|
|
|
@ -38,66 +38,317 @@ |
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
static void divComplex(InputArray _src1, InputArray _src2, OutputArray _dst) |
|
|
|
|
static void magSpectrums( InputArray _src, OutputArray _dst) |
|
|
|
|
{ |
|
|
|
|
Mat src1 = _src1.getMat(); |
|
|
|
|
Mat src2 = _src2.getMat(); |
|
|
|
|
|
|
|
|
|
CV_Assert( src1.type() == src2.type() && src1.size() == src2.size()); |
|
|
|
|
CV_Assert( src1.type() == CV_32FC2 || src1.type() == CV_64FC2 ); |
|
|
|
|
|
|
|
|
|
_dst.create(src1.size(), src1.type()); |
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
|
|
|
|
|
int length = src1.rows*src1.cols; |
|
|
|
|
|
|
|
|
|
if(src1.depth() == CV_32F) |
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
int depth = src.depth(), cn = src.channels(), type = src.type(); |
|
|
|
|
int rows = src.rows, cols = src.cols; |
|
|
|
|
int j, k; |
|
|
|
|
|
|
|
|
|
CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 ); |
|
|
|
|
|
|
|
|
|
if(src.depth() == CV_32F) |
|
|
|
|
_dst.create( src.rows, src.cols, CV_32FC1 ); |
|
|
|
|
else |
|
|
|
|
_dst.create( src.rows, src.cols, CV_64FC1 ); |
|
|
|
|
|
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
|
|
|
|
|
bool is_1d = (rows == 1 || (cols == 1 && src.isContinuous() && dst.isContinuous())); |
|
|
|
|
|
|
|
|
|
if( is_1d ) |
|
|
|
|
cols = cols + rows - 1, rows = 1; |
|
|
|
|
|
|
|
|
|
int ncols = cols*cn; |
|
|
|
|
int j0 = cn == 1; |
|
|
|
|
int j1 = ncols - (cols % 2 == 0 && cn == 1); |
|
|
|
|
|
|
|
|
|
if( depth == CV_32F ) |
|
|
|
|
{ |
|
|
|
|
const float* dataA = (const float*)src1.data; |
|
|
|
|
const float* dataB = (const float*)src2.data; |
|
|
|
|
const float* dataSrc = (const float*)src.data; |
|
|
|
|
float* dataDst = (float*)dst.data; |
|
|
|
|
|
|
|
|
|
size_t stepSrc = src.step/sizeof(dataSrc[0]); |
|
|
|
|
size_t stepDst = dst.step/sizeof(dataDst[0]); |
|
|
|
|
|
|
|
|
|
if( !is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) |
|
|
|
|
{ |
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataSrc += cols - 1, dataDst += cols - 1; |
|
|
|
|
dataDst[0] = dataSrc[0]*dataSrc[0]; |
|
|
|
|
if( rows % 2 == 0 ) |
|
|
|
|
dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc]; |
|
|
|
|
|
|
|
|
|
for( j = 1; j <= rows - 2; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
dataDst[j*stepDst] = (double)dataSrc[j*stepSrc]*dataSrc[j*stepSrc] + |
|
|
|
|
(double)dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataSrc -= cols - 1, dataDst -= cols - 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( ; rows--; dataSrc += stepSrc, dataDst += stepDst ) |
|
|
|
|
{ |
|
|
|
|
if( is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
dataDst[0] = dataSrc[0]*dataSrc[0]; |
|
|
|
|
if( cols % 2 == 0 ) |
|
|
|
|
dataDst[j1] = dataSrc[j1]*dataSrc[j1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( j = j0; j < j1; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
dataDst[j] = (double)dataSrc[j]*dataSrc[j] + (double)dataSrc[j+1]*dataSrc[j+1]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
const double* dataSrc = (const double*)src.data; |
|
|
|
|
double* dataDst = (double*)dst.data; |
|
|
|
|
|
|
|
|
|
size_t stepSrc = src.step/sizeof(dataSrc[0]); |
|
|
|
|
size_t stepDst = dst.step/sizeof(dataDst[0]); |
|
|
|
|
|
|
|
|
|
if( !is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) |
|
|
|
|
{ |
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataSrc += cols - 1, dataDst += cols - 1; |
|
|
|
|
dataDst[0] = dataSrc[0]*dataSrc[0]; |
|
|
|
|
if( rows % 2 == 0 ) |
|
|
|
|
dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc]; |
|
|
|
|
|
|
|
|
|
for( j = 1; j <= rows - 2; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
dataDst[j*stepDst] = dataSrc[j*stepSrc]*dataSrc[j*stepSrc] + |
|
|
|
|
dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataSrc -= cols - 1, dataDst -= cols - 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( ; rows--; dataSrc += stepSrc, dataDst += stepDst ) |
|
|
|
|
{ |
|
|
|
|
if( is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
dataDst[0] = dataSrc[0]*dataSrc[0]; |
|
|
|
|
if( cols % 2 == 0 ) |
|
|
|
|
dataDst[j1] = dataSrc[j1]*dataSrc[j1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( j = j0; j < j1; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
dataDst[j] = dataSrc[j]*dataSrc[j] + dataSrc[j+1]*dataSrc[j+1]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// do batch sqrt to use SSE optimizations...
