mirror of https://github.com/opencv/opencv.git
commit
209f16455d
16 changed files with 2199 additions and 17 deletions
@ -0,0 +1,292 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
#define GPU_PERF_TEST_P(fixture, name, params) \ |
||||
class fixture##_##name : public fixture {\
|
||||
public:\
|
||||
fixture##_##name() {}\
|
||||
protected:\
|
||||
virtual void __cpu();\
|
||||
virtual void __gpu();\
|
||||
virtual void PerfTestBody();\
|
||||
};\
|
||||
TEST_P(fixture##_##name, name /*perf*/){ RunPerfTestBody(); if (PERF_RUN_GPU()) __gpu(); else __cpu();}\
|
||||
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params);\
|
||||
void fixture##_##name::PerfTestBody() |
||||
|
||||
#define RUN_CPU(fixture, name)\ |
||||
void fixture##_##name::__cpu() |
||||
|
||||
#define RUN_GPU(fixture, name)\ |
||||
void fixture##_##name::__gpu() |
||||
|
||||
#define NO_CPU(fixture, name)\ |
||||
void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy";} |
||||
|
||||
namespace { |
||||
struct DetectionLess |
||||
{ |
||||
bool operator()(const cv::gpu::SCascade::Detection& a, |
||||
const cv::gpu::SCascade::Detection& b) const |
||||
{ |
||||
if (a.x != b.x) return a.x < b.x; |
||||
else if (a.y != b.y) return a.y < b.y; |
||||
else if (a.w != b.w) return a.w < b.w; |
||||
else return a.h < b.h; |
||||
} |
||||
}; |
||||
|
||||
cv::Mat sortDetections(cv::gpu::GpuMat& objects) |
||||
{ |
||||
cv::Mat detections(objects); |
||||
|
||||
typedef cv::gpu::SCascade::Detection Detection; |
||||
Detection* begin = (Detection*)(detections.ptr<char>(0)); |
||||
Detection* end = (Detection*)(detections.ptr<char>(0) + detections.cols); |
||||
std::sort(begin, end, DetectionLess()); |
||||
|
||||
return detections; |
||||
} |
||||
} |
||||
|
||||
|
||||
typedef std::tr1::tuple<std::string, std::string> fixture_t; |
||||
typedef perf::TestBaseWithParam<fixture_t> SCascadeTest; |
||||
|
||||
GPU_PERF_TEST_P(SCascadeTest, detect, |
||||
testing::Combine( |
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")))) |
||||
{ } |
||||
|
||||
RUN_GPU(SCascadeTest, detect) |
||||
{ |
||||
cv::Mat cpu = readImage (GET_PARAM(1)); |
||||
ASSERT_FALSE(cpu.empty()); |
||||
cv::gpu::GpuMat colored(cpu); |
||||
|
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1), trois; |
||||
rois.setTo(1); |
||||
cascade.genRoi(rois, trois); |
||||
|
||||
cascade.detect(colored, trois, objectBoxes); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detect(colored, trois, objectBoxes); |
||||
} |
||||
|
||||
SANITY_CHECK(sortDetections(objectBoxes)); |
||||
} |
||||
|
||||
NO_CPU(SCascadeTest, detect) |
||||
|
||||
static cv::Rect getFromTable(int idx) |
||||
{ |
||||
static const cv::Rect rois[] = |
||||
{ |
||||
cv::Rect( 65 * 4, 20 * 4, 35 * 4, 80 * 4), |
||||
cv::Rect( 95 * 4, 35 * 4, 45 * 4, 40 * 4), |
||||
cv::Rect( 45 * 4, 35 * 4, 45 * 4, 40 * 4), |
||||
cv::Rect( 25 * 4, 27 * 4, 50 * 4, 45 * 4), |
||||
cv::Rect(100 * 4, 50 * 4, 45 * 4, 40 * 4), |
||||
|
||||
cv::Rect( 60 * 4, 30 * 4, 45 * 4, 40 * 4), |
||||
cv::Rect( 40 * 4, 55 * 4, 50 * 4, 40 * 4), |
||||
cv::Rect( 48 * 4, 37 * 4, 72 * 4, 80 * 4), |
||||
cv::Rect( 48 * 4, 32 * 4, 85 * 4, 58 * 4), |
||||
cv::Rect( 48 * 4, 0 * 4, 32 * 4, 27 * 4) |
||||
}; |
||||
|
||||
return rois[idx]; |
||||
} |
||||
|
||||
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t; |
||||
typedef perf::TestBaseWithParam<roi_fixture_t> SCascadeTestRoi; |
||||
|
||||
GPU_PERF_TEST_P(SCascadeTestRoi, detectInRoi, |
||||
testing::Combine( |
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
||||
testing::Range(0, 5))) |
||||
{} |
||||
|
||||
RUN_GPU(SCascadeTestRoi, detectInRoi) |
||||
{ |
||||
cv::Mat cpu = readImage (GET_PARAM(1)); |
||||
ASSERT_FALSE(cpu.empty()); |
||||
cv::gpu::GpuMat colored(cpu); |
||||
|
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(colored.size(), CV_8UC1); |
||||
rois.setTo(0); |
||||
|
||||
int nroi = GET_PARAM(2); |
||||
cv::RNG rng; |
||||
for (int i = 0; i < nroi; ++i) |
||||
{ |
||||
cv::Rect r = getFromTable(rng(10)); |
||||
cv::gpu::GpuMat sub(rois, r); |
||||
sub.setTo(1); |
||||
} |
||||
|
||||
cv::gpu::GpuMat trois; |
||||
cascade.genRoi(rois, trois); |
||||
|
||||
cascade.detect(colored, trois, objectBoxes); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detect(colored, trois, objectBoxes); |
||||
} |
||||
|
||||
SANITY_CHECK(sortDetections(objectBoxes)); |
||||
} |
||||
|
||||
NO_CPU(SCascadeTestRoi, detectInRoi) |
||||
|
||||
|
||||
GPU_PERF_TEST_P(SCascadeTestRoi, detectEachRoi, |
||||
testing::Combine( |
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
||||
testing::Range(0, 10))) |
||||
{} |
||||
|
||||
RUN_GPU(SCascadeTestRoi, detectEachRoi) |
||||
{ |
||||
cv::Mat cpu = readImage (GET_PARAM(1)); |
||||
ASSERT_FALSE(cpu.empty()); |
||||
cv::gpu::GpuMat colored(cpu); |
||||
|
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(colored.size(), CV_8UC1); |
||||
rois.setTo(0); |
||||
|
||||
int idx = GET_PARAM(2); |
||||
cv::Rect r = getFromTable(idx); |
||||
cv::gpu::GpuMat sub(rois, r); |
||||
sub.setTo(1); |
||||
|
||||
cv::gpu::GpuMat trois; |
||||
cascade.genRoi(rois, trois); |
||||
|
||||
cascade.detect(colored, trois, objectBoxes); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detect(colored, trois, objectBoxes); |
||||
} |
||||
|
||||
SANITY_CHECK(sortDetections(objectBoxes)); |
||||
} |
||||
|
||||
NO_CPU(SCascadeTestRoi, detectEachRoi) |
||||
|
||||
GPU_PERF_TEST_P(SCascadeTest, detectOnIntegral, |
||||
testing::Combine( |
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
||||
testing::Values(std::string("cv/cascadeandhog/integrals.xml")))) |
||||
{ } |
||||
|
||||
static std::string itoa(long i) |
||||
{ |
||||
static char s[65]; |
||||
sprintf(s, "%ld", i); |
||||
return std::string(s); |
||||
} |
||||
|
||||
RUN_GPU(SCascadeTest, detectOnIntegral) |
||||
{ |
||||
cv::FileStorage fsi(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ); |
||||
ASSERT_TRUE(fsi.isOpened()); |
||||
|
||||
cv::gpu::GpuMat hogluv(121 * 10, 161, CV_32SC1); |
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cv::Mat channel; |
||||
fsi[std::string("channel") + itoa(i)] >> channel; |
||||
cv::gpu::GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121)); |
||||
gchannel.upload(channel); |
||||
} |
||||
|
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(cv::Size(640, 480), CV_8UC1), trois; |
||||
rois.setTo(1); |
||||
cascade.genRoi(rois, trois); |
