|
|
|
@ -49,30 +49,238 @@ using namespace cv::gpu; |
|
|
|
|
using namespace std; |
|
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
|
// ============ old fashioned haar cascade ==============================================//
|
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() { throw_nogpu(); } |
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&) { throw_nogpu(); } |
|
|
|
|
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { throw_nogpu(); } |
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; } |
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::load(const string&) { throw_nogpu(); return true; } |
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size();} |
|
|
|
|
void cv::gpu::CascadeClassifier_GPU::release() { throw_nogpu(); } |
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, double, int, Size) {throw_nogpu(); return -1;} |
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, Size, Size, double, int) {throw_nogpu(); return -1;} |
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size) { throw_nogpu(); return 0; } |
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
// ============ LBP cascade ==============================================//
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size /*frameSize*/){ throw_nogpu(); } |
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP() { throw_nogpu(); } |
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
CascadeClassifierImpl(){} |
|
|
|
|
virtual ~CascadeClassifierImpl(){} |
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::empty() const { throw_nogpu(); return true; } |
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string&) { throw_nogpu(); return true; } |
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU_LBP::getClassifierSize() const { throw_nogpu(); return Size(); } |
|
|
|
|
void cv::gpu::CascadeClassifier_GPU_LBP::allocateBuffers(cv::Size /*frame*/) { throw_nogpu();} |
|
|
|
|
virtual unsigned int process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, |
|
|
|
|
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, cv::Size maxObjectSize) = 0; |
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const cv::gpu::GpuMat& /*image*/, cv::gpu::GpuMat& /*objectsBuf*/, |
|
|
|
|
double /*scaleFactor*/, int /*minNeighbors*/, cv::Size /*maxObjectSize*/){ throw_nogpu(); return 0;} |
|
|
|
|
virtual cv::Size getClassifierCvSize() const = 0; |
|
|
|
|
virtual bool read(const string& classifierAsXml) = 0; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::HaarCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
HaarCascade() : lastAllocatedFrameSize(-1, -1) |
|
|
|
|
{ |
|
|
|
|
ncvSetDebugOutputHandler(NCVDebugOutputHandler); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool read(const string& filename) |
|
|
|
|
{ |
|
|
|
|
ncvSafeCall( load(filename) ); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, |
|
|
|
|
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, |
|
|
|
|
/*out*/unsigned int& numDetections) |
|
|
|
|
{ |
|
|
|
|
calculateMemReqsAndAllocate(src.size()); |
|
|
|
|
|
|
|
|
|
NCVMemPtr src_beg; |
|
|
|
|
src_beg.ptr = (void*)src.ptr<Ncv8u>(); |
|
|
|
|
src_beg.memtype = NCVMemoryTypeDevice; |
|
|
|
|
|
|
|
|
|
NCVMemSegment src_seg; |
|
|
|
|
src_seg.begin = src_beg; |
|
|
|
|
src_seg.size = src.step * src.rows; |
|
|
|
|
|
|
|
|
|
NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true); |
|
|
|
|
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); |
|
|
|
|
|
|
|
|
|
CV_Assert(objects.rows == 1); |
|
|
|
|
|
|
|
|
|
NCVMemPtr objects_beg; |
|
|
|
|
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>(); |
|
|
|
|
objects_beg.memtype = NCVMemoryTypeDevice; |
|
|
|
|
|
|
|
|
|
NCVMemSegment objects_seg; |
|
|
|
|
objects_seg.begin = objects_beg; |
|
|
|
|
objects_seg.size = objects.step * objects.rows; |
|
|
|
|
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols); |
|
|
|
|
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); |
|
|
|
|
|
|
|
|
|
NcvSize32u roi; |
|
|
|
|
roi.width = d_src.width(); |
|
|
|
|
roi.height = d_src.height(); |
|
|
|
|
|
|
|
|
|
NcvSize32u winMinSize(ncvMinSize.width, ncvMinSize.height); |
|
|
|
|
|
|
|
