mirror of https://github.com/opencv/opencv.git
Merge pull request #20138 from YashasSamaga:cuda4dnn-runtime-matmul
commit
1c4d70896a
6 changed files with 349 additions and 29 deletions
@ -0,0 +1,95 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP |
||||
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP |
||||
|
||||
#include "../../op_cuda.hpp" |
||||
|
||||
#include "../csl/stream.hpp" |
||||
#include "../csl/cublas.hpp" |
||||
#include "../csl/tensor.hpp" |
||||
#include "../csl/tensor_ops.hpp" |
||||
|
||||
#include <opencv2/core.hpp> |
||||
|
||||
#include <utility> |
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { |
||||
|
||||
template <class T> |
||||
class MatMulOp final : public CUDABackendNode { |
||||
public: |
||||
using wrapper_type = GetCUDABackendWrapperType<T>; |
||||
|
||||
MatMulOp(csl::Stream stream_, csl::cublas::Handle handle) |
||||
: stream(std::move(stream_)), cublasHandle(std::move(handle)) |
||||
{ |
||||
} |
||||
|
||||
void forward( |
||||
const std::vector<cv::Ptr<BackendWrapper>>& inputs, |
||||
const std::vector<cv::Ptr<BackendWrapper>>& outputs, |
||||
csl::Workspace& workspace) override |
||||
{ |
||||
CV_Assert(inputs.size() == 2 && outputs.size() == 1); |
||||
|
||||
auto input1_wrapper = inputs[0].dynamicCast<wrapper_type>(); |
||||
auto input1 = input1_wrapper->getView(); |
||||
|
||||
auto input2_wrapper = inputs[1].dynamicCast<wrapper_type>(); |
||||
auto input2 = input2_wrapper->getView(); |
||||
|
||||
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>(); |
||||
auto output = output_wrapper->getSpan(); |
||||
|
||||
auto rank = output.rank(); |
||||
CV_Assert(rank == input1.rank()); |
||||
CV_Assert(rank == input2.rank()); |
||||
CV_Assert(rank >= 2); // 1D MatMul not supported
|
||||
|
||||
for (int i = 0; i < rank - 2; i++) |
||||
{ |
||||
// broadcasting not supported
|
||||
auto size = output.get_axis_size(i); |
||||
CV_Assert(input1.get_axis_size(i) == size); |
||||
CV_Assert(input2.get_axis_size(i) == size); |
||||
} |
||||
|
||||
auto m = input1.get_axis_size(-2); |
||||
auto n = input1.get_axis_size(-1); |
||||
auto k = input2.get_axis_size(-1); |
||||
auto b = input1.size() / m / n; |
||||
CV_Assert(input2.get_axis_size(-2) == n); |
||||
CV_Assert(output.get_axis_size(-2) == m); |
||||
CV_Assert(output.get_axis_size(-1) == k); |
||||
|
||||
if (get_effective_rank(output) <= 2) |
||||
{ |
||||
CV_Assert(b == 1); |
||||
CV_Assert(get_effective_rank(input1) <= 2); |
||||
CV_Assert(get_effective_rank(input2) <= 2); |
||||
csl::tensor_ops::gemm<T>(cublasHandle, 0.0, output, 1.0, false, input1, false, input2); |
||||
} |
||||
else |
||||
{ |
||||
CV_Assert(rank >= 3); |
||||
input1.reshape(b, m, n); |
||||
input2.reshape(b, n, k); |
||||
output.reshape(b, m, k); |
||||
input1.squeeze_to(3); |
||||
input2.squeeze_to(3); |
||||
output.squeeze_to(3); |
||||
csl::tensor_ops::gemmStridedBatched<T>(cublasHandle, 0.0, output, 1.0, false, input1, false, input2); |
||||
} |
||||
} |
||||
|
||||
private: |
||||
csl::Stream stream; |
||||
csl::cublas::Handle cublasHandle; |
||||
}; |
||||
|
||||
}}} /* namespace cv::dnn::cuda4dnn */ |
||||
|
||||
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP */ |
Loading…
Reference in new issue