||||
|
||||
cascade.detect(hogluv, trois, objectBoxes); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detect(hogluv, trois, objectBoxes); |
||||
} |
||||
|
||||
SANITY_CHECK(sortDetections(objectBoxes)); |
||||
} |
||||
|
||||
NO_CPU(SCascadeTest, detectOnIntegral) |
||||
|
||||
GPU_PERF_TEST_P(SCascadeTest, detectStream, |
||||
testing::Combine( |
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")))) |
||||
{ } |
||||
|
||||
RUN_GPU(SCascadeTest, detectStream) |
||||
{ |
||||
cv::Mat cpu = readImage (GET_PARAM(1)); |
||||
ASSERT_FALSE(cpu.empty()); |
||||
cv::gpu::GpuMat colored(cpu); |
||||
|
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1), trois; |
||||
rois.setTo(1); |
||||
|
||||
cv::gpu::Stream s; |
||||
|
||||
cascade.genRoi(rois, trois, s); |
||||
|
||||
cascade.detect(colored, trois, objectBoxes, s); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detect(colored, trois, objectBoxes, s); |
||||
} |
||||
|
||||
cudaDeviceSynchronize(); |
||||
|
||||
SANITY_CHECK(sortDetections(objectBoxes)); |
||||
} |
||||
|
||||
NO_CPU(SCascadeTest, detectStream) |
@ -0,0 +1,370 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include <opencv2/gpu/device/common.hpp> |
||||
|
||||
#include <icf.hpp> |
||||
#include <float.h> |
||||
#include <stdio.h> |
||||
|
||||
namespace cv { namespace gpu { namespace device { |
||||
namespace icf { |
||||
|
||||
// ToDo: use textures or uncached load instruction. |
||||
__global__ void magToHist(const uchar* __restrict__ mag, |
||||
const float* __restrict__ angle, const int angPitch, |
||||
uchar* __restrict__ hog, const int hogPitch, const int fh) |
||||
{ |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
|
||||
const int bin = (int)(angle[y * angPitch + x]); |
||||
const uchar val = mag[y * hogPitch + x]; |
||||
hog[((fh * bin) + y) * hogPitch + x] = val; |
||||
} |
||||
|
||||
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle, |
||||
const int fw, const int fh, const int bins, cudaStream_t stream ) |
||||
{ |
||||
const uchar* mag = (const uchar*)hogluv.ptr(fh * bins); |
||||
uchar* hog = (uchar*)hogluv.ptr(); |
||||
const float* angle = (const float*)nangle.ptr(); |
||||
|
||||
dim3 block(32, 8); |
||||
dim3 grid(fw / 32, fh / 8); |
||||
|
||||
magToHist<<<grid, block, 0, stream>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step, fh); |
||||
if (!stream) |
||||
{ |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ float overlapArea(const Detection &a, const Detection &b) |
||||
{ |
||||
int w = ::min(a.x + a.w, b.x + b.w) - ::max(a.x, b.x); |
||||
int h = ::min(a.y + a.h, b.y + b.h) - ::max(a.y, b.y); |
||||
|
||||
return (w < 0 || h < 0)? 0.f : (float)(w * h); |
||||
} |
||||
|
||||
texture<uint4, cudaTextureType2D, cudaReadModeElementType> tdetections; |
||||
|
||||
__global__ void overlap(const uint* n, uchar* overlaps) |
||||
{ |
||||
const int idx = threadIdx.x; |
||||
const int total = *n; |
||||
|
||||
for (int i = idx + 1; i < total; i += 192) |
||||
{ |
||||
const uint4 _a = tex2D(tdetections, i, 0); |
||||
const Detection& a = *((Detection*)(&_a)); |
||||
bool excluded = false; |
||||
|
||||
for (int j = i + 1; j < total; ++j) |
||||
{ |
||||
const uint4 _b = tex2D(tdetections, j, 0); |
||||
const Detection& b = *((Detection*)(&_b)); |
||||
float ovl = overlapArea(a, b) / ::min(a.w * a.h, b.w * b.h); |
||||
|
||||
if (ovl > 0.65f) |
||||
{ |
||||
int suppessed = (a.confidence > b.confidence)? j : i; |
||||
overlaps[suppessed] = 1; |
||||
excluded = excluded || (suppessed == i); |
||||
} |
||||
|
||||
if (__all(excluded)) break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
__global__ void collect(const uint* n, uchar* overlaps, uint* ctr, uint4* suppressed) |
||||
{ |
||||
const int idx = threadIdx.x; |
||||
const int total = *n; |
||||
|
||||
for (int i = idx; i < total; i += 192) |
||||
{ |
||||
if (!overlaps[i]) |
||||
{ |
||||
int oidx = atomicInc(ctr, 50); |
||||
suppressed[oidx] = tex2D(tdetections, i + 1, 0); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections, |
||||
PtrStepSzb suppressed, cudaStream_t stream) |
||||
{ |
||||
int block = 192; |
||||
int grid = 1; |
||||
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uint4>(); |
||||
size_t offset; |
||||
cudaSafeCall( cudaBindTexture2D(&offset, tdetections, objects.data, desc, objects.cols / sizeof(uint4), objects.rows, objects.step)); |
||||
|
||||
overlap<<<grid, block>>>((uint*)ndetections.ptr(0), (uchar*)overlaps.ptr(0)); |
||||
collect<<<grid, block>>>((uint*)ndetections.ptr(0), (uchar*)overlaps.ptr(0), (uint*)suppressed.ptr(0), ((uint4*)suppressed.ptr(0)) + 1); |
||||
|
||||
if (!stream) |
||||
{ |
||||
cudaSafeCall( cudaGetLastError()); |
||||
cudaSafeCall( cudaDeviceSynchronize()); |
||||
} |
||||
} |
||||
|
||||
template<typename Policy> |
||||
struct PrefixSum |
||||
{ |
||||
__device static void apply(float& impact) |
||||
{ |
||||
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 |
||||
#pragma unroll |
||||
// scan on shuffl functions |
||||
for (int i = 1; i < Policy::WARP; i *= 2) |
||||
{ |
||||
const float n = __shfl_up(impact, i, Policy::WARP); |
||||
|
||||
if (threadIdx.x >= i) |
||||
impact += n; |
||||
} |
||||
#else |
||||
__shared__ volatile float ptr[Policy::STA_X * Policy::STA_Y]; |
||||
|
||||
const int idx = threadIdx.y * Policy::STA_X + threadIdx.x; |
||||
|
||||
ptr[idx] = impact; |
||||
|
||||
if ( threadIdx.x >= 1) ptr [idx ] = (ptr [idx - 1] + ptr [idx]); |
||||
if ( threadIdx.x >= 2) ptr [idx ] = (ptr [idx - 2] + ptr [idx]); |
||||
if ( threadIdx.x >= 4) ptr [idx ] = (ptr [idx - 4] + ptr [idx]); |
||||
if ( threadIdx.x >= 8) ptr [idx ] = (ptr [idx - 8] + ptr [idx]); |
||||
if ( threadIdx.x >= 16) ptr [idx ] = (ptr [idx - 16] + ptr [idx]); |
||||
|
||||
impact = ptr[idx]; |
||||
#endif |
||||
} |
||||
}; |
||||
|
||||
texture<int, cudaTextureType2D, cudaReadModeElementType> thogluv; |
||||
|
||||
template<bool isUp> |
||||
__device__ __forceinline__ float rescale(const Level& level, Node& node) |
||||
{ |
||||
uchar4& scaledRect = node.rect; |
||||
float relScale = level.relScale; |
||||
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y); |
||||
|
||||
// rescale |
||||
scaledRect.x = __float2int_rn(relScale * scaledRect.x); |
||||
scaledRect.y = __float2int_rn(relScale * scaledRect.y); |
||||
scaledRect.z = __float2int_rn(relScale * scaledRect.z); |
||||