|
|
Ncv32u flags = 0; |
|
|
|
|
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0; |
|
|
|
|
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0; |
|
|
|
|
|
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device( |
|
|
|
|
d_src, roi, d_rects, numDetections, haar, *h_haarStages, |
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures, |
|
|
|
|
winMinSize, |
|
|
|
|
minNeighbors, |
|
|
|
|
scaleStep, 1, |
|
|
|
|
flags, |
|
|
|
|
*gpuAllocator, *cpuAllocator, devProp, 0); |
|
|
|
|
ncvAssertReturnNcvStat(ncvStat); |
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
unsigned int process(const GpuMat& image, GpuMat& objectsBuf, float scaleFactor, int minNeighbors, |
|
|
|
|
bool findLargestObject, bool visualizeInPlace, cv::Size minSize, cv::Size maxObjectSize) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U); |
|
|
|
|
|
|
|
|
|
const int defaultObjSearchNum = 100; |
|
|
|
|
if (objectsBuf.empty()) |
|
|
|
|
{ |
|
|
|
|
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Size ncvMinSize = this->getClassifierCvSize(); |
|
|
|
|
|
|
|
|
|
if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height) |
|
|
|
|
{ |
|
|
|
|
ncvMinSize.width = minSize.width; |
|
|
|
|
ncvMinSize.height = minSize.height; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
unsigned int numDetections; |
|
|
|
|
ncvSafeCall(this->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections)); |
|
|
|
|
|
|
|
|
|
return numDetections; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); } |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); } |
|
|
|
|
|
|
|
|
|
NCVStatus load(const string& classifierFile) |
|
|
|
|
{ |
|
|
|
|
int devId = cv::gpu::getDevice(); |
|
|
|
|
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
|
|
|
|
|
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures; |
|
|
|
|
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR); |
|
|
|
|
|
|
|
|
|
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages); |
|
|
|
|
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes); |
|
|
|
|
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR); |
|
|
|
|
|
|
|
|
|
d_haarStages = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages); |
|
|
|
|
d_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes); |
|
|
|
|
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
ncvStat = h_haarStages->copySolid(*d_haarStages, 0); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); |
|
|
|
|
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); |
|
|
|
|
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize) |
|
|
|
|
{ |
|
|
|
|
if (lastAllocatedFrameSize == frameSize) |
|
|
|
|
{ |
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Calculate memory requirements and create real allocators
|
|
|
|
|
NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height); |
|
|
|
|
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height); |
|
|
|
|
|
|
|
|
|
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
|
|
|
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
|
|
|
|
|
|
|
|
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100); |
|
|
|
|
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
|
|
|
|
|
|
|
|
NcvSize32u roi; |
|
|
|
|
roi.width = d_src.width(); |
|
|
|
|
roi.height = d_src.height(); |
|
|
|
|
Ncv32u numDetections; |
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages, |
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0); |
|
|
|
|
|
|
|
|
|
ncvAssertReturnNcvStat(ncvStat); |
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR); |
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cudaDeviceProp devProp; |
|
|
|
|
NCVStatus ncvStat; |
|
|
|
|
|
|
|
|
|
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator; |
|
|
|
|
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator; |
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures; |
|
|
|
|
|
|
|
|
|
HaarClassifierCascadeDescriptor haar; |
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures; |
|
|
|
|
|
|
|
|
|
Size lastAllocatedFrameSize; |
|
|
|
|
|
|
|
|
|
Ptr<NCVMemStackAllocator> gpuAllocator; |
|
|
|
|
Ptr<NCVMemStackAllocator> cpuAllocator; |
|
|
|
|
|
|
|
|
|
