From 1a76242d9949acff9e63f323ef4e1b843590ba33 Mon Sep 17 00:00:00 2001
From: Vladislav Vinogradov <vlad.vinogradov@itseez.com>
Date: Wed, 19 Dec 2012 12:32:40 +0400
Subject: [PATCH] added GPU_TEST_P macros

---
 modules/gpu/test/nvidia/main_nvidia.cpp    |   6 +-
 modules/gpu/test/test_bgfg.cpp             | 405 +++++++++
 modules/gpu/test/test_calib3d.cpp          |  18 +-
 modules/gpu/test/test_color.cpp            | 332 +++----
 modules/gpu/test/test_copy_make_border.cpp |  11 +-
 modules/gpu/test/test_core.cpp             | 521 +++++------
 modules/gpu/test/test_denoising.cpp        |  13 +-
 modules/gpu/test/test_features2d.cpp       | 227 ++---
 modules/gpu/test/test_filters.cpp          |  56 +-
 modules/gpu/test/test_global_motion.cpp    |   2 +-
 modules/gpu/test/test_gpumat.cpp           |  22 +-
 modules/gpu/test/test_hough.cpp            |  12 +-
 modules/gpu/test/test_imgproc.cpp          | 303 ++++---
 modules/gpu/test/test_labeling.cpp         |   8 +-
 modules/gpu/test/test_nvidia.cpp           |  36 +-
 modules/gpu/test/test_objdetect.cpp        |  15 +-
 modules/gpu/test/test_opengl.cpp           |  60 +-
 modules/gpu/test/test_optflow.cpp          | 623 +++++++++++++
 modules/gpu/test/test_precomp.hpp          |   1 +
 modules/gpu/test/test_pyramids.cpp         |   4 +-
 modules/gpu/test/test_remap.cpp            |   2 +-
 modules/gpu/test/test_resize.cpp           |   8 +-
 modules/gpu/test/test_softcascade.cpp      | 113 ++-
 modules/gpu/test/test_threshold.cpp        |   2 +-
 modules/gpu/test/test_video.cpp            | 964 +--------------------
 modules/gpu/test/test_warp_affine.cpp      |  16 +-
 modules/gpu/test/test_warp_perspective.cpp |  21 +-
 modules/gpu/test/utility.cpp               | 117 ++-
 modules/gpu/test/utility.hpp               |  72 +-
 29 files changed, 2026 insertions(+), 1964 deletions(-)
 create mode 100644 modules/gpu/test/test_bgfg.cpp
 create mode 100644 modules/gpu/test/test_optflow.cpp

diff --git a/modules/gpu/test/nvidia/main_nvidia.cpp b/modules/gpu/test/nvidia/main_nvidia.cpp
index 7873563ce1..43c92ce1ee 100644
--- a/modules/gpu/test/nvidia/main_nvidia.cpp
+++ b/modules/gpu/test/nvidia/main_nvidia.cpp
@@ -276,6 +276,8 @@ static void devNullOutput(const std::string& msg)
     (void)msg;
 }
 
+}
+
 bool nvidia_NPPST_Integral_Image(const std::string& test_data_path, OutputLevel outputLevel)
 {
     path = test_data_path.c_str();
@@ -292,8 +294,6 @@ bool nvidia_NPPST_Integral_Image(const std::string& test_data_path, OutputLevel
     return testListerII.invoke();
 }
 
-}
-
 bool nvidia_NPPST_Squared_Integral_Image(const std::string& test_data_path, OutputLevel outputLevel)
 {
     path = test_data_path;
@@ -439,4 +439,4 @@ bool nvidia_NCV_Visualization(const std::string& test_data_path, OutputLevel out
     return testListerVisualize.invoke();
 }
 
