Added nonzero_rows support

pull/2996/head
Alexander Karsakov 10 years ago
parent 52f76a3283
commit 1d2cf0e20e
  1. 49
      modules/core/src/dxt.cpp
  2. 8
      modules/core/src/ocl.cpp
  3. 120
      modules/core/src/opencl/fft.cl
  4. 32
      modules/core/test/ocl/test_dft.cpp

@ -2034,19 +2034,19 @@ enum FftType
C2C = 3
};
static std::vector<int> ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
static void ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
{
int factors[34];
int nf = DFTFactorize( cols, factors );
int nf = DFTFactorize(cols, factors);
int n = 1;
int factor_index = 0;
min_radix = INT_MAX;
// 2^n transforms
if ( (factors[factor_index] & 1) == 0 )
if ((factors[factor_index] & 1) == 0)
{
for( ; n < factors[factor_index]; )
for( ; n < factors[factor_index];)
{
int radix = 2, block = 1;
if (8*n <= factors[0])
@ -2080,7 +2080,7 @@ static std::vector<int> ocl_getRadixes(int cols, std::vector<int>& radixes, std:
}
// all the other transforms
for( ; factor_index < nf; factor_index++ )
for( ; factor_index < nf; factor_index++)
{
int radix = factors[factor_index], block = 1;
if (radix == 3)
@ -2101,7 +2101,6 @@ static std::vector<int> ocl_getRadixes(int cols, std::vector<int>& radixes, std:
blocks.push_back(block);
min_radix = min(min_radix, block*radix);
}
return radixes;
}
struct OCL_FftPlan
@ -2111,14 +2110,13 @@ struct OCL_FftPlan
int thread_count;
int dft_size;
int flags;
bool status;
OCL_FftPlan(int _size, int _flags): dft_size(_size), flags(_flags), status(true)
OCL_FftPlan(int _size): dft_size(_size), status(true)
{
int min_radix;
std::vector<int> radixes, blocks;
ocl_getRadixes(dft_size, radixes, blocks, min_radix);
thread_count = (dft_size + min_radix-1) / min_radix;
thread_count = dft_size / min_radix;
if (thread_count > ocl::Device::getDefault().maxWorkGroupSize())
{
@ -2140,8 +2138,7 @@ struct OCL_FftPlan
n *= radix;
}
twiddles.create(1, twiddle_size, CV_32FC2);
Mat tw = twiddles.getMat(ACCESS_WRITE);
Mat tw(1, twiddle_size, CV_32FC2);
float* ptr = tw.ptr<float>();
int ptr_index = 0;
@ -2162,6 +2159,7 @@ struct OCL_FftPlan
}
}
}
twiddles = tw.getUMat(ACCESS_READ);
buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D RADIX_PROCESS=%s",
dft_size, dft_size/thread_count, radix_processing.c_str());
@ -2185,10 +2183,10 @@ struct OCL_FftPlan
if (rows)
{
globalsize[0] = thread_count; globalsize[1] = dft_size;
globalsize[0] = thread_count; globalsize[1] = src.rows;
localsize[0] = thread_count; localsize[1] = 1;
kernel_name = !inv ? "fft_multi_radix_rows" : "ifft_multi_radix_rows";
if (is1d && (flags & DFT_SCALE))
if ((is1d || inv) && (flags & DFT_SCALE))
options += " -D DFT_SCALE";
}
else
@ -2200,14 +2198,9 @@ struct OCL_FftPlan
options += " -D DFT_SCALE";
}
if (src.channels() == 1)
options += " -D REAL_INPUT";
else
options += " -D COMPLEX_INPUT";
if (dst.channels() == 1)
options += " -D REAL_OUTPUT";
if (is1d)
options += " -D IS_1D";
options += src.channels() == 1 ? " -D REAL_INPUT" : " -D COMPLEX_INPUT";
options += dst.channels() == 1 ? " -D REAL_OUTPUT" : " -D COMPLEX_OUTPUT";
options += is1d ? " -D IS_1D" : "";
if (!inv)
{
@ -2216,10 +2209,10 @@ struct OCL_FftPlan
}
else
{
if (is1d && fftType == C2R || (rows && fftType == R2R))
if (rows && (fftType == C2R || fftType == R2R))
options += " -D NO_CONJUGATE";
if (dst.cols % 2 == 0)
options += " -D EVEN";
options += " -D EVEN";
}
ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, options);
@ -2240,7 +2233,7 @@ public:
return planCache;
}
OCL_FftPlan* getFftPlan(int dft_size, int flags)
OCL_FftPlan* getFftPlan(int dft_size)
{
for (size_t i = 0, size = planStorage.size(); i < size; ++i)
{
@ -2252,7 +2245,7 @@ public:
}
}
OCL_FftPlan * newPlan = new OCL_FftPlan(dft_size, flags);
OCL_FftPlan * newPlan = new OCL_FftPlan(dft_size);
planStorage.push_back(newPlan);
return newPlan;
}
@ -2275,13 +2268,13 @@ protected:
static bool ocl_dft_C2C_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
{
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), flags);
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols());
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