virtual ~HaarCascade(){} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
cv::Size operator -(const cv::Size& a, const cv::Size& b) |
|
|
|
|
{ |
|
|
|
@ -101,12 +309,17 @@ bool operator <=(const cv::Size& a, const cv::Size& b) |
|
|
|
|
|
|
|
|
|
struct PyrLavel |
|
|
|
|
{ |
|
|
|
|
PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window) : order(_order) |
|
|
|
|
PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window, cv::Size minObjectSize) |
|
|
|
|
{ |
|
|
|
|
do |
|
|
|
|
{ |
|
|
|
|
order = _order; |
|
|
|
|
scale = pow(_scale, order); |
|
|
|
|
sFrame = frame / scale; |
|
|
|
|
workArea = sFrame - window + 1; |
|
|
|
|
sWindow = window * scale; |
|
|
|
|
_order++; |
|
|
|
|
} while (sWindow <= minObjectSize); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool isFeasible(cv::Size maxObj) |
|
|
|
@ -114,9 +327,9 @@ struct PyrLavel |
|
|
|
|
return workArea.width > 0 && workArea.height > 0 && sWindow <= maxObj; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PyrLavel next(float factor, cv::Size frame, cv::Size window) |
|
|
|
|
PyrLavel next(float factor, cv::Size frame, cv::Size window, cv::Size minObjectSize) |
|
|
|
|
{ |
|
|
|
|
return PyrLavel(order + 1, factor, frame, window); |
|
|
|
|
return PyrLavel(order + 1, factor, frame, window, minObjectSize); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int order; |
|
|
|
@ -152,7 +365,7 @@ namespace cv { namespace gpu { namespace device |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl |
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::LbpCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
struct Stage |
|
|
|
@ -162,54 +375,108 @@ public: |
|
|
|
|
float threshold; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
bool read(const FileNode &root); |
|
|
|
|
void allocateBuffers(cv::Size frame = cv::Size()); |
|
|
|
|
bool empty() const {return stage_mat.empty();} |
|
|
|
|
LbpCascade(){} |
|
|
|
|
virtual ~LbpCascade(){} |
|
|
|
|
|
|
|
|
|
int process(const GpuMat& image, GpuMat& objects, double scaleFactor, int groupThreshold, cv::Size maxObjectSize); |
|
|
|
|
virtual unsigned int process(const GpuMat& image, GpuMat& objects, float scaleFactor, int groupThreshold, bool findLargestObject, |
|
|
|
|
bool visualizeInPlace, cv::Size minObjectSize, cv::Size maxObjectSize) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(scaleFactor > 1 && image.depth() == CV_8U); |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
const int defaultObjSearchNum = 100; |
|
|
|
|
const float grouping_eps = 0.2f; |
|
|
|
|
|
|
|
|
|
enum stage { BOOST = 0 }; |
|
|
|
|
enum feature { LBP = 0 }; |
|
|
|
|
if( !objects.empty() && objects.depth() == CV_32S) |
|
|
|
|
objects.reshape(4, 1); |
|
|
|
|
else |
|
|
|
|
objects.create(1 , image.cols >> 4, CV_32SC4); |
|
|
|
|
|
|
|
|
|
static const stage stageType = BOOST; |
|
|
|
|
static const feature featureType = LBP; |
|
|
|
|
// used for debug
|
|
|
|
|
// candidates.setTo(cv::Scalar::all(0));
|
|
|
|
|
// objects.setTo(cv::Scalar::all(0));
|
|
|
|
|
|
|
|
|
|
cv::Size NxM; |
|
|
|
|
bool isStumps; |
|
|
|
|
int ncategories; |
|
|
|
|
int subsetSize; |
|
|
|
|
int nodeStep; |
|
|
|
|
if (maxObjectSize == cv::Size()) |
|
|
|
|
maxObjectSize = image.size(); |
|
|
|
|
|
|
|
|
|
// gpu representation of classifier
|
|
|
|
|
GpuMat stage_mat; |
|
|
|
|
GpuMat trees_mat; |
|
|
|
|
GpuMat nodes_mat; |
|
|
|
|
GpuMat leaves_mat; |
|
|
|
|
GpuMat subsets_mat; |
|
|
|
|
GpuMat features_mat; |
|
|
|
|
allocateBuffers(image.size()); |
|
|
|
|
|
|
|
|
|
GpuMat integral; |
|
|
|
|
GpuMat integralBuffer; |
|
|
|
|
GpuMat resuzeBuffer; |
|
|
|
|
unsigned int classified = 0; |
|
|
|
|
GpuMat dclassified(1, 1, CV_32S); |
|
|
|
|
cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) ); |
|
|
|
|
|
|
|
|
|
GpuMat candidates; |
|
|
|
|
static const int integralFactor = 4; |
|
|
|
|
}; |
|
|
|
|
PyrLavel level(0, 1.0f, image.size(), NxM, minObjectSize); |
|
|
|
|
|
|
|
|
|
void cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl::allocateBuffers(cv::Size frame) |
|
|
|
|
while (level.isFeasible(maxObjectSize)) |
|
|
|
|
{ |
|
|
|
|
if (frame == cv::Size()) |
|
|
|
|
return; |
|
|
|
|
int acc = level.sFrame.width + 1; |