-#endif /* CUDA_DISABLER */
\ No newline at end of file
+#endif /* CUDA_DISABLER */
diff --git a/modules/gpu/test/test_bgfg.cpp b/modules/gpu/test/test_bgfg.cpp
new file mode 100644
index 0000000000..bac835ef1b
--- /dev/null
+++ b/modules/gpu/test/test_bgfg.cpp
@@ -0,0 +1,405 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include "test_precomp.hpp"
+
+#ifdef HAVE_CUDA
+
+//////////////////////////////////////////////////////
+// FGDStatModel
+
+namespace cv
+{
+    template<> void Ptr<CvBGStatModel>::delete_obj()
+    {
+        cvReleaseBGStatModel(&obj);
+    }
+}
+
+PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels)
+{
+    cv::gpu::DeviceInfo devInfo;
+    std::string inputFile;
+    int out_cn;
+
+    virtual void SetUp()
+    {
+        devInfo = GET_PARAM(0);
+        cv::gpu::setDevice(devInfo.deviceID());
+
+        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
+
+        out_cn = GET_PARAM(2);
+    }
+};
+
+GPU_TEST_P(FGDStatModel, Update)
+{
+    cv::VideoCapture cap(inputFile);
+    ASSERT_TRUE(cap.isOpened());
+
+    cv::Mat frame;
+    cap >> frame;
+    ASSERT_FALSE(frame.empty());
+
+    IplImage ipl_frame = frame;
+    cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
+
+    cv::gpu::GpuMat d_frame(frame);
+    cv::gpu::FGDStatModel d_model(out_cn);
+    d_model.create(d_frame);
+
+    cv::Mat h_background;
+    cv::Mat h_foreground;
+    cv::Mat h_background3;
+
+    cv::Mat backgroundDiff;
+    cv::Mat foregroundDiff;
+
+    for (int i = 0; i < 5; ++i)
+    {
+        cap >> frame;
+        ASSERT_FALSE(frame.empty());
+
+        ipl_frame = frame;
+        int gold_count = cvUpdateBGStatModel(&ipl_frame, model);
+
+        d_frame.upload(frame);
+
+        int count = d_model.update(d_frame);
+
+        ASSERT_EQ(gold_count, count);
+
+        cv::Mat gold_background(model->background);
+        cv::Mat gold_foreground(model->foreground);
+
+        if (out_cn == 3)
+            d_model.background.download(h_background3);
+        else
+        {
+            d_model.background.download(h_background);
+            cv::cvtColor(h_background, h_background3, cv::COLOR_BGRA2BGR);
+        }
+        d_model.foreground.download(h_foreground);
+
+        ASSERT_MAT_NEAR(gold_background, h_background3, 1.0);
+        ASSERT_MAT_NEAR(gold_foreground, h_foreground, 0.0);
+    }
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, FGDStatModel, testing::Combine(
+    ALL_DEVICES,
+    testing::Values(std::string("768x576.avi")),
+    testing::Values(Channels(3), Channels(4))));
+
+//////////////////////////////////////////////////////
+// MOG
+
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(UseGray, bool)
+    IMPLEMENT_PARAM_CLASS(LearningRate, double)
+}
+
+PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi)
+{
+    cv::gpu::DeviceInfo devInfo;
+    std::string inputFile;
+    bool useGray;
+    double learningRate;
+    bool useRoi;
+
+    virtual void SetUp()
+    {
+        devInfo = GET_PARAM(0);
+        cv::gpu::setDevice(devInfo.deviceID());
+
+        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
+
+        useGray = GET_PARAM(2);
+
+        learningRate = GET_PARAM(3);
+
+        useRoi = GET_PARAM(4);
+    }
+};
+
+GPU_TEST_P(MOG, Update)
+{
+    cv::VideoCapture cap(inputFile);
+    ASSERT_TRUE(cap.isOpened());
+
+    cv::Mat frame;
+    cap >> frame;
+    ASSERT_FALSE(frame.empty());
+
+    cv::gpu::MOG_GPU mog;
+    cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
+
+    cv::BackgroundSubtractorMOG mog_gold;
+    cv::Mat foreground_gold;
+
+    for (int i = 0; i < 10; ++i)
+    {
+        cap >> frame;
+        ASSERT_FALSE(frame.empty());
+
+        if (useGray)
+        {
+            cv::Mat temp;
+            cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
+            cv::swap(temp, frame);
+        }
+
+        mog(loadMat(frame, useRoi), foreground, (float)learningRate);
+
+        mog_gold(frame, foreground_gold, learningRate);
+
+        ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0);
+    }
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, MOG, testing::Combine(
+    ALL_DEVICES,
+    testing::Values(std::string("768x576.avi")),
+    testing::Values(UseGray(true), UseGray(false)),
+    testing::Values(LearningRate(0.0), LearningRate(0.01)),
+    WHOLE_SUBMAT));
+
+//////////////////////////////////////////////////////
+// MOG2
+
+PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, UseRoi)
+{
+    cv::gpu::DeviceInfo devInfo;
+    std::string inputFile;
+    bool useGray;
+    bool useRoi;
+
+    virtual void SetUp()
+    {
+        devInfo = GET_PARAM(0);
+        cv::gpu::setDevice(devInfo.deviceID());
+
+        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
+
+        useGray = GET_PARAM(2);
+
+        useRoi = GET_PARAM(3);
+    }
+};
+
+GPU_TEST_P(MOG2, Update)
+{
+    cv::VideoCapture cap(inputFile);
+    ASSERT_TRUE(cap.isOpened());
+
+    cv::Mat frame;
+    cap >> frame;
+    ASSERT_FALSE(frame.empty());
+
+    cv::gpu::MOG2_GPU mog2;
+    cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
+
+    cv::BackgroundSubtractorMOG2 mog2_gold;
+    cv::Mat foreground_gold;
+
+    for (int i = 0; i < 10; ++i)
+    {
+        cap >> frame;
+        ASSERT_FALSE(frame.empty());
+
+        if (useGray)
+        {
+            cv::Mat temp;
+            cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
+            cv::swap(temp, frame);
+        }
+
+        mog2(loadMat(frame, useRoi), foreground);
+
+        mog2_gold(frame, foreground_gold);
+
+        double norm = cv::norm(foreground_gold, cv::Mat(foreground), cv::NORM_L1);
+
+        norm /= foreground_gold.size().area();
+
+        ASSERT_LE(norm, 0.09);
+    }
+}
+
+GPU_TEST_P(MOG2, getBackgroundImage)
+{
+    if (useGray)
+        return;
+
+    cv::VideoCapture cap(inputFile);
+    ASSERT_TRUE(cap.isOpened());
+
+    cv::Mat frame;
+
+    cv::gpu::MOG2_GPU mog2;
+    cv::gpu::GpuMat foreground;
+
+    cv::BackgroundSubtractorMOG2 mog2_gold;
+    cv::Mat foreground_gold;
+
+    for (int i = 0; i < 10; ++i)
+    {
+        cap >> frame;
+        ASSERT_FALSE(frame.empty());
+
+        mog2(loadMat(frame, useRoi), foreground);
+
+        mog2_gold(frame, foreground_gold);
+    }
+
+    cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi);
+    mog2.getBackgroundImage(background);
+
+    cv::Mat background_gold;
+    mog2_gold.getBackgroundImage(background_gold);
+
+    ASSERT_MAT_NEAR(background_gold, background, 0);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, MOG2, testing::Combine(
+    ALL_DEVICES,
+    testing::Values(std::string("768x576.avi")),
+    testing::Values(UseGray(true), UseGray(false)),
+    WHOLE_SUBMAT));
+
+//////////////////////////////////////////////////////
+// VIBE
+
+PARAM_TEST_CASE(VIBE, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
+{
+};
+
+GPU_TEST_P(VIBE, Accuracy)
+{
+    const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
+    cv::gpu::setDevice(devInfo.deviceID());
+    const cv::Size size = GET_PARAM(1);
+    const int type = GET_PARAM(2);
+    const bool useRoi = GET_PARAM(3);
+
+    const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
+
+    cv::Mat frame = randomMat(size, type, 0.0, 100);
+    cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
+
+    cv::gpu::VIBE_GPU vibe;
+    cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
+    vibe.initialize(d_frame);
+
+    for (int i = 0; i < 20; ++i)
+        vibe(d_frame, d_fgmask);
+
+    frame = randomMat(size, type, 160, 255);
+    d_frame = loadMat(frame, useRoi);
+    vibe(d_frame, d_fgmask);
+
+    // now fgmask should be entirely foreground
+    ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, VIBE, testing::Combine(
+    ALL_DEVICES,
+    DIFFERENT_SIZES,
+    testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4)),
+    WHOLE_SUBMAT));
+
+//////////////////////////////////////////////////////
+// GMG
+
+PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
+{
+};
+
+GPU_TEST_P(GMG, Accuracy)
+{
+    const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
+    cv::gpu::setDevice(devInfo.deviceID());
+    const cv::Size size = GET_PARAM(1);
+    const int depth = GET_PARAM(2);
+    const int channels = GET_PARAM(3);
+    const bool useRoi = GET_PARAM(4);
+
+    const int type = CV_MAKE_TYPE(depth, channels);
+
+    const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0));
+    const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
+
+    cv::Mat frame = randomMat(size, type, 0, 100);
+    cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
+
+    cv::gpu::GMG_GPU gmg;
+    gmg.numInitializationFrames = 5;
+    gmg.smoothingRadius = 0;
+    gmg.initialize(d_frame.size(), 0, 255);
+
+    cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
+
+    for (int i = 0; i < gmg.numInitializationFrames; ++i)
+    {
+        gmg(d_frame, d_fgmask);
+
+        // fgmask should be entirely background during training
+        ASSERT_MAT_NEAR(zeros, d_fgmask, 0);
+    }
+
+    frame = randomMat(size, type, 160, 255);
+    d_frame = loadMat(frame, useRoi);
+    gmg(d_frame, d_fgmask);
+
+    // now fgmask should be entirely foreground
+    ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, GMG, testing::Combine(
+    ALL_DEVICES,
+    DIFFERENT_SIZES,
+    testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)),
+    testing::Values(Channels(1), Channels(3), Channels(4)),
+    WHOLE_SUBMAT));
+
+#endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_calib3d.cpp b/modules/gpu/test/test_calib3d.cpp
index a294a3df95..318de8d898 100644
--- a/modules/gpu/test/test_calib3d.cpp
+++ b/modules/gpu/test/test_calib3d.cpp
@@ -43,8 +43,6 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
 //////////////////////////////////////////////////////////////////////////
 // StereoBM
 