}
static bool ocl_dft_C2C_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
{
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), flags);
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows());
return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
}
@ -2385,7 +2378,7 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
}
else
{
int nonzero_cols = src.cols/2 + 1;// : src.cols;
int nonzero_cols = src.cols/2 + 1;
if (!ocl_dft_C2C_cols(src, output, nonzero_cols, flags, fftType))
return false;

@ -3002,7 +3002,8 @@ bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
sync ? 0 : &p->e);
if( sync || retval != CL_SUCCESS )
{
CV_OclDbgAssert(clFinish(qq) == CL_SUCCESS);
int a = clFinish(qq);
CV_OclDbgAssert(a == CL_SUCCESS);
p->cleanupUMats();
}
else
@ -3898,8 +3899,9 @@ public:
if( (accessFlags & ACCESS_READ) != 0 && u->hostCopyObsolete() )
{
AlignedDataPtr<false, true> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, alignedPtr.getAlignedPtr(), 0, 0, 0) == CL_SUCCESS );
int a = clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, alignedPtr.getAlignedPtr(), 0, 0, 0);
CV_Assert( a == CL_SUCCESS );
u->markHostCopyObsolete(false);
}
}

@ -16,7 +16,7 @@ float2 twiddle(float2 a) {
}
__attribute__((always_inline))
void butterfly2(float2 a0, float2 a1, __local float2* smem, __constant const float2* twiddles,
void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
@ -28,7 +28,7 @@ void butterfly2(float2 a0, float2 a1, __local float2* smem, __constant const flo
}
__attribute__((always_inline))
void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem, __constant const float2* twiddles,
void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
@ -50,10 +50,10 @@ void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem
}
__attribute__((always_inline))
void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __constant const float2* twiddles,
void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k+block_size], a2);
const int dst_ind = ((x - k) * 3) + k;
@ -68,10 +68,10 @@ void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __constan
}
__attribute__((always_inline))
void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local float2* smem, __constant const float2* twiddles,
void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k+2*block_size], a3);
@ -109,7 +109,7 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f
}
__attribute__((always_inline))
void fft_radix2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix2(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1;
@ -128,7 +128,7 @@ void fft_radix2(__local float2* smem, __constant const float2* twiddles, const i
}
__attribute__((always_inline))
void fft_radix2_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3;
@ -151,7 +151,7 @@ void fft_radix2_B2(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix2_B3(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x1 + 2*t/3;
@ -177,7 +177,7 @@ void fft_radix2_B3(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix2_B4(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int x2 = x1 + thread_block;
@ -207,7 +207,7 @@ void fft_radix2_B4(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix2_B5(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/5;
const int x2 = x1 + thread_block;
@ -240,7 +240,7 @@ void fft_radix2_B5(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix4(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix4(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1, a2, a3;
@ -258,7 +258,7 @@ void fft_radix4(__local float2* smem, __constant const float2* twiddles, const i
}
__attribute__((always_inline))
void fft_radix4_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
@ -281,7 +281,7 @@ void fft_radix4_B2(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix4_B3(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
@ -307,7 +307,7 @@ void fft_radix4_B3(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix8(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix8(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
@ -370,7 +370,7 @@ void fft_radix8(__local float2* smem, __constant const float2* twiddles, const i