|
|
|
|
float iniScale = level.scale; |
|
|
|
|
|
|
|
|
|
if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows) |
|
|
|
|
{ |
|
|
|
|
resuzeBuffer.create(frame, CV_8UC1); |
|
|
|
|
cv::Size area = level.workArea; |
|
|
|
|
int step = 1 + (level.scale <= 2.f); |
|
|
|
|
|
|
|
|
|
integral.create(frame.height + 1, integralFactor * (frame.width + 1), CV_32SC1); |
|
|
|
|
NcvSize32u roiSize; |
|
|
|
|
roiSize.width = frame.width; |
|
|
|
|
int total = 0, prev = 0; |
|
|
|
|
|
|
|
|
|
while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize)) |
|
|
|
|
{ |
|
|
|
|
// create sutable matrix headers
|
|
|
|
|
GpuMat src = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height)); |
|
|
|
|
GpuMat sint = integral(cv::Rect(prev, 0, level.sFrame.width + 1, level.sFrame.height + 1)); |
|
|
|
|
GpuMat buff = integralBuffer; |
|
|
|
|
|
|
|
|
|
// generate integral for scale
|
|
|
|
|
gpu::resize(image, src, level.sFrame, 0, 0, CV_INTER_LINEAR); |
|
|
|
|
gpu::integralBuffered(src, sint, buff); |
|
|
|
|
|
|
|
|
|
// calculate job
|
|
|
|
|
int totalWidth = level.workArea.width / step; |
|
|
|
|
total += totalWidth * (level.workArea.height / step); |
|
|
|
|
|
|
|
|
|
// go to next pyramide level
|
|
|
|
|
level = level.next(scaleFactor, image.size(), NxM, minObjectSize); |
|
|
|
|
area = level.workArea; |
|
|
|
|
|
|
|
|
|
step = (1 + (level.scale <= 2.f)); |
|
|
|
|
prev = acc; |
|
|
|
|
acc += level.sFrame.width + 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, |
|
|
|
|
leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr<unsigned int>(), integral); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (groupThreshold <= 0 || objects.empty()) |
|
|
|
|
return 0; |
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) ); |
|
|
|
|
device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr<unsigned int>()); |
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) ); |
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
|
|
|
return classified; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
virtual cv::Size getClassifierCvSize() const { return NxM; } |
|
|
|
|
|
|
|
|
|
bool read(const string& classifierAsXml) |
|
|
|
|
{ |
|
|
|
|
FileStorage fs(classifierAsXml, FileStorage::READ); |
|
|
|
|
return fs.isOpened() ? read(fs.getFirstTopLevelNode()) : false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
|
|
|
|
|
void allocateBuffers(cv::Size frame) |
|
|
|
|
{ |
|
|
|
|
if (frame == cv::Size()) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows) |
|
|
|
|
{ |
|
|
|
|
resuzeBuffer.create(frame, CV_8UC1); |
|
|
|
|
|
|
|
|
|
integral.create(frame.height + 1, integralFactor * (frame.width + 1), CV_32SC1); |
|
|
|
|
NcvSize32u roiSize; |
|
|
|
|
roiSize.width = frame.width; |
|
|
|
|
roiSize.height = frame.height; |
|
|
|
|
|
|
|
|
|
cudaDeviceProp prop; |
|
|
|
@ -223,8 +490,7 @@ void cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl::allocateBuffers( |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// currently only stump based boost classifiers are supported
|
|
|
|
|
bool CascadeClassifier_GPU_LBP::CascadeClassifierImpl::read(const FileNode &root) |
|
|
|
|
bool read(const FileNode &root) |
|
|
|
|
{ |
|
|
|
|
const char *GPU_CC_STAGE_TYPE = "stageType"; |
|
|
|
|
const char *GPU_CC_FEATURE_TYPE = "featureType"; |
|
|
|
@ -365,334 +631,95 @@ bool CascadeClassifier_GPU_LBP::CascadeClassifierImpl::read(const FileNode &root |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl::process(const GpuMat& image, GpuMat& objects, double scaleFactor, int groupThreshold, cv::Size maxObjectSize) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(!empty() && scaleFactor > 1 && image.depth() == CV_8U); |
|
|
|
|
|
|
|
|
|
const int defaultObjSearchNum = 100; |
|
|
|
|
const float grouping_eps = 0.2f; |
|
|
|
|
|
|
|
|
|
if( !objects.empty() && objects.depth() == CV_32S) |
|
|
|
|
objects.reshape(4, 1); |
|
|
|
|
else |
|
|
|
|
objects.create(1 , image.cols >> 4, CV_32SC4); |
|
|
|
|
|
|
|
|
|
// used for debug
|
|
|
|
|
// candidates.setTo(cv::Scalar::all(0));
|
|
|
|
|
// objects.setTo(cv::Scalar::all(0));
|
|
|
|
|
|
|
|
|
|
if (maxObjectSize == cv::Size()) |
|
|
|
|