@@ -60,7 +58,7 @@ struct StereoBM : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(StereoBM, Regression)
+GPU_TEST_P(StereoBM, Regression)
 {
     cv::Mat left_image  = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
     cv::Mat right_image = readImage("stereobm/aloe-R.png", cv::IMREAD_GRAYSCALE);
@@ -95,7 +93,7 @@ struct StereoBeliefPropagation : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(StereoBeliefPropagation, Regression)
+GPU_TEST_P(StereoBeliefPropagation, Regression)
 {
     cv::Mat left_image  = readImage("stereobp/aloe-L.png");
     cv::Mat right_image = readImage("stereobp/aloe-R.png");
@@ -133,7 +131,7 @@ struct StereoConstantSpaceBP : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(StereoConstantSpaceBP, Regression)
+GPU_TEST_P(StereoConstantSpaceBP, Regression)
 {
     cv::Mat left_image  = readImage("csstereobp/aloe-L.png");
     cv::Mat right_image = readImage("csstereobp/aloe-R.png");
@@ -177,7 +175,7 @@ struct TransformPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(TransformPoints, Accuracy)
+GPU_TEST_P(TransformPoints, Accuracy)
 {
     cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
     cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
@@ -225,7 +223,7 @@ struct ProjectPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(ProjectPoints, Accuracy)
+GPU_TEST_P(ProjectPoints, Accuracy)
 {
     cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
     cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
@@ -275,7 +273,7 @@ struct SolvePnPRansac : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(SolvePnPRansac, Accuracy)
+GPU_TEST_P(SolvePnPRansac, Accuracy)
 {
     cv::Mat object = randomMat(cv::Size(5000, 1), CV_32FC3, 0, 100);
     cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
@@ -324,7 +322,7 @@ PARAM_TEST_CASE(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth, Use
     }
 };
 
-TEST_P(ReprojectImageTo3D, Accuracy)
+GPU_TEST_P(ReprojectImageTo3D, Accuracy)
 {
     cv::Mat disp = randomMat(size, depth, 5.0, 30.0);
     cv::Mat Q = randomMat(cv::Size(4, 4), CV_32FC1, 0.1, 1.0);
@@ -344,6 +342,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ReprojectImageTo3D, testing::Combine(
     testing::Values(MatDepth(CV_8U), MatDepth(CV_16S)),
     WHOLE_SUBMAT));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_color.cpp b/modules/gpu/test/test_color.cpp
index 2510f564d0..e30dcfdba3 100644
--- a/modules/gpu/test/test_color.cpp
+++ b/modules/gpu/test/test_color.cpp
@@ -43,8 +43,6 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
 ///////////////////////////////////////////////////////////////////////////////////////////////////////
 // cvtColor
 
@@ -70,7 +68,7 @@ PARAM_TEST_CASE(CvtColor, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(CvtColor, BGR2RGB)
+GPU_TEST_P(CvtColor, BGR2RGB)
 {
     cv::Mat src = img;
 
@@ -83,7 +81,7 @@ TEST_P(CvtColor, BGR2RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR2RGBA)
+GPU_TEST_P(CvtColor, BGR2RGBA)
 {
     cv::Mat src = img;
 
@@ -96,7 +94,7 @@ TEST_P(CvtColor, BGR2RGBA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR2BGRA)
+GPU_TEST_P(CvtColor, BGR2BGRA)
 {
     cv::Mat src = img;
 
@@ -109,7 +107,7 @@ TEST_P(CvtColor, BGR2BGRA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGRA2RGB)
+GPU_TEST_P(CvtColor, BGRA2RGB)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@@ -123,7 +121,7 @@ TEST_P(CvtColor, BGRA2RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGRA2BGR)
+GPU_TEST_P(CvtColor, BGRA2BGR)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@@ -137,7 +135,7 @@ TEST_P(CvtColor, BGRA2BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGRA2RGBA)
+GPU_TEST_P(CvtColor, BGRA2RGBA)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@@ -151,7 +149,7 @@ TEST_P(CvtColor, BGRA2RGBA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR2GRAY)
+GPU_TEST_P(CvtColor, BGR2GRAY)
 {
     cv::Mat src = img;
 
@@ -164,7 +162,7 @@ TEST_P(CvtColor, BGR2GRAY)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, RGB2GRAY)
+GPU_TEST_P(CvtColor, RGB2GRAY)
 {
     cv::Mat src = img;
 