}
__attribute__((always_inline))
void fft_radix3(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix3(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1, a2;
@ -388,7 +388,7 @@ void fft_radix3(__local float2* smem, __constant const float2* twiddles, const i
}
__attribute__((always_inline))
void fft_radix3_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5;
@ -411,7 +411,7 @@ void fft_radix3_B2(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix3_B3(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
@ -437,7 +437,7 @@ void fft_radix3_B3(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix3_B4(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int x2 = x1 + thread_block;
@ -467,7 +467,7 @@ void fft_radix3_B4(__local float2* smem, __constant const float2* twiddles, cons
}
__attribute__((always_inline))
void fft_radix5(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix5(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
float2 a0, a1, a2, a3, a4;
@ -486,7 +486,7 @@ void fft_radix5(__local float2* smem, __constant const float2* twiddles, const i
}
__attribute__((always_inline))
void fft_radix5_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1+t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
@ -516,24 +516,23 @@ void fft_radix5_B2(__local float2* smem, __constant const float2* twiddles, cons
__kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__constant float2 * twiddles_ptr, const int t, const int nz)
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_global_id(0);
const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn;
if (y < nz)
{
__local float2 smem[LOCAL_SIZE];
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = x;
const int block_size = LOCAL_SIZE/kercn;
#ifdef IS_1D
float scale = 1.f/dst_cols;
#else
float scale = 1.f/(dst_cols*dst_rows);
#endif
#ifndef REAL_INPUT
#ifdef COMPLEX_INPUT
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
@ -548,7 +547,7 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
#ifndef REAL_OUTPUT
#ifdef COMPLEX_OUTPUT
#ifdef NO_CONJUGATE
// copy result without complex conjugate
const int cols = dst_cols/2 + 1;
@ -570,11 +569,18 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
dst[0] = VAL(smem_1cn[0], scale);
#endif
}
else
{
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset));
#pragma unroll
for (int i=x; i<dst_cols; i+=block_size)
dst[i] = (float2) 0.f;
}
}
__kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__constant float2 * twiddles_ptr, const int t, const int nz)
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
@ -583,7 +589,7 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
{
__local float2 smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset));
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
float scale = 1.f/(dst_rows*dst_cols);
@ -596,7 +602,7 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
#ifndef REAL_OUTPUT
#ifdef COMPLEX_OUTPUT
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
@ -633,21 +639,26 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
}
}
__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset,
__global uchar* dst_ptr, int dst_step, int dst_offset,
__constant float2 * twiddles_ptr, const int t, const int nz)
__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_global_id(0);
const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn;
#ifdef IS_1D
const float scale = 1.f/dst_cols;
#else
const float scale = 1.f/(dst_cols*dst_rows);
#endif
if (y < nz)
{
__local float2 smem[LOCAL_SIZE];
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = x;
const int block_size = LOCAL_SIZE/kercn;
#ifndef REAL
#if defined(COMPLEX_INPUT) && !defined(NO_CONJUGATE)
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
@ -657,10 +668,10 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
}
#else
__global const float2* src;
#ifdef COMPLEX_INPUT
src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(float), src_offset)));
#if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(float), src_offset)));
#else