maxObjectSize = image.size(); |
|
|
|
|
|
|
|
|
|
allocateBuffers(image.size()); |
|
|
|
|
|
|
|
|
|
unsigned int classified = 0; |
|
|
|
|
GpuMat dclassified(1, 1, CV_32S); |
|
|
|
|
cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) ); |
|
|
|
|
|
|
|
|
|
PyrLavel level(0, 1.0f, image.size(), NxM); |
|
|
|
|
|
|
|
|
|
while (level.isFeasible(maxObjectSize)) |
|
|
|
|
{ |
|
|
|
|
int acc = level.sFrame.width + 1; |
|
|
|
|
float iniScale = level.scale; |
|
|
|
|
|
|
|
|
|
cv::Size area = level.workArea; |
|
|
|
|
int step = 1 + (level.scale <= 2.f); |
|
|
|
|
|
|
|
|
|
int total = 0, prev = 0; |
|
|
|
|
|
|
|
|
|
while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize)) |
|
|
|
|
{ |
|
|
|
|
// create sutable matrix headers
|
|
|
|
|
GpuMat src = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height)); |
|
|
|
|
GpuMat sint = integral(cv::Rect(prev, 0, level.sFrame.width + 1, level.sFrame.height + 1)); |
|
|
|
|
GpuMat buff = integralBuffer; |
|
|
|
|
|
|
|
|
|
// generate integral for scale
|
|
|
|
|
gpu::resize(image, src, level.sFrame, 0, 0, CV_INTER_LINEAR); |
|
|
|
|
gpu::integralBuffered(src, sint, buff); |
|
|
|
|
|
|
|
|
|
// calculate job
|
|
|
|
|
int totalWidth = level.workArea.width / step; |
|
|
|
|
// totalWidth = ((totalWidth + WARP_MASK) / WARP_SIZE) << WARP_LOG;
|
|
|
|
|
|
|
|
|
|
total += totalWidth * (level.workArea.height / step); |
|
|
|
|
|
|
|
|
|
// go to next pyramide level
|
|
|
|
|
level = level.next(scaleFactor, image.size(), NxM); |
|
|
|
|
area = level.workArea; |
|
|
|
|
|
|
|
|
|
step = (1 + (level.scale <= 2.f)); |
|
|
|
|
prev = acc; |
|
|
|
|
acc += level.sFrame.width + 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, |
|
|
|
|
leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr<unsigned int>(), integral); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (groupThreshold <= 0 || objects.empty()) |
|
|
|
|
return 0; |
|
|
|
|
enum stage { BOOST = 0 }; |
|
|
|
|
enum feature { LBP = 1, HAAR = 2 }; |
|
|
|
|
static const stage stageType = BOOST; |
|
|
|
|
static const feature featureType = LBP; |
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) ); |
|
|
|
|
device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr<unsigned int>()); |
|
|
|
|
cv::Size NxM; |
|
|
|
|
bool isStumps; |
|
|
|
|
int ncategories; |
|
|
|
|
int subsetSize; |
|
|
|
|
int nodeStep; |
|
|
|
|
|
|
|
|
|
// candidates.copyTo(objects);
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) ); |
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
|
|
|
return classified; |
|
|
|
|
} |
|
|
|
|
// gpu representation of classifier
|
|
|
|
|
GpuMat stage_mat; |
|
|
|
|
GpuMat trees_mat; |
|
|
|
|
GpuMat nodes_mat; |
|
|
|
|
GpuMat leaves_mat; |
|
|
|
|
GpuMat subsets_mat; |
|
|
|
|
GpuMat features_mat; |
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size detectionFrameSize) : impl(new CascadeClassifierImpl()) { (*impl).allocateBuffers(detectionFrameSize); } |
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP(){ delete impl; } |
|
|
|
|
GpuMat integral; |
|
|
|
|
GpuMat integralBuffer; |
|
|
|
|
GpuMat resuzeBuffer; |
|
|
|
|
|
|
|
|
|
GpuMat candidates; |
|
|
|
|
static const int integralFactor = 4; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::empty() const |
|
|
|
|
{ |
|
|
|
|
return (*impl).empty(); |
|
|
|
|
} |
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() |
|
|
|
|
: findLargestObject(false), visualizeInPlace(false), impl(0) {} |
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string& classifierAsXml) |
|
|
|
|
{ |
|
|
|
|
FileStorage fs(classifierAsXml, FileStorage::READ); |
|
|
|
|
return fs.isOpened() ? (*impl).read(fs.getFirstTopLevelNode()) : false; |
|
|
|
|
} |
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) |
|
|
|
|
: findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); } |
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, GpuMat& objects, double scaleFactor, int groupThreshold, cv::Size maxObjectSize) |
|
|
|
|
{ |
|
|
|
|
return (*impl).process(image, objects, scaleFactor, groupThreshold, maxObjectSize); |
|
|
|
|
} |
|
|
|
|
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); } |
|
|
|
|
|
|
|
|
|
