|
|
|
@ -1180,32 +1180,43 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node |
|
|
|
|
layerParams.set("reduce", reduceType); |
|
|
|
|
bool keepdims = layerParams.get<int>("keepdims", 1) == 1; |
|
|
|
|
|
|
|
|
|
if (layer_type == "ReduceSum" && node_proto.input_size() == 2) |
|
|
|
|
{ |
|
|
|
|
// TODO support the opset 13 of ReduceSum.
|
|
|
|
|
// in opset 13, the ReduceSum has two input, it takes axes as input instead of attribute
|
|
|
|
|
// details:https://github.com/onnx/onnx/issues/3420#issuecomment-844295687
|
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unsupported " + layer_type + " operation of opset 13, please try to " |
|
|
|
|
"re-export the onnx model with opset 11."); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
|
|
|
std::vector<bool> shouldDelete(inpShape.size(), false); |
|
|
|
|
|
|
|
|
|
if (layerParams.has("axes")) |
|
|
|
|
if (layer_type == "ReduceSum" && node_proto.input_size() == 2) |
|
|
|
|
{ |
|
|
|
|
DictValue axes = layerParams.get("axes"); |
|
|
|
|
for (int i = 0; i < axes.size(); i++) |
|
|
|
|
if (constBlobs.find(node_proto.input(1)) != constBlobs.end()) |
|
|
|
|
{ |
|
|
|
|
int axis = normalize_axis(axes.get<int>(i), inpShape.size()); |
|
|
|
|
shouldDelete[axis] = true; |
|
|
|
|
Mat axesMat = getBlob(node_proto, 1); |
|
|
|
|
int axesNum = axesMat.total(); |
|
|
|
|
for (int i = 0; i < axesNum; i++) |
|
|
|
|
{ |
|
|
|
|
int axis = normalize_axis(static_cast<int>(axesMat.at<float>(i)), inpShape.size()); |
|
|
|
|
shouldDelete[axis] = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
// in opset 13, the ReduceSum has two input, it takes axes as input instead of attribute
|
|
|
|
|
// details:https://github.com/onnx/onnx/issues/3420#issuecomment-844295687
|
|
|
|
|
CV_Error(Error::StsNotImplemented, "Non-constant axis values in ReduceSum are not supported."); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for (int i = 0; i < inpShape.size(); i++) |
|
|
|
|
if (layerParams.has("axes")) |
|
|
|
|
{ |
|
|
|
|
shouldDelete[i] = true; |
|
|
|
|
DictValue axes = layerParams.get("axes"); |
|
|
|
|
for (int i = 0; i < axes.size(); i++) |
|
|
|
|
{ |
|
|
|
|
int axis = normalize_axis(axes.get<int>(i), inpShape.size()); |
|
|
|
|
shouldDelete[axis] = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for (int i = 0; i < inpShape.size(); i++) |
|
|
|
|
{ |
|
|
|
|
shouldDelete[i] = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1291,6 +1302,17 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node |
|
|
|
|
layerParams.type = (depth == CV_8S) ? "ReshapeInt8" : "Reshape"; |
|
|
|
|
layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size())); |
|
|
|
|
|
|
|
|
|
// Set batchsize dim as dynamic to be compatible with batch size >= 2.
|
|
|
|
|
if (targetShape[0] == 1 && targetShape.size() > 1) |
|
|
|
|
{ |
|
|
|
|
std::vector<int> dynamicAxes = {0}; // The index of batchsize dim is 0.
|
|
|
|
|
std::vector<int> inputIndices = {0}; |
|
|
|
|
|
|
|
|
|
layerParams.set("has_dynamic_shapes", true); |
|
|
|
|
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size())); |
|
|
|
|
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size())); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
node_proto.set_input(0, node_proto.output(0)); |
|
|
|
|
node_proto.set_output(0, output_name); |
|
|
|
|
|
|
|
|
|