scaledRect.w = __float2int_rn(relScale * scaledRect.w); |
||||
|
||||
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y); |
||||
|
||||
const float expected_new_area = farea * relScale * relScale; |
||||
float approx = (sarea == 0)? 1: __fdividef(sarea, expected_new_area); |
||||
|
||||
float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6]; |
||||
|
||||
return rootThreshold; |
||||
} |
||||
|
||||
template<> |
||||
__device__ __forceinline__ float rescale<true>(const Level& level, Node& node) |
||||
{ |
||||
uchar4& scaledRect = node.rect; |
||||
float relScale = level.relScale; |
||||
float farea = scaledRect.z * scaledRect.w; |
||||
|
||||
// rescale |
||||
scaledRect.x = __float2int_rn(relScale * scaledRect.x); |
||||
scaledRect.y = __float2int_rn(relScale * scaledRect.y); |
||||
scaledRect.z = __float2int_rn(relScale * scaledRect.z); |
||||
scaledRect.w = __float2int_rn(relScale * scaledRect.w); |
||||
|
||||
float sarea = scaledRect.z * scaledRect.w; |
||||
|
||||
const float expected_new_area = farea * relScale * relScale; |
||||
float approx = __fdividef(sarea, expected_new_area); |
||||
|
||||
float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6]; |
||||
|
||||
return rootThreshold; |
||||
} |
||||
|
||||
template<bool isUp> |
||||
__device__ __forceinline__ int get(int x, int y, uchar4 area) |
||||
{ |
||||
int a = tex2D(thogluv, x + area.x, y + area.y); |
||||
int b = tex2D(thogluv, x + area.z, y + area.y); |
||||
int c = tex2D(thogluv, x + area.z, y + area.w); |
||||
int d = tex2D(thogluv, x + area.x, y + area.w); |
||||
|
||||
return (a - b + c - d); |
||||
} |
||||
|
||||
template<> |
||||
__device__ __forceinline__ int get<true>(int x, int y, uchar4 area) |
||||
{ |
||||
x += area.x; |
||||
y += area.y; |
||||
int a = tex2D(thogluv, x, y); |
||||
int b = tex2D(thogluv, x + area.z, y); |
||||
int c = tex2D(thogluv, x + area.z, y + area.w); |
||||
int d = tex2D(thogluv, x, y + area.w); |
||||
|
||||
return (a - b + c - d); |
||||
} |
||||
|
||||
texture<float2, cudaTextureType2D, cudaReadModeElementType> troi; |
||||
|
||||
template<typename Policy> |
||||
template<bool isUp> |
||||
__device void CascadeInvoker<Policy>::detect(Detection* objects, const uint ndetections, uint* ctr, const int downscales) const |
||||
{ |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
const int x = blockIdx.x; |
||||
|
||||
// load Lavel |
||||
__shared__ Level level; |
||||
|
||||
// check POI |
||||
__shared__ volatile char roiCache[Policy::STA_Y]; |
||||
|
||||
if (!threadIdx.y && !threadIdx.x) |
||||
((float2*)roiCache)[threadIdx.x] = tex2D(troi, blockIdx.y, x); |
||||
|
||||
__syncthreads(); |
||||
|
||||
if (!roiCache[threadIdx.y]) return; |
||||
|
||||
if (!threadIdx.x) |
||||
level = levels[downscales + blockIdx.z]; |
||||
|
||||
if(x >= level.workRect.x || y >= level.workRect.y) return; |
||||
|
||||
int st = level.octave * level.step; |
||||
const int stEnd = st + level.step; |
||||
|
||||
const int hogluvStep = gridDim.y * Policy::STA_Y; |
||||
float confidence = 0.f; |
||||
for(; st < stEnd; st += Policy::WARP) |
||||
{ |
||||
const int nId = (st + threadIdx.x) * 3; |
||||
|
||||
Node node = nodes[nId]; |
||||
|
||||
float threshold = rescale<isUp>(level, node); |
||||
int sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect); |
||||
|
||||
int next = 1 + (int)(sum >= threshold); |
||||
|
||||
node = nodes[nId + next]; |
||||
threshold = rescale<isUp>(level, node); |
||||
sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect); |
||||
|
||||
const int lShift = (next - 1) * 2 + (int)(sum >= threshold); |
||||
float impact = leaves[(st + threadIdx.x) * 4 + lShift]; |
||||
|
||||
PrefixSum<Policy>::apply(impact); |
||||
confidence += impact; |
||||
|
||||
if(__any((confidence <= stages[(st + threadIdx.x)]))) st += 2048; |
||||
} |
||||
|
||||
if(!threadIdx.x && st == stEnd && ((confidence - FLT_EPSILON) >= 0)) |
||||
{ |
||||
int idx = atomicInc(ctr, ndetections); |
||||
objects[idx] = Detection(__float2int_rn(x * Policy::SHRINKAGE), |
||||
__float2int_rn(y * Policy::SHRINKAGE), level.objSize.x, level.objSize.y, confidence); |
||||
} |
||||
} |
||||
|
||||
template<typename Policy, bool isUp> |
||||
__global__ void soft_cascade(const CascadeInvoker<Policy> invoker, Detection* objects, const uint n, uint* ctr, const int downs) |
||||
{ |
||||
invoker.template detect<isUp>(objects, n, ctr, downs); |
||||
} |
||||
|
||||
template<typename Policy> |
||||
void CascadeInvoker<Policy>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv, |
||||
PtrStepSz<uchar4> objects, const int downscales, const cudaStream_t& stream) const |
||||
{ |
||||
int fw = roi.rows; |
||||
int fh = roi.cols; |
||||
|
||||
dim3 grid(fw, fh / Policy::STA_Y, downscales); |
||||
|
||||
uint* ctr = (uint*)(objects.ptr(0)); |
||||
Detection* det = ((Detection*)objects.ptr(0)) + 1; |
||||
uint max_det = objects.cols / sizeof(Detection); |
||||
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<int>(); |
||||
cudaSafeCall( cudaBindTexture2D(0, thogluv, hogluv.data, desc, hogluv.cols, hogluv.rows, hogluv.step)); |
||||
|
||||
cudaChannelFormatDesc desc_roi = cudaCreateChannelDesc<typename Policy::roi_type>(); |
||||
cudaSafeCall( cudaBindTexture2D(0, troi, roi.data, desc_roi, roi.cols / Policy::STA_Y, roi.rows, roi.step)); |
||||
|
||||
const CascadeInvoker<Policy> inv = *this; |
||||
|
||||
soft_cascade<Policy, false><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, 0); |
||||
cudaSafeCall( cudaGetLastError()); |
||||
|
||||
grid = dim3(fw, fh / Policy::STA_Y, scales - downscales); |
||||
soft_cascade<Policy, true><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, downscales); |
||||
|
||||
if (!stream) |
||||
{ |
||||
cudaSafeCall( cudaGetLastError()); |
||||
cudaSafeCall( cudaDeviceSynchronize()); |
||||
} |
||||
} |
||||
|
||||
template void CascadeInvoker<GK107PolicyX4>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv, |
||||
PtrStepSz<uchar4> objects, const int downscales, const cudaStream_t& stream) const; |
||||
|
||||
} |
||||
}}} |
@ -0,0 +1,60 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <precomp.hpp> |
||||
|
||||
namespace cv { namespace gpu |
||||
{ |
||||
|
||||
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade", |
||||
obj.info()->addParam(obj, "minScale", obj.minScale); |
||||
obj.info()->addParam(obj, "maxScale", obj.maxScale); |
||||
obj.info()->addParam(obj, "scales", obj.scales); |