|
|
|
|
|
cv::sqrt(dst, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void divSpectrums( InputArray _srcA, InputArray _srcB, OutputArray _dst, int flags, bool conjB) |
|
|
|
|
{ |
|
|
|
|
Mat srcA = _srcA.getMat(), srcB = _srcB.getMat(); |
|
|
|
|
int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type(); |
|
|
|
|
int rows = srcA.rows, cols = srcA.cols; |
|
|
|
|
int j, k; |
|
|
|
|
|
|
|
|
|
CV_Assert( type == srcB.type() && srcA.size() == srcB.size() ); |
|
|
|
|
CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 ); |
|
|
|
|
|
|
|
|
|
_dst.create( srcA.rows, srcA.cols, type ); |
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
|
|
|
|
|
bool is_1d = (flags & DFT_ROWS) || (rows == 1 || (cols == 1 && |
|
|
|
|
srcA.isContinuous() && srcB.isContinuous() && dst.isContinuous())); |
|
|
|
|
|
|
|
|
|
if( is_1d && !(flags & DFT_ROWS) ) |
|
|
|
|
cols = cols + rows - 1, rows = 1; |
|
|
|
|
|
|
|
|
|
int ncols = cols*cn; |
|
|
|
|
int j0 = cn == 1; |
|
|
|
|
int j1 = ncols - (cols % 2 == 0 && cn == 1); |
|
|
|
|
|
|
|
|
|
if( depth == CV_32F ) |
|
|
|
|
{ |
|
|
|
|
const float* dataA = (const float*)srcA.data; |
|
|
|
|
const float* dataB = (const float*)srcB.data; |
|
|
|
|
float* dataC = (float*)dst.data; |
|
|
|
|
float eps = FLT_EPSILON; // prevent div0 problems
|
|
|
|
|
|
|
|
|
|
for(int j = 0; j < length - 1; j += 2) |
|
|
|
|
|
|
|
|
|
size_t stepA = srcA.step/sizeof(dataA[0]); |
|
|
|
|
size_t stepB = srcB.step/sizeof(dataB[0]); |
|
|
|
|
size_t stepC = dst.step/sizeof(dataC[0]); |
|
|
|
|
|
|
|
|
|
if( !is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps); |
|
|
|
|
double re = (double)(dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]); |
|
|
|
|
double im = (double)(dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]); |
|
|
|
|
dataC[j] = (float)(re / denom); |
|
|
|
|
dataC[j+1] = (float)(im / denom); |
|
|
|
|
for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) |
|
|
|
|
{ |
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataA += cols - 1, dataB += cols - 1, dataC += cols - 1; |
|
|
|
|
dataC[0] = dataA[0] / dataB[0]; |
|
|
|
|
if( rows % 2 == 0 ) |
|
|
|
|
dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / dataB[(rows-1)*stepB]; |
|
|
|
|
if( !conjB ) |
|
|
|
|
for( j = 1; j <= rows - 2; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
double denom = (double)dataB[j*stepB]*dataB[j*stepB] + |
|
|
|
|
(double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps; |
|
|
|
|
|
|
|
|
|
double re = (double)dataA[j*stepA]*dataB[j*stepB] + |
|
|
|
|
(double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] - |
|
|
|
|
(double)dataA[j*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
dataC[j*stepC] = (float)(re / denom); |
|
|
|
|
dataC[(j+1)*stepC] = (float)(im / denom); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
for( j = 1; j <= rows - 2; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
double denom = (double)dataB[j*stepB]*dataB[j*stepB] + |
|
|
|
|
(double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps; |
|
|
|
|
|
|
|
|
|
double re = (double)dataA[j*stepA]*dataB[j*stepB] - |
|
|
|
|
(double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] + |
|
|
|
|
(double)dataA[j*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
dataC[j*stepC] = (float)(re / denom); |
|
|
|
|
dataC[(j+1)*stepC] = (float)(im / denom); |