@@ -177,7 +175,7 @@ TEST_P(CvtColor, RGB2GRAY)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, GRAY2BGR)
+GPU_TEST_P(CvtColor, GRAY2BGR)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2GRAY);
@@ -191,7 +189,7 @@ TEST_P(CvtColor, GRAY2BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, GRAY2BGRA)
+GPU_TEST_P(CvtColor, GRAY2BGRA)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2GRAY);
@@ -205,7 +203,7 @@ TEST_P(CvtColor, GRAY2BGRA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGRA2GRAY)
+GPU_TEST_P(CvtColor, BGRA2GRAY)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@@ -219,7 +217,7 @@ TEST_P(CvtColor, BGRA2GRAY)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, RGBA2GRAY)
+GPU_TEST_P(CvtColor, RGBA2GRAY)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2RGBA);
@@ -233,7 +231,7 @@ TEST_P(CvtColor, RGBA2GRAY)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGR2BGR565)
+GPU_TEST_P(CvtColor, BGR2BGR565)
 {
     if (depth != CV_8U)
         return;
@@ -249,7 +247,7 @@ TEST_P(CvtColor, BGR2BGR565)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, RGB2BGR565)
+GPU_TEST_P(CvtColor, RGB2BGR565)
 {
     if (depth != CV_8U)
         return;
@@ -265,7 +263,7 @@ TEST_P(CvtColor, RGB2BGR565)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5652BGR)
+GPU_TEST_P(CvtColor, BGR5652BGR)
 {
     if (depth != CV_8U)
         return;
@@ -282,7 +280,7 @@ TEST_P(CvtColor, BGR5652BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5652RGB)
+GPU_TEST_P(CvtColor, BGR5652RGB)
 {
     if (depth != CV_8U)
         return;
@@ -299,7 +297,7 @@ TEST_P(CvtColor, BGR5652RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGRA2BGR565)
+GPU_TEST_P(CvtColor, BGRA2BGR565)
 {
     if (depth != CV_8U)
         return;
@@ -316,7 +314,7 @@ TEST_P(CvtColor, BGRA2BGR565)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, RGBA2BGR565)
+GPU_TEST_P(CvtColor, RGBA2BGR565)
 {
     if (depth != CV_8U)
         return;
@@ -333,7 +331,7 @@ TEST_P(CvtColor, RGBA2BGR565)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5652BGRA)
+GPU_TEST_P(CvtColor, BGR5652BGRA)
 {
     if (depth != CV_8U)
         return;
@@ -350,7 +348,7 @@ TEST_P(CvtColor, BGR5652BGRA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5652RGBA)
+GPU_TEST_P(CvtColor, BGR5652RGBA)
 {
     if (depth != CV_8U)
         return;
@@ -367,7 +365,7 @@ TEST_P(CvtColor, BGR5652RGBA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, GRAY2BGR565)
+GPU_TEST_P(CvtColor, GRAY2BGR565)
 {
     if (depth != CV_8U)
         return;
@@ -384,7 +382,7 @@ TEST_P(CvtColor, GRAY2BGR565)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5652GRAY)
+GPU_TEST_P(CvtColor, BGR5652GRAY)
 {
     if (depth != CV_8U)
         return;
@@ -401,7 +399,7 @@ TEST_P(CvtColor, BGR5652GRAY)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR2BGR555)
+GPU_TEST_P(CvtColor, BGR2BGR555)
 {
     if (depth != CV_8U)
         return;
@@ -417,7 +415,7 @@ TEST_P(CvtColor, BGR2BGR555)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, RGB2BGR555)
+GPU_TEST_P(CvtColor, RGB2BGR555)
 {
     if (depth != CV_8U)
         return;
@@ -433,7 +431,7 @@ TEST_P(CvtColor, RGB2BGR555)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5552BGR)
+GPU_TEST_P(CvtColor, BGR5552BGR)
 {
     if (depth != CV_8U)
         return;
@@ -450,7 +448,7 @@ TEST_P(CvtColor, BGR5552BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5552RGB)
+GPU_TEST_P(CvtColor, BGR5552RGB)
 {
     if (depth != CV_8U)
         return;
@@ -467,7 +465,7 @@ TEST_P(CvtColor, BGR5552RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGRA2BGR555)
+GPU_TEST_P(CvtColor, BGRA2BGR555)
 {
     if (depth != CV_8U)
         return;
@@ -484,7 +482,7 @@ TEST_P(CvtColor, BGRA2BGR555)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, RGBA2BGR555)
+GPU_TEST_P(CvtColor, RGBA2BGR555)
 {
     if (depth != CV_8U)
         return;
@@ -501,7 +499,7 @@ TEST_P(CvtColor, RGBA2BGR555)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5552BGRA)
+GPU_TEST_P(CvtColor, BGR5552BGRA)
 {
     if (depth != CV_8U)
         return;
@@ -518,7 +516,7 @@ TEST_P(CvtColor, BGR5552BGRA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5552RGBA)
+GPU_TEST_P(CvtColor, BGR5552RGBA)
 {
     if (depth != CV_8U)
         return;
@@ -535,7 +533,7 @@ TEST_P(CvtColor, BGR5552RGBA)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, GRAY2BGR555)
+GPU_TEST_P(CvtColor, GRAY2BGR555)
 {
     if (depth != CV_8U)
         return;
@@ -552,7 +550,7 @@ TEST_P(CvtColor, GRAY2BGR555)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR5552GRAY)
+GPU_TEST_P(CvtColor, BGR5552GRAY)
 {
     if (depth != CV_8U)
         return;
@@ -569,7 +567,7 @@ TEST_P(CvtColor, BGR5552GRAY)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(CvtColor, BGR2XYZ)
+GPU_TEST_P(CvtColor, BGR2XYZ)
 {
     cv::Mat src = img;
 
@@ -582,7 +580,7 @@ TEST_P(CvtColor, BGR2XYZ)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, RGB2XYZ)
+GPU_TEST_P(CvtColor, RGB2XYZ)
 {
     cv::Mat src = img;
 
@@ -595,7 +593,7 @@ TEST_P(CvtColor, RGB2XYZ)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGR2XYZ4)
+GPU_TEST_P(CvtColor, BGR2XYZ4)
 {
     cv::Mat src = img;
 
@@ -616,7 +614,7 @@ TEST_P(CvtColor, BGR2XYZ4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGRA2XYZ4)
+GPU_TEST_P(CvtColor, BGRA2XYZ4)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@@ -638,7 +636,7 @@ TEST_P(CvtColor, BGRA2XYZ4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
 }
 