||||
obj.info()->addParam(obj, "rejCriteria", obj.rejCriteria)); |
||||
|
||||
bool initModule_gpu(void) |
||||
{ |
||||
Ptr<Algorithm> sc = createSCascade(); |
||||
return sc->info() != 0; |
||||
} |
||||
|
||||
} } |
@ -0,0 +1,153 @@ |
||||
//M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M
|
||||
|
||||
|
||||
#ifndef __OPENCV_ICF_HPP__ |
||||
#define __OPENCV_ICF_HPP__ |
||||
|
||||
#include <opencv2/gpu/device/common.hpp> |
||||
|
||||
#if defined __CUDACC__ |
||||
# define __device __device__ __forceinline__ |
||||
#else |
||||
# define __device |
||||
#endif |
||||
|
||||
|
||||
namespace cv { namespace gpu { namespace device { |
||||
namespace icf { |
||||
|
||||
struct __align__(16) Octave |
||||
{ |
||||
ushort index; |
||||
ushort stages; |
||||
ushort shrinkage; |
||||
ushort2 size; |
||||
float scale; |
||||
|
||||
Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc) |
||||
: index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {} |
||||
}; |
||||
|
||||
struct __align__(8) Level //is actually 24 bytes
|
||||
{ |
||||
int octave; |
||||
int step; |
||||
|
||||
float relScale; |
||||
float scaling[2]; // calculated according to Dollal paper
|
||||
|
||||
// for 640x480 we can not get overflow
|
||||
uchar2 workRect; |
||||
uchar2 objSize; |
||||
|
||||
Level(int idx, const Octave& oct, const float scale, const int w, const int h); |
||||
__device Level(){} |
||||
}; |
||||
|
||||
struct __align__(8) Node |
||||
{ |
||||
uchar4 rect; |
||||
// ushort channel;
|
||||
uint threshold; |
||||
|
||||
enum { THRESHOLD_MASK = 0x0FFFFFFF }; |
||||
|
||||
Node(const uchar4 r, const uint ch, const uint t) : rect(r), threshold(t + (ch << 28)) {} |
||||
}; |
||||
|
||||
struct __align__(16) Detection |
||||
{ |
||||
ushort x; |
||||
ushort y; |
||||
ushort w; |
||||
ushort h; |
||||
float confidence; |
||||
int kind; |
||||
|
||||
Detection(){} |
||||
__device Detection(int _x, int _y, uchar _w, uchar _h, float c) |
||||
: x(_x), y(_y), w(_w), h(_h), confidence(c), kind(0) {}; |
||||
}; |
||||
|
||||
struct GK107PolicyX4 |
||||
{ |
||||
enum {WARP = 32, STA_X = WARP, STA_Y = 8, SHRINKAGE = 4}; |
||||
typedef float2 roi_type; |
||||
static const dim3 block() |
||||
{ |
||||
return dim3(STA_X, STA_Y); |
||||
} |
||||
}; |
||||
|
||||
template<typename Policy> |
||||
struct CascadeInvoker |
||||
{ |
||||
CascadeInvoker(): levels(0), stages(0), nodes(0), leaves(0), scales(0) {} |
||||
|
||||
CascadeInvoker(const PtrStepSzb& _levels, const PtrStepSzf& _stages, |
||||
const PtrStepSzb& _nodes, const PtrStepSzf& _leaves) |
||||
: levels((const Level*)_levels.ptr()), |
||||
stages((const float*)_stages.ptr()), |
||||
nodes((const Node*)_nodes.ptr()), leaves((const float*)_leaves.ptr()), |
||||
scales(_levels.cols / sizeof(Level)) |
||||
{} |
||||
|
||||
const Level* levels; |
||||
const float* stages; |
||||
|
||||
const Node* nodes; |
||||
const float* leaves; |
||||
|
||||
int scales; |
||||
|
||||
void operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, |
||||
const int downscales, const cudaStream_t& stream = 0) const; |
||||
|
||||
template<bool isUp> |
||||
__device void detect(Detection* objects, const uint ndetections, uint* ctr, const int downscales) const; |
||||
}; |
||||
|
||||
} |
||||
}}} |
||||
|
||||
#endif |
@ -0,0 +1,603 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <precomp.hpp> |
||||
#include <opencv2/highgui/highgui.hpp> |
||||
|
||||
#if !defined (HAVE_CUDA) |
||||
|
||||
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); } |
||||
|
||||
cv::gpu::SCascade::~SCascade() { throw_nogpu(); } |
||||
|
||||
bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;} |
||||
|
||||
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); } |
||||
|
||||
void cv::gpu::SCascade::genRoi(InputArray, OutputArray, Stream&) const { throw_nogpu(); } |
||||
|
||||
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); } |
||||
|
||||
#else |
||||
|
||||
#include <icf.hpp> |
||||
|
||||
cv::gpu::device::icf::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h) |
||||
: octave(idx), step(oct.stages), relScale(scale / oct.scale) |
||||
{ |
||||
workRect.x = round(w / (float)oct.shrinkage); |
||||
workRect.y = round(h / (float)oct.shrinkage); |
||||
|
||||
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale); |
||||
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale); |
||||
|
||||
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
|
||||
if (fabs(relScale - 1.f) < FLT_EPSILON) |
||||
scaling[0] = scaling[1] = 1.f; |
||||
else |
||||
{ |
||||
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2)) : 1.f; |
||||
scaling[1] = relScale * relScale; |
||||
} |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace device { |
||||
|
||||
namespace icf { |
||||
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle, |
||||
const int fw, const int fh, const int bins, cudaStream_t stream); |
||||
|
||||
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections, |
||||
PtrStepSzb suppressed, cudaStream_t stream); |
||||
} |
||||
|
||||
namespace imgproc { |
||||
void shfl_integral_gpu_buffered(PtrStepSzb, PtrStepSz<uint4>, PtrStepSz<unsigned int>, int, cudaStream_t); |
||||
|
||||
template <typename T> |
||||
void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, |
||||
PtrStepSzb dst, int interpolation, cudaStream_t stream); |
||||
} |
||||
|
||||
}}} |
||||
|
||||
struct cv::gpu::SCascade::Fields |
||||
{ |
||||
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals) |
||||
{ |
||||
static const char *const SC_STAGE_TYPE = "stageType"; |
||||
static const char *const SC_BOOST = "BOOST"; |
||||
|
||||
static const char *const SC_FEATURE_TYPE = "featureType"; |
||||
static const char *const SC_ICF = "ICF"; |
||||
|
||||
// only Ada Boost supported
|
||||
std::string stageTypeStr = (string)root[SC_STAGE_TYPE]; |
||||
CV_Assert(stageTypeStr == SC_BOOST); |
||||
|
||||
// only HOG-like integral channel features cupported
|
||||
string featureTypeStr = (string)root[SC_FEATURE_TYPE]; |
||||
CV_Assert(featureTypeStr == SC_ICF); |
||||
|
||||
static const char *const SC_ORIG_W = "width"; |
||||
static const char *const SC_ORIG_H = "height"; |
||||
|
||||
int origWidth = (int)root[SC_ORIG_W]; |
||||
int origHeight = (int)root[SC_ORIG_H]; |
||||
|
||||
static const char *const SC_OCTAVES = "octaves"; |
||||
static const char *const SC_STAGES = "stages"; |
||||
