mirror of https://github.com/opencv/opencv.git
It includes the accuracy/performance test and the implementation of KNN.pull/1489/head
parent
06c33df307
commit
1bfe39f485
4 changed files with 582 additions and 0 deletions
@ -0,0 +1,109 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "perf_precomp.hpp" |
||||
using namespace perf; |
||||
using namespace std; |
||||
using namespace cv::ocl; |
||||
using namespace cv; |
||||
using std::tr1::tuple; |
||||
using std::tr1::get; |
||||
////////////////////////////////// K-NEAREST NEIGHBOR ////////////////////////////////////
|
||||
static void genData(Mat& trainData, Size size, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0) |
||||
{ |
||||
trainData.create(size, CV_32FC1); |
||||
randu(trainData, 1.0, 100.0); |
||||
|
||||
if(nClasses != 0) |
||||
{ |
||||
trainLabel.create(size.height, 1, CV_8UC1); |
||||
randu(trainLabel, 0, nClasses - 1); |
||||
trainLabel.convertTo(trainLabel, CV_32FC1); |
||||
} |
||||
} |
||||
|
||||
typedef tuple<int> KNNParamType; |
||||
typedef TestBaseWithParam<KNNParamType> KNNFixture; |
||||
|
||||
PERF_TEST_P(KNNFixture, KNN, |
||||
testing::Values(1000, 2000, 4000)) |
||||
{ |
||||
KNNParamType params = GetParam(); |
||||
const int rows = get<0>(params); |
||||
int columns = 100; |
||||
int k = rows/250; |
||||
|
||||
Mat trainData, trainLabels; |
||||
Size size(columns, rows); |
||||
genData(trainData, size, trainLabels, 3); |
||||
|
||||
Mat testData; |
||||
genData(testData, size); |
||||
Mat best_label; |
||||
|
||||
if(RUN_PLAIN_IMPL) |
||||
{ |
||||
TEST_CYCLE() |
||||
{ |
||||
CvKNearest knn_cpu; |
||||
knn_cpu.train(trainData, trainLabels); |
||||
knn_cpu.find_nearest(testData, k, &best_label); |
||||
} |
||||
}else if(RUN_OCL_IMPL) |
||||
{ |
||||
cv::ocl::oclMat best_label_ocl; |
||||
cv::ocl::oclMat testdata; |
||||
testdata.upload(testData); |
||||
|
||||
OCL_TEST_CYCLE() |
||||
{ |
||||
cv::ocl::KNearestNeighbour knn_ocl; |
||||
knn_ocl.train(trainData, trainLabels); |
||||
knn_ocl.find_nearest(testdata, k, best_label_ocl); |
||||
} |
||||
best_label_ocl.download(best_label); |
||||
}else |
||||
OCL_PERF_ELSE |
||||
SANITY_CHECK(best_label); |
||||
} |
@ -0,0 +1,163 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
extern const char* knearest;//knearest
|
||||
} |
||||
} |
||||
|
||||
KNearestNeighbour::KNearestNeighbour() |
||||
{ |
||||
clear(); |
||||
} |
||||
|
||||
KNearestNeighbour::~KNearestNeighbour() |
||||
{ |
||||
clear(); |
||||
} |
||||
|
||||
KNearestNeighbour::KNearestNeighbour(const Mat& train_data, const Mat& responses, |
||||
const Mat& sample_idx, bool is_regression, int max_k) |
||||
{ |
||||
max_k = max_k; |
||||
CvKNearest::train(train_data, responses, sample_idx, is_regression, max_k); |
||||
} |
||||
|
||||
void KNearestNeighbour::clear() |
||||
{ |
||||
CvKNearest::clear(); |
||||
} |
||||
|
||||
bool KNearestNeighbour::train(const Mat& trainData, Mat& labels, Mat& sampleIdx, |
||||
bool isRegression, int _max_k, bool updateBase) |
||||
{ |
||||
max_k = _max_k; |
||||
bool cv_knn_train = CvKNearest::train(trainData, labels, sampleIdx, isRegression, max_k, updateBase); |
||||
|
||||