// ============ old fashioned haar cascade ==============================================//
|
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl |
|
|
|
|
{ |
|
|
|
|
CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1) |
|
|
|
|
{ |
|
|
|
|
ncvSetDebugOutputHandler(NCVDebugOutputHandler); |
|
|
|
|
ncvSafeCall( load(filename) ); |
|
|
|
|
} |
|
|
|
|
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } } |
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; } |
|
|
|
|
|
|
|
|
|
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, |
|
|
|
|
bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize, |
|
|
|
|
/*out*/unsigned int& numDetections) |
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const |
|
|
|
|
{ |
|
|
|
|
calculateMemReqsAndAllocate(src.size()); |
|
|
|
|
|
|
|
|
|
NCVMemPtr src_beg; |
|
|
|
|
src_beg.ptr = (void*)src.ptr<Ncv8u>(); |
|
|
|
|
src_beg.memtype = NCVMemoryTypeDevice; |
|
|
|
|
|
|
|
|
|
NCVMemSegment src_seg; |
|
|
|
|
src_seg.begin = src_beg; |
|
|
|
|
src_seg.size = src.step * src.rows; |
|
|
|
|
|
|
|
|
|
NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true); |
|
|
|
|
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); |
|
|
|
|
|
|
|
|
|
CV_Assert(objects.rows == 1); |
|
|
|
|
|
|
|
|
|
NCVMemPtr objects_beg; |
|
|
|
|
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>(); |
|
|
|
|
objects_beg.memtype = NCVMemoryTypeDevice; |
|
|
|
|
|
|
|
|
|
NCVMemSegment objects_seg; |
|
|
|
|
objects_seg.begin = objects_beg; |
|
|
|
|
objects_seg.size = objects.step * objects.rows; |
|
|
|
|
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols); |
|
|
|
|
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); |
|
|
|
|
|
|
|
|
|
NcvSize32u roi; |
|
|
|
|
roi.width = d_src.width(); |
|
|
|
|
roi.height = d_src.height(); |
|
|
|
|
|
|
|
|
|
Ncv32u flags = 0; |
|
|
|
|
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0; |
|
|
|
|
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0; |
|
|
|
|
|
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device( |
|
|
|
|
d_src, roi, d_rects, numDetections, haar, *h_haarStages, |
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures, |
|
|
|
|
ncvMinSize, |
|
|
|
|
minNeighbors, |
|
|
|
|
scaleStep, 1, |
|
|
|
|
flags, |
|
|
|
|
*gpuAllocator, *cpuAllocator, devProp, 0); |
|
|
|
|
ncvAssertReturnNcvStat(ncvStat); |
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
return this->empty() ? Size() : impl->getClassifierCvSize(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NcvSize32u getClassifierSize() const { return haar.ClassifierSize; } |
|
|
|
|
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NCVStatus load(const string& classifierFile) |
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize) |
|
|
|
|
{ |
|
|
|
|
int devId = cv::gpu::getDevice(); |
|
|
|
|
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
|
|
|
|
|
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures; |
|
|
|
|
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR); |
|
|
|
|
|
|
|
|
|
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages); |
|
|
|
|
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes); |
|
|
|
|
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR); |
|
|
|
|
|
|
|
|
|
d_haarStages = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages); |
|
|
|
|
d_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes); |
|
|
|
|
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
ncvStat = h_haarStages->copySolid(*d_haarStages, 0); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); |
|
|
|
|
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); |
|
|
|
|
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0); |
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
CV_Assert( !this->empty()); |
|
|
|
|
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, cv::Size()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize) |
|
|
|
|
{ |
|
|
|
|
if (lastAllocatedFrameSize == frameSize) |
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize, double scaleFactor, int minNeighbors) |
|
|
|
|
{ |
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Calculate memory requirements and create real allocators