static const char *const SC_FEATURES = "features"; |
||||
|
||||
static const char *const SC_WEEK = "weakClassifiers"; |
||||
static const char *const SC_INTERNAL = "internalNodes"; |
||||
static const char *const SC_LEAF = "leafValues"; |
||||
|
||||
static const char *const SC_OCT_SCALE = "scale"; |
||||
static const char *const SC_OCT_STAGES = "stageNum"; |
||||
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor"; |
||||
|
||||
static const char *const SC_STAGE_THRESHOLD = "stageThreshold"; |
||||
|
||||
static const char * const SC_F_CHANNEL = "channel"; |
||||
static const char * const SC_F_RECT = "rect"; |
||||
|
||||
FileNode fn = root[SC_OCTAVES]; |
||||
if (fn.empty()) return false; |
||||
|
||||
using namespace device::icf; |
||||
|
||||
std::vector<Octave> voctaves; |
||||
std::vector<float> vstages; |
||||
std::vector<Node> vnodes; |
||||
std::vector<float> vleaves; |
||||
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end(); |
||||
int feature_offset = 0; |
||||
ushort octIndex = 0; |
||||
ushort shrinkage = 1; |
||||
|
||||
for (; it != it_end; ++it) |
||||
{ |
||||
FileNode fns = *it; |
||||
float scale = (float)fns[SC_OCT_SCALE]; |
||||
|
||||
bool isUPOctave = scale >= 1; |
||||
|
||||
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]); |
||||
ushort2 size; |
||||
size.x = cvRound(origWidth * scale); |
||||
size.y = cvRound(origHeight * scale); |
||||
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]); |
||||
|
||||
Octave octave(octIndex, nstages, shrinkage, size, scale); |
||||
CV_Assert(octave.stages > 0); |
||||
voctaves.push_back(octave); |
||||
|
||||
FileNode ffs = fns[SC_FEATURES]; |
||||
if (ffs.empty()) return false; |
||||
|
||||
FileNodeIterator ftrs = ffs.begin(); |
||||
|
||||
fns = fns[SC_STAGES]; |
||||
if (fn.empty()) return false; |
||||
|
||||
// for each stage (~ decision tree with H = 2)
|
||||
FileNodeIterator st = fns.begin(), st_end = fns.end(); |
||||
for (; st != st_end; ++st ) |
||||
{ |
||||
fns = *st; |
||||
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]); |
||||
|
||||
fns = fns[SC_WEEK]; |
||||
FileNodeIterator ftr = fns.begin(), ft_end = fns.end(); |
||||
for (; ftr != ft_end; ++ftr) |
||||
{ |
||||
fns = (*ftr)[SC_INTERNAL]; |
||||
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end(); |
||||
for (; inIt != inIt_end;) |
||||
{ |
||||
// int feature = (int)(*(inIt +=2)) + feature_offset;
|
||||
inIt +=3; |
||||
// extract feature, Todo:check it
|
||||
uint th = saturate_cast<uint>((float)(*(inIt++))); |
||||
cv::FileNode ftn = (*ftrs)[SC_F_RECT]; |
||||
cv::FileNodeIterator r_it = ftn.begin(); |
||||
uchar4 rect; |
||||
rect.x = saturate_cast<uchar>((int)*(r_it++)); |
||||
rect.y = saturate_cast<uchar>((int)*(r_it++)); |
||||
rect.z = saturate_cast<uchar>((int)*(r_it++)); |
||||
rect.w = saturate_cast<uchar>((int)*(r_it++)); |
||||
|
||||
if (isUPOctave) |
||||
{ |
||||
rect.z -= rect.x; |
||||
rect.w -= rect.y; |
||||
} |
||||
|
||||
uint channel = saturate_cast<uint>((int)(*ftrs)[SC_F_CHANNEL]); |
||||
vnodes.push_back(Node(rect, channel, th)); |
||||
++ftrs; |
||||
} |
||||
|
||||
fns = (*ftr)[SC_LEAF]; |
||||
inIt = fns.begin(), inIt_end = fns.end(); |
||||
for (; inIt != inIt_end; ++inIt) |
||||
vleaves.push_back((float)(*inIt)); |
||||
} |
||||
} |
||||
|
||||
feature_offset += octave.stages * 3; |
||||
++octIndex; |
||||
} |
||||
|
||||
cv::Mat hoctaves(1, voctaves.size() * sizeof(Octave), CV_8UC1, (uchar*)&(voctaves[0])); |
||||
CV_Assert(!hoctaves.empty()); |
||||
|
||||
cv::Mat hstages(cv::Mat(vstages).reshape(1,1)); |
||||
CV_Assert(!hstages.empty()); |
||||
|
||||
cv::Mat hnodes(1, vnodes.size() * sizeof(Node), CV_8UC1, (uchar*)&(vnodes[0]) ); |
||||
CV_Assert(!hnodes.empty()); |
||||
|
||||
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1)); |
||||
CV_Assert(!hleaves.empty()); |
||||
|
||||
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0, |
||||
hoctaves, hstages, hnodes, hleaves); |
||||
fields->voctaves = voctaves; |
||||
fields->createLevels(FRAME_HEIGHT, FRAME_WIDTH); |
||||
|
||||
return fields; |
||||
} |
||||
|
||||
bool check(float mins,float maxs, int scales) |
||||
{ |
||||
bool updated = (minScale == mins) || (maxScale == maxs) || (totals = scales); |
||||
|
||||
minScale = mins; |
||||
maxScale = maxScale; |
||||
totals = scales; |
||||
|
||||
return updated; |
||||
} |
||||
|
||||
int createLevels(const int fh, const int fw) |
||||
{ |
||||
using namespace device::icf; |
||||
std::vector<Level> vlevels; |
||||
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1); |
||||
|
||||
float scale = minScale; |
||||
int dcs = 0; |
||||
for (int sc = 0; sc < totals; ++sc) |
||||
{ |
||||
int width = ::std::max(0.0f, fw - (origObjWidth * scale)); |
||||
int height = ::std::max(0.0f, fh - (origObjHeight * scale)); |
||||
|
||||
float logScale = ::log(scale); |
||||
int fit = fitOctave(voctaves, logScale); |
||||
|
||||
Level level(fit, voctaves[fit], scale, width, height); |
||||
|
||||
if (!width || !height) |
||||
break; |
||||
else |
||||
{ |
||||
vlevels.push_back(level); |
||||
if (voctaves[fit].scale < 1) ++dcs; |
||||
} |
||||
|
||||
if (::fabs(scale - maxScale) < FLT_EPSILON) break; |
||||
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor)); |
||||
} |
||||
|
||||
cv::Mat hlevels = cv::Mat(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) ); |
||||
CV_Assert(!hlevels.empty()); |
||||
levels.upload(hlevels); |
||||
downscales = dcs; |
||||
return dcs; |
||||
} |
||||
|
||||
bool update(int fh, int fw, int shr) |
||||
{ |
||||
if ((fh == luv.rows) && (fw == luv.cols)) return false; |
||||
|
||||
plane.create(fh * (HOG_LUV_BINS + 1), fw, CV_8UC1); |
||||
fplane.create(fh * HOG_BINS, fw, CV_32FC1); |
||||
luv.create(fh, fw, CV_8UC3); |
||||
|
||||
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1); |
||||
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1); |
||||
|
||||
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1); |
||||
hogluv.setTo(cv::Scalar::all(0)); |
||||
|
||||
overlaps.create(1, 5000, CV_8UC1); |
||||
suppressed.create(1, sizeof(Detection) * 51, CV_8UC1); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds, |
||||
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves) |
||||
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds) |
||||
{ |
||||
update(FRAME_HEIGHT, FRAME_WIDTH, shr); |
||||
octaves.upload(hoctaves); |
||||
stages.upload(hstages); |