CvVectors* s = CvKNearest::samples; |
||||
|
||||
cv::Mat samples_mat(s->count, CvKNearest::var_count + 1, s->type); |
||||
|
||||
float* s1 = (float*)(s + 1); |
||||
for(int i = 0; i < s->count; i++) |
||||
{ |
||||
float* t1 = s->data.fl[i]; |
||||
for(int j = 0; j < CvKNearest::var_count; j++) |
||||
{ |
||||
Point pos(j, i); |
||||
samples_mat.at<float>(pos) = t1[j]; |
||||
} |
||||
|
||||
Point pos_label(CvKNearest::var_count, i); |
||||
samples_mat.at<float>(pos_label) = s1[i]; |
||||
} |
||||
|
||||
samples_ocl = samples_mat; |
||||
return cv_knn_train; |
||||
} |
||||
|
||||
void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lables) |
||||
{ |
||||
CV_Assert(!samples_ocl.empty()); |
||||
lables.create(samples.rows, 1, CV_32FC1); |
||||
|
||||
CV_Assert(samples.cols == CvKNearest::var_count); |
||||
CV_Assert(samples.type() == CV_32FC1); |
||||
CV_Assert(k >= 1 && k <= max_k); |
||||
|
||||
int k1 = KNearest::get_sample_count(); |
||||
k1 = MIN( k1, k ); |
||||
|
||||
String kernel_name = "knn_find_nearest"; |
||||
cl_ulong local_memory_size = queryLocalMemInfo(); |
||||
int nThreads = local_memory_size / (2 * k * 4); |
||||
if(nThreads >= 256) |
||||
nThreads = 256; |
||||
|
||||
int smem_size = nThreads * k * 4 * 2; |
||||
size_t local_thread[] = {1, nThreads, 1}; |
||||
size_t global_thread[] = {1, samples.rows, 1}; |
||||
|
||||
char build_option[50]; |
||||
if(!Context::getContext()->supportsFeature(Context::CL_DOUBLE)) |
||||
{ |
||||
sprintf(build_option, " "); |
||||
}else |
||||
sprintf(build_option, "-D DOUBLE_SUPPORT"); |
||||
|
||||
std::vector< std::pair<size_t, const void*> > args; |
||||
|
||||
int samples_ocl_step = samples_ocl.step/samples_ocl.elemSize(); |
||||
int samples_step = samples.step/samples.elemSize(); |
||||
int lables_step = lables.step/lables.elemSize(); |
||||
|
||||
int _regression = 0; |
||||
if(CvKNearest::regression) |
||||
_regression = 1; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&k)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples_ocl.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl_step)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&lables.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&lables_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&_regression)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&k1)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&nThreads)); |
||||
args.push_back(make_pair(smem_size, (void*)NULL)); |
||||
openCLExecuteKernel(Context::getContext(), &knearest, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
||||
} |
@ -0,0 +1,186 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Jin Ma, jin@multicorewareinc.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other oclMaterials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
#if defined (DOUBLE_SUPPORT) |
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable |
||||
#define TYPE double |
||||
#else |
||||
#define TYPE float |
||||
#endif |
||||
|
||||
#define CV_SWAP(a,b,t) ((t) = (a), (a) = (b), (b) = (t)) |
||||
///////////////////////////////////// find_nearest ////////////////////////////////////// |
||||