-TEST_P(CvtColor, XYZ2BGR)
+GPU_TEST_P(CvtColor, XYZ2BGR)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@@ -652,7 +650,7 @@ TEST_P(CvtColor, XYZ2BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, XYZ2RGB)
+GPU_TEST_P(CvtColor, XYZ2RGB)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@@ -666,7 +664,7 @@ TEST_P(CvtColor, XYZ2RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, XYZ42BGR)
+GPU_TEST_P(CvtColor, XYZ42BGR)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@@ -685,7 +683,7 @@ TEST_P(CvtColor, XYZ42BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, XYZ42BGRA)
+GPU_TEST_P(CvtColor, XYZ42BGRA)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@@ -704,7 +702,7 @@ TEST_P(CvtColor, XYZ42BGRA)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGR2YCrCb)
+GPU_TEST_P(CvtColor, BGR2YCrCb)
 {
     cv::Mat src = img;
 
@@ -717,7 +715,7 @@ TEST_P(CvtColor, BGR2YCrCb)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, RGB2YCrCb)
+GPU_TEST_P(CvtColor, RGB2YCrCb)
 {
     cv::Mat src = img;
 
@@ -730,7 +728,7 @@ TEST_P(CvtColor, RGB2YCrCb)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGR2YCrCb4)
+GPU_TEST_P(CvtColor, BGR2YCrCb4)
 {
     cv::Mat src = img;
 
@@ -751,7 +749,7 @@ TEST_P(CvtColor, BGR2YCrCb4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
 }
 
-TEST_P(CvtColor, RGBA2YCrCb4)
+GPU_TEST_P(CvtColor, RGBA2YCrCb4)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2RGBA);
@@ -773,7 +771,7 @@ TEST_P(CvtColor, RGBA2YCrCb4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
 }
 
-TEST_P(CvtColor, YCrCb2BGR)
+GPU_TEST_P(CvtColor, YCrCb2BGR)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@@ -787,7 +785,7 @@ TEST_P(CvtColor, YCrCb2BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, YCrCb2RGB)
+GPU_TEST_P(CvtColor, YCrCb2RGB)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@@ -801,7 +799,7 @@ TEST_P(CvtColor, YCrCb2RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, YCrCb42RGB)
+GPU_TEST_P(CvtColor, YCrCb42RGB)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@@ -820,7 +818,7 @@ TEST_P(CvtColor, YCrCb42RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, YCrCb42RGBA)
+GPU_TEST_P(CvtColor, YCrCb42RGBA)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@@ -839,7 +837,7 @@ TEST_P(CvtColor, YCrCb42RGBA)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGR2HSV)
+GPU_TEST_P(CvtColor, BGR2HSV)
 {
     if (depth == CV_16U)
         return;
@@ -855,7 +853,7 @@ TEST_P(CvtColor, BGR2HSV)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HSV)
+GPU_TEST_P(CvtColor, RGB2HSV)
 {
     if (depth == CV_16U)
         return;
@@ -871,7 +869,7 @@ TEST_P(CvtColor, RGB2HSV)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HSV4)
+GPU_TEST_P(CvtColor, RGB2HSV4)
 {
     if (depth == CV_16U)
         return;
@@ -895,7 +893,7 @@ TEST_P(CvtColor, RGB2HSV4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGBA2HSV4)
+GPU_TEST_P(CvtColor, RGBA2HSV4)
 {
     if (depth == CV_16U)
         return;
@@ -920,7 +918,7 @@ TEST_P(CvtColor, RGBA2HSV4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, BGR2HLS)
+GPU_TEST_P(CvtColor, BGR2HLS)
 {
     if (depth == CV_16U)
         return;
@@ -936,7 +934,7 @@ TEST_P(CvtColor, BGR2HLS)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HLS)
+GPU_TEST_P(CvtColor, RGB2HLS)
 {
     if (depth == CV_16U)
         return;
@@ -952,7 +950,7 @@ TEST_P(CvtColor, RGB2HLS)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HLS4)
+GPU_TEST_P(CvtColor, RGB2HLS4)
 {
     if (depth == CV_16U)
         return;
@@ -976,7 +974,7 @@ TEST_P(CvtColor, RGB2HLS4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGBA2HLS4)
+GPU_TEST_P(CvtColor, RGBA2HLS4)
 {
     if (depth == CV_16U)
         return;
@@ -1001,7 +999,7 @@ TEST_P(CvtColor, RGBA2HLS4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV2BGR)
+GPU_TEST_P(CvtColor, HSV2BGR)
 {
     if (depth == CV_16U)
         return;
@@ -1018,7 +1016,7 @@ TEST_P(CvtColor, HSV2BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV2RGB)
+GPU_TEST_P(CvtColor, HSV2RGB)
 {
     if (depth == CV_16U)
         return;
@@ -1035,7 +1033,7 @@ TEST_P(CvtColor, HSV2RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV42BGR)
+GPU_TEST_P(CvtColor, HSV42BGR)
 {
     if (depth == CV_16U)
         return;
@@ -1057,7 +1055,7 @@ TEST_P(CvtColor, HSV42BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV42BGRA)
+GPU_TEST_P(CvtColor, HSV42BGRA)
 {
     if (depth == CV_16U)
         return;
@@ -1079,7 +1077,7 @@ TEST_P(CvtColor, HSV42BGRA)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS2BGR)
+GPU_TEST_P(CvtColor, HLS2BGR)
 {
     if (depth == CV_16U)
         return;
@@ -1096,7 +1094,7 @@ TEST_P(CvtColor, HLS2BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS2RGB)
+GPU_TEST_P(CvtColor, HLS2RGB)
 {
     if (depth == CV_16U)
         return;
@@ -1113,7 +1111,7 @@ TEST_P(CvtColor, HLS2RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS42RGB)
+GPU_TEST_P(CvtColor, HLS42RGB)
 {
     if (depth == CV_16U)
         return;
@@ -1135,7 +1133,7 @@ TEST_P(CvtColor, HLS42RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS42RGBA)
+GPU_TEST_P(CvtColor, HLS42RGBA)
 {
     if (depth == CV_16U)
         return;
@@ -1158,7 +1156,7 @@ TEST_P(CvtColor, HLS42RGBA)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, BGR2HSV_FULL)
+GPU_TEST_P(CvtColor, BGR2HSV_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1174,7 +1172,7 @@ TEST_P(CvtColor, BGR2HSV_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HSV_FULL)
+GPU_TEST_P(CvtColor, RGB2HSV_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1190,7 +1188,7 @@ TEST_P(CvtColor, RGB2HSV_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HSV4_FULL)
+GPU_TEST_P(CvtColor, RGB2HSV4_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1214,7 +1212,7 @@ TEST_P(CvtColor, RGB2HSV4_FULL)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGBA2HSV4_FULL)
+GPU_TEST_P(CvtColor, RGBA2HSV4_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1239,7 +1237,7 @@ TEST_P(CvtColor, RGBA2HSV4_FULL)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, BGR2HLS_FULL)
+GPU_TEST_P(CvtColor, BGR2HLS_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1255,7 +1253,7 @@ TEST_P(CvtColor, BGR2HLS_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HLS_FULL)
+GPU_TEST_P(CvtColor, RGB2HLS_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1271,7 +1269,7 @@ TEST_P(CvtColor, RGB2HLS_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGB2HLS4_FULL)
+GPU_TEST_P(CvtColor, RGB2HLS4_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1295,7 +1293,7 @@ TEST_P(CvtColor, RGB2HLS4_FULL)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, RGBA2HLS4_FULL)
+GPU_TEST_P(CvtColor, RGBA2HLS4_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1320,7 +1318,7 @@ TEST_P(CvtColor, RGBA2HLS4_FULL)
     EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV2BGR_FULL)
+GPU_TEST_P(CvtColor, HSV2BGR_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1337,7 +1335,7 @@ TEST_P(CvtColor, HSV2BGR_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV2RGB_FULL)
+GPU_TEST_P(CvtColor, HSV2RGB_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1354,7 +1352,7 @@ TEST_P(CvtColor, HSV2RGB_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV42RGB_FULL)
+GPU_TEST_P(CvtColor, HSV42RGB_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1376,7 +1374,7 @@ TEST_P(CvtColor, HSV42RGB_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HSV42RGBA_FULL)
+GPU_TEST_P(CvtColor, HSV42RGBA_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1398,7 +1396,7 @@ TEST_P(CvtColor, HSV42RGBA_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS2BGR_FULL)
+GPU_TEST_P(CvtColor, HLS2BGR_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1415,7 +1413,7 @@ TEST_P(CvtColor, HLS2BGR_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS2RGB_FULL)
+GPU_TEST_P(CvtColor, HLS2RGB_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1432,7 +1430,7 @@ TEST_P(CvtColor, HLS2RGB_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS42RGB_FULL)
+GPU_TEST_P(CvtColor, HLS42RGB_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1454,7 +1452,7 @@ TEST_P(CvtColor, HLS42RGB_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, HLS42RGBA_FULL)
+GPU_TEST_P(CvtColor, HLS42RGBA_FULL)
 {
     if (depth == CV_16U)
         return;
@@ -1476,7 +1474,7 @@ TEST_P(CvtColor, HLS42RGBA_FULL)
     EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
 }
 
