Merge pull request #648 from cuda-geek:move-gpu-soft-cascade-to-softcascade-module
commit
1eb34e062c
31 changed files with 1317 additions and 686 deletions
@ -1,59 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv { namespace gpu |
||||
{ |
||||
|
||||
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade", |
||||
obj.info()->addParam(obj, "minScale", obj.minScale); |
||||
obj.info()->addParam(obj, "maxScale", obj.maxScale); |
||||
obj.info()->addParam(obj, "scales", obj.scales)); |
||||
|
||||
bool initModule_gpu(void) |
||||
{ |
||||
Ptr<Algorithm> sc = createSCascade(); |
||||
return sc->info() != 0; |
||||
} |
||||
|
||||
} } |
@ -1,3 +1,3 @@ |
||||
set(the_description "Soft Cascade detection and training") |
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4310 -Wundef -Wsign-promo -Wmissing-declarations -Wmissing-prototypes) |
||||
ocv_define_module(softcascade opencv_core opencv_imgproc opencv_ml) |
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4310) |
@ -0,0 +1,62 @@ |
||||
CUDA version of Soft Cascade Classifier |
||||
======================================== |
||||
|
||||
softcascade::SCascade |
||||
----------------------------------------------- |
||||
.. ocv:class:: softcascade::SCascade : public Algorithm |
||||
|
||||
Implementation of soft (stageless) cascaded detector. :: |
||||
|
||||
class CV_EXPORTS SCascade : public Algorithm |
||||
{ |
||||
struct CV_EXPORTS Detection |
||||
{ |
||||
ushort x; |
||||
ushort y; |
||||
ushort w; |
||||
ushort h; |
||||
float confidence; |
||||
int kind; |
||||
|
||||
enum {PEDESTRIAN = 0}; |
||||
}; |
||||
|
||||
SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejfactor = 1); |
||||
virtual ~SCascade(); |
||||
virtual bool load(const FileNode& fn); |
||||
virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const; |
||||
virtual void genRoi(InputArray roi, OutputArray mask, Stream& stream = Stream::Null()) const; |
||||
}; |
||||
|
||||
|
||||
softcascade::SCascade::~SCascade |
||||
--------------------------------- |
||||
Destructor for SCascade. |
||||
|
||||
.. ocv:function:: softcascade::SCascade::~SCascade() |
||||
|
||||
|
||||
|
||||
softcascade::SCascade::load |
||||
---------------------------- |
||||
Load cascade from FileNode. |
||||
|
||||
.. ocv:function:: bool softcascade::SCascade::load(const FileNode& fn) |
||||
|
||||
:param fn: File node from which the soft cascade are read. |
||||
|
||||
|
||||
|
||||
softcascade::SCascade::detect |
||||
------------------------------ |
||||
Apply cascade to an input frame and return the vector of Decection objcts. |
||||
|
||||
.. ocv:function:: void softcascade::SCascade::detect(InputArray image, InputArray rois, OutputArray objects, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) const |
||||
|
||||
:param image: a frame on which detector will be applied. |
||||
|
||||
:param rois: a regions of interests mask generated by genRoi. Only the objects that fall into one of the regions will be returned. |
||||
|
||||
:param objects: an output array of Detections represented as GpuMat of detections (SCascade::Detection). The first element of the matrix is actually a count of detections. |
||||
|
||||
:param stream: a high-level CUDA stream abstraction used for asynchronous execution. |
@ -0,0 +1,522 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include "opencv2/core/cuda_devptrs.hpp" |
||||
|
||||
namespace cv { namespace softcascade { namespace internal { |
||||
void error(const char *error_string, const char *file, const int line, const char *func); |
||||
}}} |
||||
#if defined(__GNUC__) |
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__) |
||||
#else /* defined(__CUDACC__) || defined(__MSVC__) */ |
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__) |
||||
#endif |
||||
|
||||
static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "") |
||||
{ |
||||
if (cudaSuccess != err) cv::softcascade::internal::error(cudaGetErrorString(err), file, line, func); |
||||
} |
||||
|
||||
__host__ __device__ __forceinline__ int divUp(int total, int grain) |
||||
{ |
||||
return (total + grain - 1) / grain; |
||||
} |
||||
|
||||
namespace cv { namespace softcascade { namespace device |
||||
{ |
||||
// Utility function to extract unsigned chars from an unsigned integer |
||||
__device__ uchar4 int_to_uchar4(unsigned int in) |
||||
{ |
||||
uchar4 bytes; |
||||
bytes.x = (in & 0x000000ff) >> 0; |
||||
bytes.y = (in & 0x0000ff00) >> 8; |
||||
bytes.z = (in & 0x00ff0000) >> 16; |
||||
bytes.w = (in & 0xff000000) >> 24; |
||||
return bytes; |
||||
} |
||||
|
||||
__global__ void shfl_integral_horizontal(const cv::gpu::PtrStep<uint4> img, cv::gpu::PtrStep<uint4> integral) |
||||
{ |
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300) |
||||
__shared__ int sums[128]; |
||||
|
||||
const int id = threadIdx.x; |
||||
const int lane_id = id % warpSize; |
||||
const int warp_id = id / warpSize; |
||||
|
||||
const uint4 data = img(blockIdx.x, id); |
||||
|
||||
const uchar4 a = int_to_uchar4(data.x); |
||||
const uchar4 b = int_to_uchar4(data.y); |
||||
const uchar4 c = int_to_uchar4(data.z); |
||||
const uchar4 d = int_to_uchar4(data.w); |
||||
|
||||
int result[16]; |
||||
|
||||
result[0] = a.x; |
||||
result[1] = result[0] + a.y; |
||||
result[2] = result[1] + a.z; |
||||
result[3] = result[2] + a.w; |
||||
|
||||
result[4] = result[3] + b.x; |
||||
result[5] = result[4] + b.y; |
||||
result[6] = result[5] + b.z; |
||||
result[7] = result[6] + b.w; |
||||
|
||||
result[8] = result[7] + c.x; |
||||
result[9] = result[8] + c.y; |
||||
result[10] = result[9] + c.z; |
||||
result[11] = result[10] + c.w; |
||||
|
||||
result[12] = result[11] + d.x; |
||||
result[13] = result[12] + d.y; |
||||
result[14] = result[13] + d.z; |
||||
result[15] = result[14] + d.w; |
||||
|
||||
int sum = result[15]; |
||||
|
||||
// the prefix sum for each thread's 16 value is computed, |
||||
// now the final sums (result[15]) need to be shared |
||||
// with the other threads and add. To do this, |
||||
// the __shfl_up() instruction is used and a shuffle scan |
||||
// operation is performed to distribute the sums to the correct |
||||
// threads |
||||
#pragma unroll |
||||
for (int i = 1; i < 32; i *= 2) |
||||
{ |
||||
const int n = __shfl_up(sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
{ |
||||
#pragma unroll |
||||
for (int i = 0; i < 16; ++i) |
||||
result[i] += n; |
||||
|
||||
sum += n; |
||||
} |
||||
} |
||||
|
||||
// Now the final sum for the warp must be shared |
||||
// between warps. This is done by each warp |
||||
// having a thread store to shared memory, then |
||||
// having some other warp load the values and |
||||
// compute a prefix sum, again by using __shfl_up. |
||||
// The results are uniformly added back to the warps. |
||||
// last thread in the warp holding sum of the warp |
||||
// places that in shared |
||||
if (threadIdx.x % warpSize == warpSize - 1) |
||||
sums[warp_id] = result[15]; |
||||
|
||||
__syncthreads(); |
||||
|
||||
if (warp_id == 0) |
||||
{ |
||||
int warp_sum = sums[lane_id]; |
||||
|
||||
#pragma unroll |
||||
for (int i = 1; i <= 32; i *= 2) |
||||
{ |
||||
const int n = __shfl_up(warp_sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
warp_sum += n; |
||||
} |
||||
|
||||
sums[lane_id] = warp_sum; |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
int blockSum = 0; |
||||
|
||||
// fold in unused warp |
||||
if (warp_id > 0) |
||||
{ |
||||
blockSum = sums[warp_id - 1]; |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i < 16; ++i) |
||||
result[i] += blockSum; |
||||
} |
||||
|
||||
// assemble result |
||||
// Each thread has 16 values to write, which are |
||||
// now integer data (to avoid overflow). Instead of |
||||
// each thread writing consecutive uint4s, the |
||||
// approach shown here experiments using |
||||
// the shuffle command to reformat the data |
||||
// inside the registers so that each thread holds |
||||
// consecutive data to be written so larger contiguous |
||||
// segments can be assembled for writing. |
||||
|
||||
/* |
||||
For example data that needs to be written as |
||||
|
||||
GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3 |
||||
but is stored in registers (r0..r3), in four threads (0..3) as: |
||||
|
||||
threadId 0 1 2 3 |
||||
r0 x0 y0 z0 w0 |
||||
r1 x1 y1 z1 w1 |
||||
r2 x2 y2 z2 w2 |
||||
r3 x3 y3 z3 w3 |
||||
|
||||
after apply __shfl_xor operations to move data between registers r1..r3: |
||||
|
||||
threadId 00 01 10 11 |
||||
x0 y0 z0 w0 |
||||
xor(01)->y1 x1 w1 z1 |
||||
xor(10)->z2 w2 x2 y2 |
||||
xor(11)->w3 z3 y3 x3 |
||||
|
||||
and now x0..x3, and z0..z3 can be written out in order by all threads. |
||||
|
||||
In the current code, each register above is actually representing |
||||
four integers to be written as uint4's to GMEM. |
||||
*/ |
||||
|
||||
result[4] = __shfl_xor(result[4] , 1, 32); |
||||
result[5] = __shfl_xor(result[5] , 1, 32); |
||||
result[6] = __shfl_xor(result[6] , 1, 32); |
||||
result[7] = __shfl_xor(result[7] , 1, 32); |
||||
|
||||
result[8] = __shfl_xor(result[8] , 2, 32); |
||||
result[9] = __shfl_xor(result[9] , 2, 32); |
||||
result[10] = __shfl_xor(result[10], 2, 32); |
||||
result[11] = __shfl_xor(result[11], 2, 32); |
||||
|
||||
result[12] = __shfl_xor(result[12], 3, 32); |
||||
result[13] = __shfl_xor(result[13], 3, 32); |
||||
result[14] = __shfl_xor(result[14], 3, 32); |
||||
result[15] = __shfl_xor(result[15], 3, 32); |
||||
|
||||
uint4* integral_row = integral.ptr(blockIdx.x); |
||||
uint4 output; |
||||
|
||||
/////// |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16] = output; |
||||
|
||||
/////// |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 8] = output; |
||||
|
||||
// continuning from the above example, |
||||
// this use of __shfl_xor() places the y0..y3 and w0..w3 data |
||||
// in order. |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i < 16; ++i) |
||||
result[i] = __shfl_xor(result[i], 1, 32); |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16 + 4] = output; |
||||
|
||||
/////// |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 12] = output; |
||||
#endif |
||||
} |
||||
|
||||
// This kernel computes columnwise prefix sums. When the data input is |
||||
// the row sums from above, this completes the integral image. |
||||
// The approach here is to have each block compute a local set of sums. |
||||
// First , the data covered by the block is loaded into shared memory, |
||||
// then instead of performing a sum in shared memory using __syncthreads |
||||
// between stages, the data is reformatted so that the necessary sums |
||||
// occur inside warps and the shuffle scan operation is used. |
||||
// The final set of sums from the block is then propgated, with the block |
||||
// computing "down" the image and adding the running sum to the local |
||||
// block sums. |
||||
__global__ void shfl_integral_vertical(cv::gpu::PtrStepSz<unsigned int> integral) |
||||
{ |
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300) |
||||
__shared__ unsigned int sums[32][9]; |
||||
|
||||
const int tidx = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int lane_id = tidx % 8; |
||||
|
||||
if (tidx >= integral.cols) |
||||
return; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = 0; |
||||
__syncthreads(); |
||||
|
||||
unsigned int stepSum = 0; |
||||
|
||||
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y) |
||||
{ |
||||
unsigned int* p = integral.ptr(y) + tidx; |
||||
|
||||
unsigned int sum = *p; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = sum; |
||||
__syncthreads(); |
||||
|
||||
// place into SMEM |
||||
// shfl scan reduce the SMEM, reformating so the column |
||||
// sums are computed in a warp |
||||
// then read out properly |
||||
const int j = threadIdx.x % 8; |
||||
const int k = threadIdx.x / 8 + threadIdx.y * 4; |
||||
|
||||
int partial_sum = sums[k][j]; |
||||
|
||||
for (int i = 1; i <= 8; i *= 2) |
||||
{ |
||||
int n = __shfl_up(partial_sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
partial_sum += n; |
||||
} |
||||
|
||||
sums[k][j] = partial_sum; |
||||
__syncthreads(); |
||||
|
||||
if (threadIdx.y > 0) |
||||
sum += sums[threadIdx.x][threadIdx.y - 1]; |
||||
|
||||
sum += stepSum; |
||||
stepSum += sums[threadIdx.x][blockDim.y - 1]; |
||||
|
||||
__syncthreads(); |
||||
|
||||
*p = sum; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
void shfl_integral(const cv::gpu::PtrStepSzb& img, cv::gpu::PtrStepSz<unsigned int> integral, cudaStream_t stream) |
||||
{ |
||||
{ |
||||
// each thread handles 16 values, use 1 block/row |
||||
// save, becouse step is actually can't be less 512 bytes |
||||
int block = integral.cols / 16; |
||||
|
||||
// launch 1 block / row |
||||
const int grid = img.rows; |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) ); |
||||
|
||||
shfl_integral_horizontal<<<grid, block, 0, stream>>>((const cv::gpu::PtrStepSz<uint4>) img, (cv::gpu::PtrStepSz<uint4>) integral); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
|
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(integral.cols, block.x), 1); |
||||
|
||||
shfl_integral_vertical<<<grid, block, 0, stream>>>(integral); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
__global__ void shfl_integral_vertical(cv::gpu::PtrStepSz<unsigned int> buffer, cv::gpu::PtrStepSz<unsigned int> integral) |
||||
{ |
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300) |
||||
__shared__ unsigned int sums[32][9]; |
||||
|
||||
const int tidx = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int lane_id = tidx % 8; |
||||
|
||||
if (tidx >= integral.cols) |
||||
return; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = 0; |
||||
__syncthreads(); |
||||
|
||||
unsigned int stepSum = 0; |
||||
|
||||
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y) |
||||
{ |
||||
unsigned int* p = buffer.ptr(y) + tidx; |
||||
unsigned int* dst = integral.ptr(y + 1) + tidx + 1; |
||||
|
||||
unsigned int sum = *p; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = sum; |
||||
__syncthreads(); |
||||
|
||||
// place into SMEM |
||||
// shfl scan reduce the SMEM, reformating so the column |
||||
// sums are computed in a warp |
||||
// then read out properly |
||||
const int j = threadIdx.x % 8; |
||||
const int k = threadIdx.x / 8 + threadIdx.y * 4; |
||||
|
||||
int partial_sum = sums[k][j]; |
||||
|
||||
for (int i = 1; i <= 8; i *= 2) |
||||
{ |
||||
int n = __shfl_up(partial_sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
partial_sum += n; |
||||
} |
||||
|
||||
sums[k][j] = partial_sum; |
||||
__syncthreads(); |
||||
|
||||
if (threadIdx.y > 0) |
||||
sum += sums[threadIdx.x][threadIdx.y - 1]; |
||||
|
||||
sum += stepSum; |
||||
stepSum += sums[threadIdx.x][blockDim.y - 1]; |
||||
|
||||
__syncthreads(); |
||||
|
||||
*dst = sum; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
// used for frame preprocessing before Soft Cascade evaluation: no synchronization needed |
||||
void shfl_integral_gpu_buffered(cv::gpu::PtrStepSzb img, cv::gpu::PtrStepSz<uint4> buffer, cv::gpu::PtrStepSz<unsigned int> integral, |
||||
int blockStep, cudaStream_t stream) |
||||
{ |
||||
{ |
||||
const int block = blockStep; |
||||
const int grid = img.rows; |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) ); |
||||
|
||||
shfl_integral_horizontal<<<grid, block, 0, stream>>>((cv::gpu::PtrStepSz<uint4>) img, buffer); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
|
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(integral.cols, block.x), 1); |
||||
|
||||
shfl_integral_vertical<<<grid, block, 0, stream>>>((cv::gpu::PtrStepSz<uint>)buffer, integral); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
} |
||||
// 0 |
||||
#define CV_DESCALE(x, n) (((x) + (1 << ((n)-1))) >> (n)) |
||||
|
||||
enum |
||||
{ |
||||
yuv_shift = 14, |
||||
xyz_shift = 12, |
||||
R2Y = 4899, |
||||
G2Y = 9617, |
||||
B2Y = 1868 |
||||
}; |
||||
|
||||
template <int bidx> static __device__ __forceinline__ unsigned char RGB2GrayConvert(unsigned char b, unsigned char g, unsigned char r) |
||||
{ |
||||
// uint b = 0xffu & (src >> (bidx * 8)); |
||||
// uint g = 0xffu & (src >> 8); |
||||
// uint r = 0xffu & (src >> ((bidx ^ 2) * 8)); |
||||
return CV_DESCALE((uint)(b * B2Y + g * G2Y + r * R2Y), yuv_shift); |
||||
} |
||||
|
||||
__global__ void device_transform(const cv::gpu::PtrStepSz<uchar3> bgr, cv::gpu::PtrStepSzb gray) |
||||
{ |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
|
||||
const uchar3 colored = (uchar3)(bgr.ptr(y))[x]; |
||||
|
||||
gray.ptr(y)[x] = RGB2GrayConvert<0>(colored.x, colored.y, colored.z); |
||||
} |
||||
|
||||
/////// |
||||
void transform(const cv::gpu::PtrStepSz<uchar3>& bgr, cv::gpu::PtrStepSzb gray) |
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(bgr.cols, block.x), divUp(bgr.rows, block.y)); |
||||
device_transform<<<grid, block>>>(bgr, gray); |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
} |
||||
}}} |
@ -0,0 +1,109 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace cvtest; |
||||
using namespace testing; |
||||
using namespace testing::internal; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Gpu devices
|
||||
|
||||
bool supportFeature(const DeviceInfo& info, FeatureSet feature) |
||||
{ |
||||
return TargetArchs::builtWith(feature) && info.supports(feature); |
||||
} |
||||
|
||||
DeviceManager& DeviceManager::instance() |
||||
{ |
||||
static DeviceManager obj; |
||||
return obj; |
||||
} |
||||
|
||||
void DeviceManager::load(int i) |
||||
{ |
||||
devices_.clear(); |
||||
devices_.reserve(1); |
||||
|
||||
std::ostringstream msg; |
||||
|
||||
if (i < 0 || i >= getCudaEnabledDeviceCount()) |
||||
{ |
||||
msg << "Incorrect device number - " << i; |
||||
CV_Error(CV_StsBadArg, msg.str()); |
||||
} |
||||
|
||||
DeviceInfo info(i); |
||||
|
||||
if (!info.isCompatible()) |
||||
{ |
||||
msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current GPU module build"; |
||||
CV_Error(CV_StsBadArg, msg.str()); |
||||
} |
||||
|
||||
devices_.push_back(info); |
||||
} |
||||
|
||||
void DeviceManager::loadAll() |
||||
{ |
||||
int deviceCount = getCudaEnabledDeviceCount(); |
||||
|
||||
devices_.clear(); |
||||
devices_.reserve(deviceCount); |
||||
|
||||
for (int i = 0; i < deviceCount; ++i) |
||||
{ |
||||
DeviceInfo info(i); |
||||
if (info.isCompatible()) |
||||
{ |
||||
devices_.push_back(info); |
||||
} |
||||
} |
||||
} |
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,75 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_SOFTCASCADE_TEST_UTILITY_HPP__ |
||||
#define __OPENCV_SOFTCASCADE_TEST_UTILITY_HPP__ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/core/gpumat.hpp" |
||||
#include "opencv2/ts.hpp" |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Gpu devices
|
||||
//! return true if device supports specified feature and gpu module was built with support the feature.
|
||||
bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature); |
||||
|
||||
|
||||
#if defined(HAVE_CUDA) |
||||
class DeviceManager |
||||
{ |
||||
public: |
||||
static DeviceManager& instance(); |
||||
|
||||
void load(int i); |
||||
void loadAll(); |
||||
|
||||
const std::vector<cv::gpu::DeviceInfo>& values() const { return devices_; } |
||||
|
||||
private: |
||||
std::vector<cv::gpu::DeviceInfo> devices_; |
||||
DeviceManager() {loadAll();} |
||||
}; |
||||
# define ALL_DEVICES testing::ValuesIn(DeviceManager::instance().values()) |
||||
#else |
||||
# define ALL_DEVICES testing::ValuesIn(std::vector<cv::gpu::DeviceInfo>()) |
||||
#endif |
||||
|
||||
#endif // __OPENCV_GPU_TEST_UTILITY_HPP__
|
Loading…
Reference in new issue