|
|
|
|
} |
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC ) |
|
|
|
|
{ |
|
|
|
|
if( is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
dataC[0] = dataA[0] / dataB[0]; |
|
|
|
|
if( cols % 2 == 0 ) |
|
|
|
|
dataC[j1] = dataA[j1] / dataB[j1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( !conjB ) |
|
|
|
|
for( j = j0; j < j1; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps); |
|
|
|
|
double re = (double)(dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]); |
|
|
|
|
double im = (double)(dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]); |
|
|
|
|
dataC[j] = (float)(re / denom); |
|
|
|
|
dataC[j+1] = (float)(im / denom); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
for( j = j0; j < j1; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps); |
|
|
|
|
double re = (double)(dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1]); |
|
|
|
|
double im = (double)(dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1]); |
|
|
|
|
dataC[j] = (float)(re / denom); |
|
|
|
|
dataC[j+1] = (float)(im / denom); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
const double* dataA = (const double*)src1.data; |
|
|
|
|
const double* dataB = (const double*)src2.data; |
|
|
|
|
const double* dataA = (const double*)srcA.data; |
|
|
|
|
const double* dataB = (const double*)srcB.data; |
|
|
|
|
double* dataC = (double*)dst.data; |
|
|
|
|
double eps = DBL_EPSILON; // prevent div0 problems
|
|
|
|
|
|
|
|
|
|
for(int j = 0; j < length - 1; j += 2) |
|
|
|
|
|
|
|
|
|
size_t stepA = srcA.step/sizeof(dataA[0]); |
|
|
|
|
size_t stepB = srcB.step/sizeof(dataB[0]); |
|
|
|
|
size_t stepC = dst.step/sizeof(dataC[0]); |
|
|
|
|
|
|
|
|
|
if( !is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) |
|
|
|
|
{ |
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataA += cols - 1, dataB += cols - 1, dataC += cols - 1; |
|
|
|
|
dataC[0] = dataA[0] / dataB[0]; |
|
|
|
|
if( rows % 2 == 0 ) |
|
|
|
|
dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / dataB[(rows-1)*stepB]; |
|
|
|
|
if( !conjB ) |
|
|
|
|
for( j = 1; j <= rows - 2; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
double denom = dataB[j*stepB]*dataB[j*stepB] + |
|
|
|
|
dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps; |
|
|
|
|
|
|
|
|
|
double re = dataA[j*stepA]*dataB[j*stepB] + |
|
|
|
|
dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
double im = dataA[(j+1)*stepA]*dataB[j*stepB] - |
|
|
|
|
dataA[j*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
dataC[j*stepC] = re / denom; |
|
|
|
|
dataC[(j+1)*stepC] = im / denom; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
for( j = 1; j <= rows - 2; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
double denom = dataB[j*stepB]*dataB[j*stepB] + |
|
|
|
|
dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps; |
|
|
|
|
|
|
|
|
|
double re = dataA[j*stepA]*dataB[j*stepB] - |
|
|
|
|
dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
double im = dataA[(j+1)*stepA]*dataB[j*stepB] + |
|
|
|
|
dataA[j*stepA]*dataB[(j+1)*stepB]; |
|
|
|
|
|
|
|
|
|
dataC[j*stepC] = re / denom; |
|
|
|
|
dataC[(j+1)*stepC] = im / denom; |
|
|
|
|
} |
|
|
|
|
if( k == 1 ) |
|
|
|
|
dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC ) |
|
|
|
|
{ |
|
|
|
|
double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps; |
|
|
|
|