||||
nodes.upload(hnodes); |
||||
leaves.upload(hleaves); |
||||
} |
||||
|
||||
void detect(const cv::gpu::GpuMat& roi, cv::gpu::GpuMat& objects, Stream& s) const |
||||
{ |
||||
if (s) |
||||
s.enqueueMemSet(objects, 0); |
||||
else |
||||
cudaMemset(objects.data, 0, sizeof(Detection)); |
||||
|
||||
cudaSafeCall( cudaGetLastError()); |
||||
|
||||
device::icf::CascadeInvoker<device::icf::GK107PolicyX4> invoker |
||||
= device::icf::CascadeInvoker<device::icf::GK107PolicyX4>(levels, stages, nodes, leaves); |
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s); |
||||
invoker(roi, hogluv, objects, downscales, stream); |
||||
} |
||||
|
||||
void preprocess(const cv::gpu::GpuMat& colored, Stream& s) |
||||
{ |
||||
if (s) |
||||
s.enqueueMemSet(plane, 0); |
||||
else |
||||
cudaMemset(plane.data, 0, plane.step * plane.rows); |
||||
|
||||
const int fw = colored.cols; |
||||
const int fh = colored.rows; |
||||
|
||||
GpuMat gray(plane, cv::Rect(0, fh * Fields::HOG_LUV_BINS, fw, fh)); |
||||
cv::gpu::cvtColor(colored, gray, CV_BGR2GRAY, s); |
||||
createHogBins(gray ,s); |
||||
|
||||
createLuvBins(colored, s); |
||||
|
||||
integrate(fh, fw, s); |
||||
} |
||||
|
||||
void suppress(GpuMat& objects, Stream& s) |
||||
{ |
||||
GpuMat ndetections = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1)); |
||||
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps); |
||||
|
||||
if (s) |
||||
{ |
||||
s.enqueueMemSet(overlaps, 0); |
||||
s.enqueueMemSet(suppressed, 0); |
||||
} |
||||
else |
||||
{ |
||||
overlaps.setTo(0); |
||||
suppressed.setTo(0); |
||||
} |
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s); |
||||
device::icf::suppress(objects, overlaps, ndetections, suppressed, stream); |
||||
} |
||||
|
||||
private: |
||||
|
||||
typedef std::vector<device::icf::Octave>::const_iterator octIt_t; |
||||
static int fitOctave(const std::vector<device::icf::Octave>& octs, const float& logFactor) |
||||
{ |
||||
float minAbsLog = FLT_MAX; |
||||
int res = 0; |
||||
for (int oct = 0; oct < (int)octs.size(); ++oct) |
||||
{ |
||||
const device::icf::Octave& octave =octs[oct]; |
||||
float logOctave = ::log(octave.scale); |
||||
float logAbsScale = ::fabs(logFactor - logOctave); |
||||
|
||||
if(logAbsScale < minAbsLog) |
||||
{ |
||||
res = oct; |
||||
minAbsLog = logAbsScale; |
||||
} |
||||
} |
||||
return res; |
||||
} |
||||
|
||||
void createHogBins(const cv::gpu::GpuMat& gray, Stream& s) |
||||
{ |
||||
static const int fw = gray.cols; |
||||
static const int fh = gray.rows; |
||||
|
||||
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh)); |
||||
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh)); |
||||
|
||||
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s); |
||||
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s); |
||||
|
||||
GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh)); |
||||
GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh)); |
||||
|
||||
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s); |
||||
|
||||
// normolize magnitude to uchar interval and angles to 6 bins
|
||||
GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh)); |
||||
GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh)); |
||||
|
||||
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2))), nmag, 1, -1, s); |
||||
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s); |
||||
|
||||
//create uchar magnitude
|
||||
GpuMat cmag(plane, cv::Rect(0, fh * Fields::HOG_BINS, fw, fh)); |
||||
if (s) |
||||
s.enqueueConvert(nmag, cmag, CV_8UC1); |
||||
else |
||||
nmag.convertTo(cmag, CV_8UC1); |
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s); |
||||
device::icf::fillBins(plane, nang, fw, fh, Fields::HOG_BINS, stream); |
||||
} |
||||
|
||||
void createLuvBins(const cv::gpu::GpuMat& colored, Stream& s) |
||||
{ |
||||
static const int fw = colored.cols; |
||||
static const int fh = colored.rows; |
||||
|
||||
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s); |
||||
|
||||
std::vector<GpuMat> splited; |
||||
for(int i = 0; i < Fields::LUV_BINS; ++i) |
||||
{ |
||||
splited.push_back(GpuMat(plane, cv::Rect(0, fh * (7 + i), fw, fh))); |
||||
} |
||||
|
||||
cv::gpu::split(luv, splited, s); |
||||
} |
||||
|
||||
void integrate(const int fh, const int fw, Stream& s) |
||||
{ |
||||
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Fields::HOG_LUV_BINS)); |
||||
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s); |
||||
|
||||
if (info.majorVersion() < 3) |
||||
cv::gpu::integralBuffered(shrunk, hogluv, integralBuffer, s); |
||||
else |
||||
{ |
||||
cudaStream_t stream = StreamAccessor::getStream(s); |
||||
device::imgproc::shfl_integral_gpu_buffered(shrunk, integralBuffer, hogluv, 12, stream); |
||||
} |
||||
} |
||||
|
||||
public: |
||||
|
||||
// scales range
|
||||
float minScale; |
||||
float maxScale; |
||||
|
||||
int totals; |
||||
|
||||
int origObjWidth; |
||||
int origObjHeight; |
||||
|
||||
const int shrinkage; |
||||
int downscales; |
||||
|
||||
// preallocated buffer 640x480x10 for hogluv + 640x480 got gray
|
||||
GpuMat plane; |
||||
|
||||
// preallocated buffer for floating point operations
|
||||
GpuMat fplane; |
||||
|
||||
// temporial mat for cvtColor
|
||||
GpuMat luv; |
||||
|
||||
// 160x120x10
|
||||
GpuMat shrunk; |
||||
|
||||
// temporial mat for integrall
|
||||
GpuMat integralBuffer; |
||||
|
||||
// 161x121x10
|
||||
GpuMat hogluv; |
||||
|
||||
// used for area overlap computing during
|
||||
GpuMat overlaps; |
||||
|
||||
// used for suppression
|
||||
GpuMat suppressed; |
||||
|
||||
// Cascade from xml
|
||||
GpuMat octaves; |
||||
GpuMat stages; |
||||
GpuMat nodes; |
||||
GpuMat leaves; |
||||
GpuMat levels; |
||||
|
||||
GpuMat sobelBuf; |
||||
|
||||
GpuMat collected; |
||||
|
||||
std::vector<device::icf::Octave> voctaves; |
||||
|
||||
DeviceInfo info; |
||||
|
||||
enum { BOOST = 0 }; |
||||
enum
|
||||
{ |
||||
FRAME_WIDTH = 640, |
||||
FRAME_HEIGHT = 480, |
||||
HOG_BINS = 6, |
||||
LUV_BINS = 3, |
||||
HOG_LUV_BINS = 10 |
||||
}; |
||||
}; |
||||
|
||||
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int rjf) |
||||
: fields(0), minScale(mins), maxScale(maxs), scales(sc), rejCriteria(rjf) {} |
||||
|
||||
cv::gpu::SCascade::~SCascade() { delete fields; } |
||||
|
||||
bool cv::gpu::SCascade::load(const FileNode& fn) |
||||
{ |
||||
if (fields) delete fields; |
||||