|
|
|
|
|
NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height); |
|
|
|
|
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height); |
|
|
|
|
|
|
|
|
|
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
|
|
|
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
|
|
|
|
|
|
|
|
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100); |
|
|
|
|
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
|
|
|
|
|
|
|
|
NcvSize32u roi; |
|
|
|
|
roi.width = d_src.width(); |
|
|
|
|
roi.height = d_src.height(); |
|
|
|
|
Ncv32u numDetections; |
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages, |
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0); |
|
|
|
|
|
|
|
|
|
ncvAssertReturnNcvStat(ncvStat); |
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); |
|
|
|
|
|
|
|
|
|
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment)); |
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR); |
|
|
|
|
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR); |
|
|
|
|
return NCV_SUCCESS; |
|
|
|
|
CV_Assert( !this->empty()); |
|
|
|
|
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, maxObjectSize); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cudaDeviceProp devProp; |
|
|
|
|
NCVStatus ncvStat; |
|
|
|
|
|
|
|
|
|
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator; |
|
|
|
|
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator; |
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures; |
|
|
|
|
|
|
|
|
|
HaarClassifierCascadeDescriptor haar; |
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes; |
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures; |
|
|
|
|
|
|
|
|
|
Size lastAllocatedFrameSize; |
|
|
|
|
|
|
|
|
|
Ptr<NCVMemStackAllocator> gpuAllocator; |
|
|
|
|
Ptr<NCVMemStackAllocator> cpuAllocator; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {} |
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); } |
|
|
|
|
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); } |
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; } |
|
|
|
|
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename) |
|
|
|
|
{ |
|
|
|
|
release(); |
|
|
|
|
impl = new CascadeClassifierImpl(filename); |
|
|
|
|
return !this->empty(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::string fext = filename.substr(filename.find_last_of(".") + 1); |
|
|
|
|
std::transform(fext.begin(), fext.end(), fext.begin(), ::tolower); |
|
|
|
|
|
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const |
|
|
|
|
if (fext == "nvbin") |
|
|
|
|
{ |
|
|
|
|
return this->empty() ? Size() : impl->getClassifierCvSize(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U); |
|
|
|
|
CV_Assert( !this->empty()); |
|
|
|
|
|
|
|
|
|
const int defaultObjSearchNum = 100; |
|
|
|
|
if (objectsBuf.empty()) |
|
|
|
|
{ |
|
|
|
|
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type); |
|
|
|
|
impl = new HaarCascade(); |
|
|
|
|
return impl->read(filename); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
NcvSize32u ncvMinSize = impl->getClassifierSize(); |
|
|
|
|
FileStorage fs(filename, FileStorage::READ); |
|
|
|
|
|
|
|
|
|
if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height) |
|
|
|
|
if (!fs.isOpened()) |
|
|
|
|
{ |
|
|
|
|
ncvMinSize.width = minSize.width; |
|
|
|
|
ncvMinSize.height = minSize.height; |
|
|
|
|
impl = new HaarCascade(); |
|
|
|
|
return impl->read(filename); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
unsigned int numDetections; |
|
|
|
|
ncvSafeCall( impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections) ); |
|
|
|
|
const char *GPU_CC_LBP = "LBP"; |
|
|
|
|
string featureTypeStr = (string)fs.getFirstTopLevelNode()["featureType"]; |
|
|
|
|
if (featureTypeStr == GPU_CC_LBP) |
|
|
|
|
impl = new LbpCascade(); |
|
|
|
|
else |
|
|
|
|
impl = new HaarCascade(); |
|
|
|
|
|
|
|
|
|
return numDetections; |
|
|
|
|
impl->read(filename); |
|
|
|
|
return !this->empty(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
struct RectConvert |
|
|
|
|
{ |
|
|
|
@ -708,7 +735,6 @@ struct RectConvert |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights) |
|
|
|
|
{ |
|
|
|
|
vector<Rect> rects(hypotheses.size()); |
|
|
|
|