double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]; |
|
|
|
|
double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]; |
|
|
|
|
dataC[j] = re / denom; |
|
|
|
|
dataC[j+1] = im / denom; |
|
|
|
|
if( is_1d && cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
dataC[0] = dataA[0] / dataB[0]; |
|
|
|
|
if( cols % 2 == 0 ) |
|
|
|
|
dataC[j1] = dataA[j1] / dataB[j1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( !conjB ) |
|
|
|
|
for( j = j0; j < j1; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps; |
|
|
|
|
double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]; |
|
|
|
|
double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]; |
|
|
|
|
dataC[j] = re / denom; |
|
|
|
|
dataC[j+1] = im / denom; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
for( j = j0; j < j1; j += 2 ) |
|
|
|
|
{ |
|
|
|
|
double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps; |
|
|
|
|
double re = dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1]; |
|
|
|
|
double im = dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1]; |
|
|
|
|
dataC[j] = re / denom; |
|
|
|
|
dataC[j+1] = im / denom; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void absComplex(InputArray _src, OutputArray _dst) |
|
|
|
|
{ |
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
|
|
|
|
|
CV_Assert( src.type() == CV_32FC2 || src.type() == CV_64FC2 ); |
|
|
|
|
|
|
|
|
|
vector<Mat> planes; |
|
|
|
|
split(src, planes); |
|
|
|
|
|
|
|
|
|
magnitude(planes[0], planes[1], planes[0]); |
|
|
|
|
planes[1] = Mat::zeros(planes[0].size(), planes[0].type()); |
|
|
|
|
|
|
|
|
|
merge(planes, _dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void fftShift(InputOutputArray _out) |
|
|
|
@ -258,33 +509,18 @@ cv::Point2d cv::phaseCorrelate(InputArray _src1, InputArray _src2, InputArray _w |
|
|
|
|
multiply(paddedWin, padded2, padded2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// TODO should be able to improve speed by switching to CCS packed matrices
|
|
|
|
|
vector<Mat> cplx1, cplx2; |
|
|
|
|
cplx1.push_back(padded1); |
|
|
|
|
cplx1.push_back(Mat::zeros(padded1.size(), padded1.type())); |
|
|
|
|
merge(cplx1, FFT1); |
|
|
|
|
|
|
|
|
|
cplx2.push_back(padded2); |
|
|
|
|
cplx2.push_back(Mat::zeros(padded2.size(), padded2.type())); |
|
|
|
|
merge(cplx2, FFT2); |
|
|
|
|
|
|
|
|
|
// execute phase correlation equation
|
|
|
|
|
// Reference: http://en.wikipedia.org/wiki/Phase_correlation
|
|
|
|
|
dft(FFT1, FFT1); |
|
|
|
|
dft(FFT2, FFT2); |
|
|
|
|
dft(padded1, FFT1, DFT_REAL_OUTPUT); |
|
|
|
|
dft(padded2, FFT2, DFT_REAL_OUTPUT); |
|
|
|
|
|
|
|
|
|
mulSpectrums(FFT1, FFT2, P, 0, true); |
|
|
|
|
|
|
|
|
|
// TODO these two functions need to be changed to work with CCS packed matrices...
|
|
|
|
|
absComplex(P, Pm); |
|
|
|
|
divComplex(P, Pm, C); // FF* / |FF*| (phase correlation equation completed here...)
|
|
|
|
|
magSpectrums(P, Pm); |
|
|
|
|
divSpectrums(P, Pm, C, 0, false); // FF* / |FF*| (phase correlation equation completed here...)
|
|
|
|
|
|
|
|
|
|
idft(C, C); // gives us the nice peak shift location...
|
|
|
|
|
|
|
|
|
|
vector<Mat> Cplanes; |
|
|
|
|
split(C, Cplanes); |
|
|
|
|
C = Cplanes[0]; // use only the real plane since that's all that's left...
|
|
|
|
|
|
|
|
|
|
fftShift(C); // shift the energy to the center of the frame.
|
|
|
|
|
|
|
|
|
|
// locate the highest peak
|
|
|
|
|