__kernel void knn_find_nearest(__global float* sample, int sample_row, int sample_col, int sample_step, |
||||
int k, __global float* samples_ocl, int sample_ocl_row, int sample_ocl_step, |
||||
__global float* _results, int _results_step, int _regression, int K1, |
||||
int sample_ocl_col, int nThreads, __local float* nr) |
||||
{ |
||||
int k1 = 0; |
||||
int k2 = 0; |
||||
|
||||
bool regression = false; |
||||
|
||||
if(_regression) |
||||
regression = true; |
||||
|
||||
TYPE inv_scale; |
||||
#ifdef DOUBLE_SUPPORT |
||||
inv_scale = 1.0/K1; |
||||
#else |
||||
inv_scale = 1.0f/K1; |
||||
#endif |
||||
|
||||
int y = get_global_id(1); |
||||
int j, j1; |
||||
int threadY = (y % nThreads); |
||||
__local float* dd = nr + nThreads * k; |
||||
if(y >= sample_row) |
||||
{ |
||||
return; |
||||
} |
||||
for(j = 0; j < sample_ocl_row; j++) |
||||
{ |
||||
TYPE sum; |
||||
#ifdef DOUBLE_SUPPORT |
||||
sum = 0.0; |
||||
#else |
||||
sum = 0.0f; |
||||
#endif |
||||
float si; |
||||
int t, ii, ii1; |
||||
for(t = 0; t < sample_col - 16; t += 16) |
||||
{ |
||||
float16 t0 = vload16(0, sample + y * sample_step + t) - vload16(0, samples_ocl + j * sample_ocl_step + t); |
||||
t0 *= t0; |
||||
sum += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 + |
||||
t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf; |
||||
} |
||||
|
||||
for(; t < sample_col; t++) |
||||
{ |
||||
#ifdef DOUBLE_SUPPORT |
||||
double t0 = sample[y * sample_step + t] - samples_ocl[j * sample_ocl_step + t]; |
||||
#else |
||||
float t0 = sample[y * sample_step + t] - samples_ocl[j * sample_ocl_step + t]; |
||||
#endif |
||||
sum = sum + t0 * t0; |
||||
} |
||||
|
||||
si = (float)sum; |
||||
for(ii = k1 - 1; ii >= 0; ii--) |
||||
{ |
||||
if(as_int(si) > as_int(dd[ii * nThreads + threadY])) |
||||
break; |
||||
} |
||||
if(ii < k - 1) |
||||
{ |
||||
for(ii1 = k2 - 1; ii1 > ii; ii1--) |
||||
{ |
||||
dd[(ii1 + 1) * nThreads + threadY] = dd[ii1 * nThreads + threadY]; |
||||
nr[(ii1 + 1) * nThreads + threadY] = nr[ii1 * nThreads + threadY]; |
||||
} |
||||
|
||||
dd[(ii + 1) * nThreads + threadY] = si; |
||||
nr[(ii + 1) * nThreads + threadY] = samples_ocl[sample_col + j * sample_ocl_step]; |
||||
} |
||||
k1 = (k1 + 1) < k ? (k1 + 1) : k; |
||||
k2 = k1 < (k - 1) ? k1 : (k - 1); |
||||
} |
||||
/*! find_nearest_neighbor done!*/ |
||||
/*! write_results start!*/ |
||||
switch (regression) |
||||
{ |
||||
case true: |
||||
{ |
||||
TYPE s; |
||||
#ifdef DOUBLE_SUPPORT |
||||
s = 0.0; |
||||
#else |
||||
s = 0.0f; |
||||
#endif |
||||
for(j = 0; j < K1; j++) |
||||
s += nr[j * nThreads + threadY]; |
||||
|
||||
_results[y * _results_step] = (float)(s * inv_scale); |
||||
} |
||||
break; |
||||
case false: |
||||
{ |
||||
int prev_start = 0, best_count = 0, cur_count; |
||||
float best_val; |
||||
|
||||
for(j = K1 - 1; j > 0; j--) |
||||
{ |
||||
bool swap_f1 = false; |
||||
for(j1 = 0; j1 < j; j1++) |
||||
{ |
||||
if(nr[j1 * nThreads + threadY] > nr[(j1 + 1) * nThreads + threadY]) |
||||
{ |
||||
int t; |
||||
CV_SWAP(nr[j1 * nThreads + threadY], nr[(j1 + 1) * nThreads + threadY], t); |
||||
swap_f1 = true; |
||||
} |
||||
} |
||||
if(!swap_f1) |
||||
break; |