-TEST_P(CvtColor, BGR2YUV)
+GPU_TEST_P(CvtColor, BGR2YUV)
 {
     cv::Mat src = img;
 
@@ -1489,7 +1487,7 @@ TEST_P(CvtColor, BGR2YUV)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, RGB2YUV)
+GPU_TEST_P(CvtColor, RGB2YUV)
 {
     cv::Mat src = img;
 
@@ -1502,7 +1500,7 @@ TEST_P(CvtColor, RGB2YUV)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, YUV2BGR)
+GPU_TEST_P(CvtColor, YUV2BGR)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2YUV);
@@ -1516,7 +1514,7 @@ TEST_P(CvtColor, YUV2BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, YUV42BGR)
+GPU_TEST_P(CvtColor, YUV42BGR)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2YUV);
@@ -1535,7 +1533,7 @@ TEST_P(CvtColor, YUV42BGR)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, YUV42BGRA)
+GPU_TEST_P(CvtColor, YUV42BGRA)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2YUV);
@@ -1554,7 +1552,7 @@ TEST_P(CvtColor, YUV42BGRA)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, YUV2RGB)
+GPU_TEST_P(CvtColor, YUV2RGB)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_RGB2YUV);
@@ -1568,7 +1566,7 @@ TEST_P(CvtColor, YUV2RGB)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGR2YUV4)
+GPU_TEST_P(CvtColor, BGR2YUV4)
 {
     cv::Mat src = img;
 
@@ -1589,7 +1587,7 @@ TEST_P(CvtColor, BGR2YUV4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
 }
 
-TEST_P(CvtColor, RGBA2YUV4)
+GPU_TEST_P(CvtColor, RGBA2YUV4)
 {
     cv::Mat src;
     cv::cvtColor(img, src, cv::COLOR_BGR2RGBA);
@@ -1611,147 +1609,91 @@ TEST_P(CvtColor, RGBA2YUV4)
     EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
 }
 
-TEST_P(CvtColor, BGR2Lab)
+#if defined (CUDA_VERSION) && (CUDA_VERSION >= 5000)
+
+GPU_TEST_P(CvtColor, BGR2Lab)
 {
     if (depth != CV_8U)
         return;
 
-    try
-    {
-        cv::Mat src = readImage("stereobm/aloe-L.png");
+    cv::Mat src = readImage("stereobm/aloe-L.png");
 
-        cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_BGR2Lab);
+    cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_BGR2Lab);
 
-        cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2BGR);
+    cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2BGR);
 
-        EXPECT_MAT_NEAR(src, dst_bgr, 10);
-    }
-    catch (const cv::Exception& e)
-    {
-        (void)e;
-#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
-        ASSERT_EQ(CV_StsBadFlag, e.code);
-#else
-        FAIL();
-#endif
-    }
+    EXPECT_MAT_NEAR(src, dst_bgr, 10);
 }
 
-TEST_P(CvtColor, RGB2Lab)
+GPU_TEST_P(CvtColor, RGB2Lab)
 {
     if (depth != CV_8U)
         return;
 
-    try
-    {
-        cv::Mat src = readImage("stereobm/aloe-L.png");
+    cv::Mat src = readImage("stereobm/aloe-L.png");
 
-        cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_RGB2Lab);
+    cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_RGB2Lab);
 
-        cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2RGB);
+    cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2RGB);
 
