pull/13383/head
parent
72541721a1
commit
1badec0b2d
15 changed files with 323 additions and 287 deletions
@ -1,219 +0,0 @@ |
||||
#ifndef _OPENCV_API_EXTRA_HPP_ |
||||
#define _OPENCV_API_EXTRA_HPP_ |
||||
|
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include "opencv2/imgproc/imgproc_c.h" |
||||
#include "opencv2/calib3d/calib3d.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
template<typename _Tp> |
||||
static inline void mv2vv(const vector<Mat>& src, vector<vector<_Tp> >& dst) |
||||
{ |
||||
size_t i, n = src.size(); |
||||
dst.resize(src.size()); |
||||
for( i = 0; i < n; i++ ) |
||||
src[i].copyTo(dst[i]); |
||||
} |
||||
|
||||
///////////////////////////// core /////////////////////////////
|
||||
|
||||
CV_WRAP_AS(getTickCount) static inline double getTickCount_() |
||||
{ |
||||
return (double)getTickCount(); |
||||
} |
||||
|
||||
CV_WRAP_AS(getCPUTickCount) static inline double getCPUTickCount_() |
||||
{ |
||||
return (double)getCPUTickCount(); |
||||
} |
||||
|
||||
CV_WRAP void randShuffle(const Mat& src, CV_OUT Mat& dst, double iterFactor=1.) |
||||
{ |
||||
src.copyTo(dst); |
||||
randShuffle(dst, iterFactor, 0); |
||||
} |
||||
|
||||
CV_WRAP static inline void SVDecomp(const Mat& src, CV_OUT Mat& w, CV_OUT Mat& u, CV_OUT Mat& vt, int flags=0 ) |
||||
{ |
||||
SVD::compute(src, w, u, vt, flags); |
||||
} |
||||
|
||||
CV_WRAP static inline void SVBackSubst( const Mat& w, const Mat& u, const Mat& vt, |
||||
const Mat& rhs, CV_OUT Mat& dst ) |
||||
{ |
||||
SVD::backSubst(w, u, vt, rhs, dst); |
||||
} |
||||
|
||||
CV_WRAP static inline void mixChannels(const vector<Mat>& src, vector<Mat>& dst, |
||||
const vector<int>& fromTo) |
||||
{ |
||||
if(fromTo.empty()) |
||||
return; |
||||
CV_Assert(fromTo.size()%2 == 0); |
||||
mixChannels(&src[0], (int)src.size(), &dst[0], (int)dst.size(), &fromTo[0], (int)(fromTo.size()/2)); |
||||
} |
||||
|
||||
CV_WRAP static inline bool eigen(const Mat& src, bool computeEigenvectors, |
||||
CV_OUT Mat& eigenvalues, CV_OUT Mat& eigenvectors, |
||||
int lowindex=-1, int highindex=-1) |
||||
{ |
||||
return computeEigenvectors ? eigen(src, eigenvalues, eigenvectors, lowindex, highindex) : |
||||
eigen(src, eigenvalues, lowindex, highindex); |
||||
} |
||||
|
||||
CV_WRAP static inline void fillConvexPoly(Mat& img, const Mat& points, |
||||
const Scalar& color, int lineType=8, |
||||
int shift=0) |
||||
{ |
||||
CV_Assert(points.checkVector(2, CV_32S) >= 0); |
||||
fillConvexPoly(img, (const Point*)points.data, points.rows*points.cols*points.channels()/2, color, lineType, shift); |
||||
} |
||||
|
||||
CV_WRAP static inline void fillPoly(Mat& img, const vector<Mat>& pts, |
||||
const Scalar& color, int lineType=8, int shift=0, |
||||
Point offset=Point() ) |
||||
{ |
||||
if( pts.empty() ) |
||||
return; |
||||
AutoBuffer<Point*> _ptsptr(pts.size()); |
||||
AutoBuffer<int> _npts(pts.size()); |
||||
Point** ptsptr = _ptsptr; |
||||
int* npts = _npts; |
||||
|
||||
for( size_t i = 0; i < pts.size(); i++ ) |
||||
{ |
||||
const Mat& p = pts[i]; |
||||
CV_Assert(p.checkVector(2, CV_32S) >= 0); |
||||
ptsptr[i] = (Point*)p.data; |
||||
npts[i] = p.rows*p.cols*p.channels()/2; |
||||
} |
||||
fillPoly(img, (const Point**)ptsptr, npts, (int)pts.size(), color, lineType, shift, offset); |
||||
} |
||||
|
||||
CV_WRAP static inline void polylines(Mat& img, const vector<Mat>& pts, |
||||
bool isClosed, const Scalar& color, |
||||
int thickness=1, int lineType=8, int shift=0 ) |
||||
{ |
||||
if( pts.empty() ) |
||||
return; |
||||
AutoBuffer<Point*> _ptsptr(pts.size()); |
||||
AutoBuffer<int> _npts(pts.size()); |
||||
Point** ptsptr = _ptsptr; |
||||
int* npts = _npts; |
||||
|
||||
for( size_t i = 0; i < pts.size(); i++ ) |
||||
{ |
||||
const Mat& p = pts[i]; |
||||
CV_Assert(p.checkVector(2, CV_32S) >= 0); |
||||
ptsptr[i] = (Point*)p.data; |
||||
npts[i] = p.rows*p.cols*p.channels()/2; |