||||
} |
||||
|
||||
best_val = 0; |
||||
for(j = 1; j <= K1; j++) |
||||
if(j == K1 || nr[j * nThreads + threadY] != nr[(j - 1) * nThreads + threadY]) |
||||
{ |
||||
cur_count = j - prev_start; |
||||
if(best_count < cur_count) |
||||
{ |
||||
best_count = cur_count; |
||||
best_val = nr[(j - 1) * nThreads + threadY]; |
||||
} |
||||
prev_start = j; |
||||
} |
||||
_results[y * _results_step] = best_val; |
||||
} |
||||
break; |
||||
} |
||||
///*! write_results done!*/ |
||||
} |
@ -0,0 +1,124 @@ |
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
// Erping Pang, pang_er_ping@163.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#ifdef HAVE_OPENCL |
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
using namespace cvtest; |
||||
using namespace testing; |
||||
///////K-NEAREST NEIGHBOR//////////////////////////
|
||||
static void genTrainData(Mat& trainData, int trainDataRow, int trainDataCol, |
||||
Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0) |
||||
{ |
||||
cv::RNG &rng = TS::ptr()->get_rng(); |
||||
cv::Size size(trainDataCol, trainDataRow); |
||||
trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false); |
||||
if(nClasses != 0) |
||||
{ |
||||
cv::Size size1(trainDataRow, 1); |
||||
trainLabel = randomMat(rng, size1, CV_8UC1, 0, nClasses - 1, false); |
||||
trainLabel.convertTo(trainLabel, CV_32FC1); |
||||
} |
||||
} |
||||
|
||||
PARAM_TEST_CASE(KNN, int, Size, int, bool) |
||||
{ |
||||
int k; |
||||
int trainDataCol; |
||||
int testDataRow; |
||||
int nClass; |
||||
bool regression; |
||||
virtual void SetUp() |
||||
{ |
||||
k = GET_PARAM(0); |
||||
nClass = GET_PARAM(2); |
||||
trainDataCol = GET_PARAM(1).width; |
||||
testDataRow = GET_PARAM(1).height; |
||||
regression = GET_PARAM(3); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(KNN, Accuracy) |
||||
{ |
||||
Mat trainData, trainLabels; |
||||
const int trainDataRow = 500; |
||||
genTrainData(trainData, trainDataRow, trainDataCol, trainLabels, nClass); |
||||
|
||||
Mat testData, testLabels; |
||||
genTrainData(testData, testDataRow, trainDataCol); |
||||
|
||||
KNearestNeighbour knn_ocl; |
||||
CvKNearest knn_cpu; |
||||
Mat best_label_cpu; |
||||
oclMat best_label_ocl; |
||||
|
||||
/*ocl k-Nearest_Neighbor start*/ |
||||
oclMat trainData_ocl; |
||||
trainData_ocl.upload(trainData); |
||||
Mat simpleIdx; |
||||
knn_ocl.train(trainData, trainLabels, simpleIdx, regression); |
||||
|
||||
oclMat testdata; |
||||
testdata.upload(testData); |
||||
knn_ocl.find_nearest(testdata, k, best_label_ocl); |
||||
/*ocl k-Nearest_Neighbor end*/ |
||||
|
||||
/*cpu k-Nearest_Neighbor start*/ |
||||
knn_cpu.train(trainData, trainLabels, simpleIdx, regression); |
||||
knn_cpu.find_nearest(testData, k, &best_label_cpu); |
||||
/*cpu k-Nearest_Neighbor end*/ |
||||
if(regression) |
||||
{ |
||||
EXPECT_MAT_SIMILAR(Mat(best_label_ocl), best_label_cpu, 1e-5); |
||||
} |
||||
else |
||||
{ |
||||
EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0); |
||||
} |
||||
} |
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)), |
||||
Values(4, 3), Values(false, true))); |
||||
#endif // HAVE_OPENCL
|
Loading…
Reference in new issue