fields = Fields::parseCascade(fn, minScale, maxScale, scales); |
||||
return fields != 0; |
||||
} |
||||
|
||||
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, Stream& s) const |
||||
{ |
||||
CV_Assert(fields); |
||||
const GpuMat colored = image.getGpuMat(); |
||||
|
||||
// only color images are supperted
|
||||
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1); |
||||
|
||||
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat(); |
||||
Fields& flds = *fields; |
||||
|
||||
if (colored.type() == CV_8UC3) |
||||
{ |
||||
if (!flds.update(colored.rows, colored.cols, flds.shrinkage) || flds.check(minScale, maxScale, scales)) |
||||
flds.createLevels(colored.rows, colored.cols); |
||||
flds.preprocess(colored, s); |
||||
} |
||||
else |
||||
{ |
||||
if (s) |
||||
s.enqueueCopy(colored, flds.hogluv); |
||||
else |
||||
colored.copyTo(flds.hogluv); |
||||
} |
||||
|
||||
flds.detect(rois, objects, s); |
||||
|
||||
if (rejCriteria != NO_REJECT) |
||||
{ |
||||
GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows)); |
||||
flds.suppress(objects, s); |
||||
flds.suppressed.copyTo(spr); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::SCascade::genRoi(InputArray _roi, OutputArray _mask, Stream& stream) const |
||||
{ |
||||
CV_Assert(fields); |
||||
int shr = (*fields).shrinkage; |
||||
|
||||
const GpuMat roi = _roi.getGpuMat(); |
||||
_mask.create( roi.cols / shr, roi.rows / shr, roi.type() ); |
||||
GpuMat mask = _mask.getGpuMat(); |
||||
cv::gpu::GpuMat tmp; |
||||
|
||||
cv::gpu::resize(roi, tmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, stream); |
||||
cv::gpu::transpose(tmp, mask, stream); |
||||
} |
||||
|
||||
void cv::gpu::SCascade::read(const FileNode& fn) |
||||
{ |
||||
Algorithm::read(fn); |
||||
} |
||||
|
||||
#endif |
@ -0,0 +1,332 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <test_precomp.hpp> |
||||
#include <time.h> |
||||
|
||||
#ifdef HAVE_CUDA |
||||
using cv::gpu::GpuMat; |
||||
|
||||
// show detection results on input image with cv::imshow
|
||||
// #define SHOW_DETECTIONS
|
||||
|
||||
#if defined SHOW_DETECTIONS |
||||
# define SHOW(res) \ |
||||
cv::imshow(#res, result);\
|
||||
cv::waitKey(0); |
||||
#else |
||||
# define SHOW(res) |
||||
#endif |
||||
|
||||
#define GPU_TEST_P(fixture, name, params) \ |
||||
class fixture##_##name : public fixture { \
|
||||
public: \
|
||||
fixture##_##name() {} \
|
||||
protected: \
|
||||
virtual void body(); \
|
||||
}; \
|
||||
TEST_P(fixture##_##name, name /*none*/){ body();} \
|
||||
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \
|
||||
void fixture##_##name::body() |
||||
|
||||
namespace { |
||||
|
||||
typedef cv::gpu::SCascade::Detection Detection; |
||||
|
||||
static cv::Rect getFromTable(int idx) |
||||
{ |
||||
static const cv::Rect rois[] = |
||||
{ |
||||
cv::Rect( 65 * 4, 20 * 4, 35 * 4, 80 * 4), |
||||
cv::Rect( 95 * 4, 35 * 4, 45 * 4, 40 * 4), |
||||
cv::Rect( 45 * 4, 35 * 4, 45 * 4, 40 * 4), |
||||
cv::Rect( 25 * 4, 27 * 4, 50 * 4, 45 * 4), |
||||
cv::Rect(100 * 4, 50 * 4, 45 * 4, 40 * 4), |
||||
|
||||
cv::Rect( 60 * 4, 30 * 4, 45 * 4, 40 * 4), |
||||
cv::Rect( 40 * 4, 55 * 4, 50 * 4, 40 * 4), |
||||
cv::Rect( 48 * 4, 37 * 4, 72 * 4, 80 * 4), |
||||
cv::Rect( 48 * 4, 32 * 4, 85 * 4, 58 * 4), |
||||
cv::Rect( 48 * 4, 0 * 4, 32 * 4, 27 * 4) |
||||
}; |
||||
|
||||
return rois[idx]; |
||||
} |
||||
|
||||
static std::string itoa(long i) |
||||
{ |
||||
static char s[65]; |
||||
sprintf(s, "%ld", i); |
||||
return std::string(s); |
||||
} |
||||
|
||||
static void print(std::ostream &out, const Detection& d) |
||||
{ |
||||
#if defined SHOW_DETECTIONS |
||||
out << "\x1b[32m[ detection]\x1b[0m (" |
||||
<< std::setw(4) << d.x |
||||
<< " " |
||||
<< std::setw(4) << d.y |
||||
<< ") (" |
||||
<< std::setw(4) << d.w |
||||
<< " " |
||||
<< std::setw(4) << d.h |
||||
<< ") " |
||||
<< std::setw(12) << d.confidence |
||||
<< std::endl; |
||||
#else |
||||
(void)out; (void)d; |
||||
#endif |
||||
} |
||||
|
||||
static void printTotal(std::ostream &out, int detbytes) |
||||
{ |
||||
#if defined SHOW_DETECTIONS |
||||
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(Detection)) << std::endl; |
||||
#else |
||||
(void)out; (void)detbytes; |
||||
#endif |
||||
} |
||||
|
||||
#if defined SHOW_DETECTIONS |
||||
static std::string getImageName(int level) |
||||
{ |
||||
time_t rawtime; |
||||
struct tm * timeinfo; |
||||
char buffer [80]; |
||||
|
||||
time ( &rawtime ); |
||||
timeinfo = localtime ( &rawtime ); |
||||
|
||||
strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo); |
||||
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png"; |
||||
} |
||||
|
||||
static void writeResult(const cv::Mat& result, const int level) |
||||
{ |
||||
std::string path = cv::tempfile(getImageName(level).c_str()); |
||||
cv::imwrite(path, result); |
||||
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestRoi; |
||||
GPU_TEST_P(SCascadeTestRoi, detect, |
||||
testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
||||
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
||||
testing::Range(0, 5))) |
||||
{ |
||||
cv::gpu::setDevice(GET_PARAM(0).deviceID()); |
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2)); |
||||
ASSERT_FALSE(coloredCpu.empty()); |
||||
|
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(colored.size(), CV_8UC1), trois; |
||||
rois.setTo(0); |
||||
|
||||
int nroi = GET_PARAM(3); |
||||
cv::Mat result(coloredCpu); |
||||
cv::RNG rng; |
||||
for (int i = 0; i < nroi; ++i) |
||||
{ |
||||
cv::Rect r = getFromTable(rng(10)); |
||||
GpuMat sub(rois, r); |
||||
sub.setTo(1); |
||||
cv::rectangle(result, r, cv::Scalar(0, 0, 255, 255), 1); |
||||
} |
||||
objectBoxes.setTo(0); |
||||
cascade.genRoi(rois, trois); |
||||
cascade.detect(colored, trois, objectBoxes); |
||||
|
||||
cv::Mat dt(objectBoxes); |
||||
typedef cv::gpu::SCascade::Detection Detection; |
||||
|
||||
Detection* dts = ((Detection*)dt.data) + 1; |
||||
int* count = dt.ptr<int>(0); |
||||
|
||||
printTotal(std::cout, *count); |
||||
|
||||
for (int i = 0; i < *count; ++i) |
||||
{ |
||||
Detection d = dts[i]; |
||||
print(std::cout, d); |
||||
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
||||
} |
||||
|
||||
SHOW(result); |
||||
|
||||
} |
||||
|
||||
TEST(SCascadeTest, readCascade) |
||||
{ |
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml"; |
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