src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(1, (int)sizeof(float), src_offset)));
src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(1, (int)sizeof(float), src_offset)));
#endif
#pragma unroll
@ -688,39 +699,46 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
// copy data to dst
#ifndef REAL
#ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
dst[i*block_size].x = smem[x + i*block_size].x;
dst[i*block_size].y = -smem[x + i*block_size].y;
dst[i*block_size].x = VAL(smem[x + i*block_size].x, scale);
dst[i*block_size].y = VAL(-smem[x + i*block_size].y, scale);
}
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
dst[i*block_size] = smem[x + i*block_size].x;
dst[i*block_size] = VAL(smem[x + i*block_size].x, scale);
}
#endif
}
else
{
__global float2* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
dst[i*block_size] = (float2) 0.f;
}
}
__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset,
__global uchar* dst_ptr, int dst_step, int dst_offset,
__constant float2 * twiddles_ptr, const int t, const int nz)
__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
#ifndef REAL
#ifdef COMPLEX_INPUT
if (x < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
@ -748,7 +766,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#else
if (x < nz)
{
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
@ -756,7 +774,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#ifdef EVEN
if (x!=0 && (x!=(nz-1)))
#else
if (x!=0)
if (x!=0)
#endif
{
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(float), src_offset));
@ -800,7 +818,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
// copy data to dst
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)), dst_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float2)), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)

@ -66,7 +66,7 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
{
cv::Size dft_size;
int dft_flags, depth, cn, dft_type;
bool inplace;
bool hint;
bool is1d;
TEST_DECLARE_INPUT_PARAMETER(src);
@ -93,9 +93,7 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
dft_flags |= cv::DFT_ROWS;
if (GET_PARAM(4))
dft_flags |= cv::DFT_SCALE;
inplace = GET_PARAM(5);
hint = GET_PARAM(5);
is1d = (dft_flags & DFT_ROWS) != 0 || dft_size.height == 1;
}
@ -103,9 +101,6 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
{
src = randomMat(dft_size, CV_MAKE_TYPE(depth, cn), 0.0, 100.0);
usrc = src.getUMat(ACCESS_READ);
if (inplace)
dst = src, udst = usrc;
}
};
@ -113,8 +108,9 @@ OCL_TEST_P(Dft, Mat)
{
generateTestData();
OCL_OFF(cv::dft(src, dst, dft_flags));
OCL_ON(cv::dft(usrc, udst, dft_flags));
int nonzero_rows = hint ? src.cols - randomInt(1, src.rows-1) : 0;
OCL_OFF(cv::dft(src, dst, dft_flags, nonzero_rows));
OCL_ON(cv::dft(usrc, udst, dft_flags, nonzero_rows));
if (dft_type == R2C && is1d && (dft_flags & cv::DFT_INVERSE) == 0)
{
@ -122,15 +118,16 @@ OCL_TEST_P(Dft, Mat)
udst = udst(cv::Range(0, udst.rows), cv::Range(0, udst.cols/2 + 1));
}
Mat gpu = udst.getMat(ACCESS_READ);
std::cout << src << std::endl;
std::cout << dst << std::endl;
std::cout << gpu << std::endl;
//Mat gpu = udst.getMat(ACCESS_READ);
//std::cout << dst << std::endl;
//std::cout << gpu << std::endl;
//int cn = udst.channels();
//
//Mat dst1ch = dst.reshape(1);
//Mat gpu1ch = gpu.reshape(1);
//Mat df;
//absdiff(dst, gpu, df);
//absdiff(dst1ch, gpu1ch, df);
//std::cout << Mat_<int>(df) << std::endl;
double eps = src.size().area() * 1e-4;
@ -188,13 +185,12 @@ OCL_TEST_P(MulSpectrums, Mat)
OCL_INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(Bool(), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(4, 1), cv::Size(5, 8), cv::Size(6, 6),
cv::Size(512, 1), cv::Size(1280, 768)),
Values((OCL_FFT_TYPE) R2C, (OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2R, (OCL_FFT_TYPE) C2R),
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(10, 10), cv::Size(36, 36), cv::Size(512, 1), cv::Size(1280, 768)),
Values((OCL_FFT_TYPE) R2C, (OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2R, (OCL_FFT_TYPE) C2R),
Bool(), // DFT_INVERSE
Bool(), // DFT_ROWS
Bool(), // DFT_SCALE
Bool() // inplace
Bool() // hint
)
);

Loading…
Cancel
Save