-        EXPECT_MAT_NEAR(src, dst_bgr, 10);
-    }
-    catch (const cv::Exception& e)
-    {
-        (void)e;
-#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
-        ASSERT_EQ(CV_StsBadFlag, e.code);
-#else
-        FAIL();
-#endif
-    }
+    EXPECT_MAT_NEAR(src, dst_bgr, 10);
 }
 
-TEST_P(CvtColor, BGR2Luv)
+GPU_TEST_P(CvtColor, BGR2Luv)
 {
     if (depth != CV_8U)
         return;
 
-    try
-    {
-        cv::Mat src = img;
+    cv::Mat src = img;
 
-        cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_BGR2Luv);
+    cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_BGR2Luv);
 
-        cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2BGR);
+    cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2BGR);
 
-        EXPECT_MAT_NEAR(src, dst_rgb, 10);
-    }
-    catch (const cv::Exception& e)
-    {
-        (void)e;
-#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
-        ASSERT_EQ(CV_StsBadFlag, e.code);
-#else
-        FAIL();
-#endif
-    }
+    EXPECT_MAT_NEAR(src, dst_rgb, 10);
 }
 
-TEST_P(CvtColor, RGB2Luv)
+GPU_TEST_P(CvtColor, RGB2Luv)
 {
     if (depth != CV_8U)
         return;
 
-    try
-    {
-        cv::Mat src = img;
+    cv::Mat src = img;
 
-        cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_RGB2Luv);
+    cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_RGB2Luv);
 
-        cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2RGB);
+    cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2RGB);
 
-        EXPECT_MAT_NEAR(src, dst_rgb, 10);
-    }
-    catch (const cv::Exception& e)
-    {
-        (void)e;
-#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
-        ASSERT_EQ(CV_StsBadFlag, e.code);
-#else
-        FAIL();
-#endif
-    }
+    EXPECT_MAT_NEAR(src, dst_rgb, 10);
 }
 
-TEST_P(CvtColor, RGBA2mRGBA)
+GPU_TEST_P(CvtColor, RGBA2mRGBA)
 {
     if (depth != CV_8U)
         return;
 
-    try
-    {
-        cv::Mat src = randomMat(size, CV_MAKE_TYPE(depth, 4));
+    cv::Mat src = randomMat(size, CV_MAKE_TYPE(depth, 4));
 
-        cv::gpu::GpuMat dst = createMat(src.size(), src.type(), useRoi);
-        cv::gpu::cvtColor(loadMat(src, useRoi), dst, cv::COLOR_RGBA2mRGBA);
+    cv::gpu::GpuMat dst = createMat(src.size(), src.type(), useRoi);
+    cv::gpu::cvtColor(loadMat(src, useRoi), dst, cv::COLOR_RGBA2mRGBA);
 
-        cv::Mat dst_gold;
-        cv::cvtColor(src, dst_gold, cv::COLOR_RGBA2mRGBA);
+    cv::Mat dst_gold;
+    cv::cvtColor(src, dst_gold, cv::COLOR_RGBA2mRGBA);
 
-        EXPECT_MAT_NEAR(dst_gold, dst, 1);
-    }
-    catch (const cv::Exception& e)
-    {
-        (void)e;
-#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
-        ASSERT_EQ(CV_StsBadFlag, e.code);
-#else
-        FAIL();
-#endif
-    }
+    EXPECT_MAT_NEAR(dst_gold, dst, 1);
 }
 
-TEST_P(CvtColor, BayerBG2BGR)
+#endif // defined (CUDA_VERSION) && (CUDA_VERSION >= 5000)
+
+GPU_TEST_P(CvtColor, BayerBG2BGR)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1767,7 +1709,7 @@ TEST_P(CvtColor, BayerBG2BGR)
     EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
 }
 
-TEST_P(CvtColor, BayerBG2BGR4)
+GPU_TEST_P(CvtColor, BayerBG2BGR4)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1790,7 +1732,7 @@ TEST_P(CvtColor, BayerBG2BGR4)
     EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst3(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
 }
 
-TEST_P(CvtColor, BayerGB2BGR)
+GPU_TEST_P(CvtColor, BayerGB2BGR)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1806,7 +1748,7 @@ TEST_P(CvtColor, BayerGB2BGR)
     EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
 }
 
-TEST_P(CvtColor, BayerGB2BGR4)
+GPU_TEST_P(CvtColor, BayerGB2BGR4)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1828,7 +1770,7 @@ TEST_P(CvtColor, BayerGB2BGR4)
     EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst3(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
 }
 
-TEST_P(CvtColor, BayerRG2BGR)
+GPU_TEST_P(CvtColor, BayerRG2BGR)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1844,7 +1786,7 @@ TEST_P(CvtColor, BayerRG2BGR)
     EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
 }
 
-TEST_P(CvtColor, BayerRG2BGR4)
+GPU_TEST_P(CvtColor, BayerRG2BGR4)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1866,7 +1808,7 @@ TEST_P(CvtColor, BayerRG2BGR4)
     EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst3(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
 }
 
-TEST_P(CvtColor, BayerGR2BGR)
+GPU_TEST_P(CvtColor, BayerGR2BGR)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1882,7 +1824,7 @@ TEST_P(CvtColor, BayerGR2BGR)
     EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
 }
 
-TEST_P(CvtColor, BayerGR2BGR4)
+GPU_TEST_P(CvtColor, BayerGR2BGR4)
 {
     if ((depth != CV_8U && depth != CV_16U) || useRoi)
         return;
@@ -1929,7 +1871,7 @@ PARAM_TEST_CASE(SwapChannels, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(SwapChannels, Accuracy)
+GPU_TEST_P(SwapChannels, Accuracy)
 {
     cv::Mat src = readImageType("stereobm/aloe-L.png", CV_8UC4);
     ASSERT_FALSE(src.empty());
@@ -1950,6 +1892,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, SwapChannels, testing::Combine(
     DIFFERENT_SIZES,
     WHOLE_SUBMAT));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_copy_make_border.cpp b/modules/gpu/test/test_copy_make_border.cpp
index 0efd9ec689..0b59fe2d8a 100644
--- a/modules/gpu/test/test_copy_make_border.cpp
+++ b/modules/gpu/test/test_copy_make_border.cpp
@@ -43,9 +43,10 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
-IMPLEMENT_PARAM_CLASS(Border, int)
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(Border, int)
+}
 