||||
} |
||||
polylines(img, (const Point**)ptsptr, npts, (int)pts.size(), isClosed, color, thickness, lineType, shift); |
||||
} |
||||
|
||||
CV_WRAP static inline void PCACompute(const Mat& data, CV_OUT Mat& mean, |
||||
CV_OUT Mat& eigenvectors, int maxComponents=0) |
||||
{ |
||||
PCA pca; |
||||
pca.mean = mean; |
||||
pca.eigenvectors = eigenvectors; |
||||
pca(data, Mat(), 0, maxComponents); |
||||
pca.mean.copyTo(mean); |
||||
pca.eigenvectors.copyTo(eigenvectors); |
||||
} |
||||
|
||||
CV_WRAP static inline void PCAProject(const Mat& data, const Mat& mean, |
||||
const Mat& eigenvectors, CV_OUT Mat& result) |
||||
{ |
||||
PCA pca; |
||||
pca.mean = mean; |
||||
pca.eigenvectors = eigenvectors; |
||||
pca.project(data, result); |
||||
} |
||||
|
||||
CV_WRAP static inline void PCABackProject(const Mat& data, const Mat& mean, |
||||
const Mat& eigenvectors, CV_OUT Mat& result) |
||||
{ |
||||
PCA pca; |
||||
pca.mean = mean; |
||||
pca.eigenvectors = eigenvectors; |
||||
pca.backProject(data, result); |
||||
}
|
||||
|
||||
/////////////////////////// imgproc /////////////////////////////////
|
||||
|
||||
CV_WRAP static inline void HuMoments(const Moments& m, CV_OUT vector<double>& hu) |
||||
{ |
||||
hu.resize(7); |
||||
HuMoments(m, &hu[0]); |
||||
} |
||||
|
||||
CV_WRAP static inline Mat getPerspectiveTransform(const vector<Point2f>& src, const vector<Point2f>& dst) |
||||
{ |
||||
CV_Assert(src.size() == 4 && dst.size() == 4); |
||||
return getPerspectiveTransform(&src[0], &dst[0]); |
||||
} |
||||
|
||||
CV_WRAP static inline Mat getAffineTransform(const vector<Point2f>& src, const vector<Point2f>& dst) |
||||
{ |
||||
CV_Assert(src.size() == 3 && dst.size() == 3); |
||||
return getAffineTransform(&src[0], &dst[0]); |
||||
} |
||||
|
||||
CV_WRAP static inline void calcHist( const vector<Mat>& images, const vector<int>& channels, |
||||
const Mat& mask, CV_OUT Mat& hist, |
||||
const vector<int>& histSize, |
||||
const vector<float>& ranges, |
||||
bool accumulate=false) |
||||
{ |
||||
int i, dims = (int)histSize.size(), rsz = (int)ranges.size(), csz = (int)channels.size(); |
||||
CV_Assert(images.size() > 0 && dims > 0); |
||||
CV_Assert(rsz == dims*2 || (rsz == 0 && images[0].depth() == CV_8U)); |
||||
CV_Assert(csz == 0 || csz == dims); |
||||
float* _ranges[CV_MAX_DIM]; |
||||
if( rsz > 0 ) |
||||
{ |
||||
for( i = 0; i < rsz/2; i++ ) |
||||
_ranges[i] = (float*)&ranges[i*2]; |
||||
} |
||||
calcHist(&images[0], (int)images.size(), csz ? &channels[0] : 0, |
||||
mask, hist, dims, &histSize[0], rsz ? (const float**)_ranges : 0, |
||||
true, accumulate); |
||||
} |
||||
|
||||
|
||||
CV_WRAP void calcBackProject( const vector<Mat>& images, const vector<int>& channels, |
||||
const Mat& hist, CV_OUT Mat& dst, |
||||
const vector<float>& ranges, |
||||
double scale=1 ) |
||||
{ |
||||
int i, dims = hist.dims, rsz = (int)ranges.size(), csz = (int)channels.size(); |
||||
CV_Assert(images.size() > 0); |
||||
CV_Assert(rsz == dims*2 || (rsz == 0 && images[0].depth() == CV_8U)); |
||||
CV_Assert(csz == 0 || csz == dims); |
||||
float* _ranges[CV_MAX_DIM]; |
||||
if( rsz > 0 ) |
||||
{ |
||||
for( i = 0; i < rsz/2; i++ ) |
||||
_ranges[i] = (float*)&ranges[i*2]; |
||||
} |
||||
calcBackProject(&images[0], (int)images.size(), csz ? &channels[0] : 0, |
||||
hist, dst, rsz ? (const float**)_ranges : 0, scale, true); |
||||
} |
||||
|
||||
|
||||
/////////////////////////////// calib3d ///////////////////////////////////////////
|
||||
|
||||
//! finds circles' grid pattern of the specified size in the image
|
||||
CV_WRAP static inline void findCirclesGridDefault( InputArray image, Size patternSize, |
||||
OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID ) |
||||
{ |
||||
findCirclesGrid(image, patternSize, centers, flags); |
||||
} |
||||
|
||||
} |
||||
|
||||
#endif |
Loading…
Reference in new issue