} |
||||
|
||||
typedef ::testing::TestWithParam<cv::gpu::DeviceInfo > SCascadeTestAll; |
||||
GPU_TEST_P(SCascadeTestAll, detect, |
||||
ALL_DEVICES |
||||
) |
||||
{ |
||||
cv::gpu::setDevice(GetParam().deviceID()); |
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() |
||||
+ "../cv/cascadeandhog/bahnhof/image_00000000_0.png"); |
||||
ASSERT_FALSE(coloredCpu.empty()); |
||||
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(colored.size(), CV_8UC1); |
||||
rois.setTo(0); |
||||
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2)); |
||||
sub.setTo(cv::Scalar::all(1)); |
||||
|
||||
cv::gpu::GpuMat trois; |
||||
cascade.genRoi(rois, trois); |
||||
objectBoxes.setTo(0); |
||||
cascade.detect(colored, trois, objectBoxes); |
||||
|
||||
typedef cv::gpu::SCascade::Detection Detection; |
||||
cv::Mat detections(objectBoxes); |
||||
int a = *(detections.ptr<int>(0)); |
||||
ASSERT_EQ(a ,2460); |
||||
} |
||||
|
||||
GPU_TEST_P(SCascadeTestAll, detectOnIntegral, |
||||
ALL_DEVICES |
||||
) |
||||
{ |
||||
cv::gpu::setDevice(GetParam().deviceID()); |
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
std::string intPath = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/integrals.xml"; |
||||
cv::FileStorage fsi(intPath, cv::FileStorage::READ); |
||||
ASSERT_TRUE(fsi.isOpened()); |
||||
|
||||
GpuMat hogluv(121 * 10, 161, CV_32SC1); |
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cv::Mat channel; |
||||
fsi[std::string("channel") + itoa(i)] >> channel; |
||||
GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121)); |
||||
gchannel.upload(channel); |
||||
} |
||||
|
||||
GpuMat objectBoxes(1, 100000, CV_8UC1), rois(cv::Size(640, 480), CV_8UC1); |
||||
rois.setTo(1); |
||||
|
||||
cv::gpu::GpuMat trois; |
||||
cascade.genRoi(rois, trois); |
||||
objectBoxes.setTo(0); |
||||
cascade.detect(hogluv, trois, objectBoxes); |
||||
|
||||
typedef cv::gpu::SCascade::Detection Detection; |
||||
cv::Mat detections(objectBoxes); |
||||
int a = *(detections.ptr<int>(0)); |
||||
|
||||
ASSERT_EQ( a ,1024); |
||||
} |
||||
|
||||
GPU_TEST_P(SCascadeTestAll, detectStream, |
||||
ALL_DEVICES |
||||
) |
||||
{ |
||||
cv::gpu::setDevice(GetParam().deviceID()); |
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
||||
cv::gpu::SCascade cascade; |
||||
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
||||
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() |
||||
+ "../cv/cascadeandhog/bahnhof/image_00000000_0.png"); |
||||
ASSERT_FALSE(coloredCpu.empty()); |
||||
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(colored.size(), CV_8UC1); |
||||
rois.setTo(0); |
||||
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2)); |
||||
sub.setTo(cv::Scalar::all(1)); |
||||
|
||||
cv::gpu::Stream s; |
||||
|
||||
cv::gpu::GpuMat trois; |
||||
cascade.genRoi(rois, trois, s); |
||||
objectBoxes.setTo(0); |
||||
cascade.detect(colored, trois, objectBoxes, s); |
||||
|
||||
cudaDeviceSynchronize(); |
||||
|
||||
typedef cv::gpu::SCascade::Detection Detection; |
||||
cv::Mat detections(objectBoxes); |
||||
int a = *(detections.ptr<int>(0)); |
||||
ASSERT_EQ(a ,2460); |
||||
} |
||||
|
||||
|
||||
#endif |
@ -0,0 +1,106 @@ |
||||
#include <opencv2/gpu/gpu.hpp> |
||||
#include <opencv2/highgui/highgui.hpp> |
||||
#include <iostream> |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
const std::string keys = |
||||
"{help h usage ? | | print this message }" |
||||
"{cascade c | | path to configuration xml }" |
||||
"{frames f | | path to configuration xml }" |
||||
"{min_scale |0.4f | path to configuration xml }" |
||||
"{max_scale |5.0f | path to configuration xml }" |
||||
"{total_scales |55 | path to configuration xml }" |
||||
"{device d |0 | path to configuration xml }" |
||||
; |
||||
|
||||
cv::CommandLineParser parser(argc, argv, keys); |
||||
parser.about("Soft cascade training application."); |
||||
|
||||
if (parser.has("help")) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
|
||||
if (!parser.check()) |
||||
{ |
||||
parser.printErrors(); |
||||
return 1; |
||||
} |
||||
|
||||
cv::gpu::setDevice(parser.get<int>("device")); |
||||
|
||||
std::string cascadePath = parser.get<std::string>("cascade"); |
||||
|
||||
cv::FileStorage fs(cascadePath, cv::FileStorage::READ); |
||||
if(!fs.isOpened()) |
||||
{ |
||||
std::cout << "Soft Cascade file " << cascadePath << " can't be opened." << std::endl << std::flush; |
||||
return 1; |
||||
} |
||||
|
||||
std::cout << "Read cascade from file " << cascadePath << std::endl; |
||||
|
||||
float minScale = parser.get<float>("min_scale"); |
||||
float maxScale = parser.get<float>("max_scale"); |
||||
int scales = parser.get<int>("total_scales"); |
||||
|
||||
using cv::gpu::SCascade; |
||||
SCascade cascade(minScale, maxScale, scales); |
||||
|
||||
if (!cascade.load(fs.getFirstTopLevelNode())) |
||||
{ |
||||
std::cout << "Soft Cascade can't be parsed." << std::endl << std::flush; |
||||
return 1; |
||||
} |
||||
|
||||
std::string frames = parser.get<std::string>("frames"); |
||||
cv::VideoCapture capture(frames); |
||||
if(!capture.isOpened()) |
||||
{ |
||||
std::cout << "Frame source " << frames << " can't be opened." << std::endl << std::flush; |
||||
return 1; |
||||
} |
||||
|
||||
cv::gpu::GpuMat objects(1, sizeof(SCascade::Detection) * 10000, CV_8UC1); |
||||
cv::gpu::printShortCudaDeviceInfo(parser.get<int>("device")); |
||||
for (;;) |
||||
{ |
||||
cv::Mat frame; |
||||
if (!capture.read(frame)) |
||||
{ |
||||
std::cout << "Nothing to read. " << std::endl << std::flush; |
||||
return 0; |
||||
} |
||||
|
||||
cv::gpu::GpuMat dframe(frame), roi(frame.rows, frame.cols, CV_8UC1), trois; |
||||
roi.setTo(cv::Scalar::all(1)); |
||||
cascade.genRoi(roi, trois); |
||||
cascade.detect(dframe, trois, objects); |
||||
|
||||
cv::Mat dt(objects); |
||||
typedef cv::gpu::SCascade::Detection Detection; |
||||
|
||||
Detection* dts = ((Detection*)dt.data) + 1; |
||||
int* count = dt.ptr<int>(0); |
||||
|
||||
std::cout << *count << std::endl; |
||||
|
||||
cv::Mat result; |
||||
frame.copyTo(result); |
||||
|
||||
|
||||
for (int i = 0; i < *count; ++i) |
||||
{ |
||||
Detection d = dts[i]; |
||||
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
||||
} |
||||
|
||||
std::cout << "working..." << std::endl; |
||||
cv::imshow("Soft Cascade demo", result); |
||||
cv::waitKey(10); |
||||
} |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue