mirror of https://github.com/opencv/opencv.git
parent
fb0b25692e
commit
1e69bd5118
3 changed files with 148 additions and 208 deletions
@ -1,177 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
using namespace cv; |
||||
|
||||
MeanshiftGrouping::MeanshiftGrouping(const Point3d& densKer, const vector<Point3d>& posV,
|
||||
const vector<double>& wV, double modeEps, int maxIter) |
||||
{ |
||||
densityKernel = densKer; |
||||
weightsV = wV; |
||||
positionsV = posV; |
||||
positionsCount = posV.size(); |
||||
meanshiftV.resize(positionsCount); |
||||
distanceV.resize(positionsCount); |
||||
modeEps = modeEps; |
||||
iterMax = maxIter; |
||||
|
||||
for (unsigned i=0; i<positionsV.size(); i++) |
||||
{ |
||||
meanshiftV[i] = getNewValue(positionsV[i]); |
||||
|
||||
distanceV[i] = moveToMode(meanshiftV[i]); |
||||
|
||||
meanshiftV[i] -= positionsV[i]; |
||||
} |
||||
} |
||||
|
||||
void MeanshiftGrouping::getModes(vector<Point3d>& modesV, vector<double>& resWeightsV, double eps) |
||||
{ |
||||
for (size_t i=0; i <distanceV.size(); i++) |
||||
{ |
||||
bool is_found = false; |
||||
for(size_t j=0; j<modesV.size(); j++) |
||||
{ |
||||
if ( getDistance(distanceV[i], modesV[j]) < eps) |
||||
{ |
||||
is_found=true; |
||||
break; |
||||
} |
||||
} |
||||
if (!is_found) |
||||
{ |
||||
modesV.push_back(distanceV[i]); |
||||
} |
||||
} |
||||
|
||||
resWeightsV.resize(modesV.size()); |
||||
|
||||
for (size_t i=0; i<modesV.size(); i++) |
||||
{ |
||||
resWeightsV[i] = getResultWeight(modesV[i]); |
||||
} |
||||
} |
||||
|
||||
Point3d MeanshiftGrouping::moveToMode(Point3d aPt) const |
||||
{ |
||||
Point3d bPt; |
||||
for (int i = 0; i<iterMax; i++) |
||||
{ |
||||
bPt = aPt; |
||||
aPt = getNewValue(bPt); |
||||
if ( getDistance(aPt, bPt) <= modeEps ) |
||||
{ |
||||
break; |
||||
} |
||||
} |
||||
return aPt; |
||||
} |
||||
|
||||
Point3d MeanshiftGrouping::getNewValue(const Point3d& inPt) const |
||||
{ |
||||
Point3d resPoint(.0); |
||||
Point3d ratPoint(.0); |
||||
for (size_t i=0; i<positionsV.size(); i++) |
||||
{ |
||||
Point3d aPt= positionsV[i]; |
||||
Point3d bPt = inPt; |
||||
Point3d sPt = densityKernel; |
||||
|
||||
sPt.x *= exp(aPt.z); |
||||
sPt.y *= exp(aPt.z); |
||||
|
||||
aPt.x /= sPt.x; |
||||
aPt.y /= sPt.y; |
||||
aPt.z /= sPt.z; |
||||
|
||||
bPt.x /= sPt.x; |
||||
bPt.y /= sPt.y; |
||||
bPt.z /= sPt.z; |
||||
|
||||
double w = (weightsV[i])*std::exp(-((aPt-bPt).dot(aPt-bPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1))); |
||||
|
||||
resPoint += w*aPt; |
||||
|
||||
ratPoint.x += w/sPt.x; |
||||
ratPoint.y += w/sPt.y; |
||||
ratPoint.z += w/sPt.z; |
||||
} |
||||
resPoint.x /= ratPoint.x; |
||||
resPoint.y /= ratPoint.y; |
||||
resPoint.z /= ratPoint.z; |
||||
return resPoint; |
||||
}
|
||||
|
||||
double MeanshiftGrouping::getResultWeight(const Point3d& inPt) const |
||||
{ |
||||
double sumW=0; |
||||
for (size_t i=0; i<positionsV.size(); i++) |
||||
{ |
||||
Point3d aPt = positionsV[i]; |
||||
Point3d sPt = densityKernel; |
||||
|
||||
sPt.x *= exp(aPt.z); |
||||
sPt.y *= exp(aPt.z); |
||||
|
||||
aPt -= inPt; |
||||
|
||||
aPt.x /= sPt.x; |
||||
aPt.y /= sPt.y; |
||||
aPt.z /= sPt.z; |
||||
|
||||
sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1))); |
||||
} |
||||
return sumW; |
||||
} |
||||
|
||||
double MeanshiftGrouping::getDistance(Point3d p1, Point3d p2) const
|
||||
{ |
||||
Point3d ns = densityKernel; |
||||
ns.x *= exp(p2.z); |
||||
ns.y *= exp(p2.z); |
||||
p2 -= p1; |
||||
p2.x /= ns.x; |
||||
p2.y /= ns.y; |
||||
p2.z /= ns.z; |
||||
return p2.dot(p2); |
||||
} |
Loading…
Reference in new issue