |
Loading…
Reference in new issue