 PARAM_TEST_CASE(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, Border, BorderType, UseRoi)
 {
@@ -69,7 +70,7 @@ PARAM_TEST_CASE(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, Border,
     }
 };
 
-TEST_P(CopyMakeBorder, Accuracy)
+GPU_TEST_P(CopyMakeBorder, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Scalar val = randomScalar(0, 255);
@@ -99,6 +100,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CopyMakeBorder, testing::Combine(
     ALL_BORDER_TYPES,
     WHOLE_SUBMAT));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_core.cpp b/modules/gpu/test/test_core.cpp
index 695ec97587..e6745abe33 100644
--- a/modules/gpu/test/test_core.cpp
+++ b/modules/gpu/test/test_core.cpp
@@ -43,8 +43,6 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
 ////////////////////////////////////////////////////////////////////////////////
 // Merge
 
@@ -68,7 +66,7 @@ PARAM_TEST_CASE(Merge, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi
     }
 };
 
-TEST_P(Merge, Accuracy)
+GPU_TEST_P(Merge, Accuracy)
 {
     std::vector<cv::Mat> src;
     src.reserve(channels);
@@ -137,7 +135,7 @@ PARAM_TEST_CASE(Split, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi
     }
 };
 
-TEST_P(Split, Accuracy)
+GPU_TEST_P(Split, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -206,7 +204,7 @@ PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, Ma
     }
 };
 
-TEST_P(Add_Array, Accuracy)
+GPU_TEST_P(Add_Array, Accuracy)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype);
@@ -267,7 +265,7 @@ PARAM_TEST_CASE(Add_Array_Mask, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDept
     }
 };
 
-TEST_P(Add_Array_Mask, Accuracy)
+GPU_TEST_P(Add_Array_Mask, Accuracy)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype);
@@ -325,7 +323,7 @@ PARAM_TEST_CASE(Add_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, M
     }
 };
 
-TEST_P(Add_Scalar, WithOutMask)
+GPU_TEST_P(Add_Scalar, WithOutMask)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(0, 255);
@@ -355,7 +353,7 @@ TEST_P(Add_Scalar, WithOutMask)
     }
 }
 
-TEST_P(Add_Scalar, WithMask)
+GPU_TEST_P(Add_Scalar, WithMask)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(0, 255);
@@ -421,7 +419,7 @@ PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDept
     }
 };
 
-TEST_P(Subtract_Array, Accuracy)
+GPU_TEST_P(Subtract_Array, Accuracy)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype);
@@ -482,7 +480,7 @@ PARAM_TEST_CASE(Subtract_Array_Mask, cv::gpu::DeviceInfo, cv::Size, std::pair<Ma
     }
 };
 
-TEST_P(Subtract_Array_Mask, Accuracy)
+GPU_TEST_P(Subtract_Array_Mask, Accuracy)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype);
@@ -540,7 +538,7 @@ PARAM_TEST_CASE(Subtract_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDep
     }
 };
 
-TEST_P(Subtract_Scalar, WithOutMask)
+GPU_TEST_P(Subtract_Scalar, WithOutMask)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(0, 255);
@@ -570,7 +568,7 @@ TEST_P(Subtract_Scalar, WithOutMask)
     }
 }
 
-TEST_P(Subtract_Scalar, WithMask)
+GPU_TEST_P(Subtract_Scalar, WithMask)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(0, 255);
@@ -636,7 +634,7 @@ PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDept
     }
 };
 
-TEST_P(Multiply_Array, WithOutScale)
+GPU_TEST_P(Multiply_Array, WithOutScale)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype);
@@ -665,7 +663,7 @@ TEST_P(Multiply_Array, WithOutScale)
     }
 }
 
-TEST_P(Multiply_Array, WithScale)
+GPU_TEST_P(Multiply_Array, WithScale)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype);
@@ -721,7 +719,7 @@ PARAM_TEST_CASE(Multiply_Array_Special, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(Multiply_Array_Special, Case_8UC4x_32FC1)
+GPU_TEST_P(Multiply_Array_Special, Case_8UC4x_32FC1)
 {
     cv::Mat mat1 = randomMat(size, CV_8UC4);
     cv::Mat mat2 = randomMat(size, CV_32FC1);
@@ -758,7 +756,7 @@ TEST_P(Multiply_Array_Special, Case_8UC4x_32FC1)
     }
 }
 
-TEST_P(Multiply_Array_Special, Case_16SC4x_32FC1)
+GPU_TEST_P(Multiply_Array_Special, Case_16SC4x_32FC1)
 {
     cv::Mat mat1 = randomMat(size, CV_16SC4);
     cv::Mat mat2 = randomMat(size, CV_32FC1);
@@ -821,7 +819,7 @@ PARAM_TEST_CASE(Multiply_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDep
     }
 };
 
-TEST_P(Multiply_Scalar, WithOutScale)
+GPU_TEST_P(Multiply_Scalar, WithOutScale)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(0, 255);
@@ -851,7 +849,7 @@ TEST_P(Multiply_Scalar, WithOutScale)
 }
 
 
-TEST_P(Multiply_Scalar, WithScale)
+GPU_TEST_P(Multiply_Scalar, WithScale)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(0, 255);
@@ -916,7 +914,7 @@ PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth,
     }
 };
 
-TEST_P(Divide_Array, WithOutScale)
+GPU_TEST_P(Divide_Array, WithOutScale)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype, 1.0, 255.0);
@@ -945,8 +943,7 @@ TEST_P(Divide_Array, WithOutScale)
     }
 }
 
-
-TEST_P(Divide_Array, WithScale)
+GPU_TEST_P(Divide_Array, WithScale)
 {
     cv::Mat mat1 = randomMat(size, stype);
     cv::Mat mat2 = randomMat(size, stype, 1.0, 255.0);
@@ -1002,7 +999,7 @@ PARAM_TEST_CASE(Divide_Array_Special, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(Divide_Array_Special, Case_8UC4x_32FC1)
+GPU_TEST_P(Divide_Array_Special, Case_8UC4x_32FC1)
 {
     cv::Mat mat1 = randomMat(size, CV_8UC4);
     cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0);
@@ -1039,7 +1036,7 @@ TEST_P(Divide_Array_Special, Case_8UC4x_32FC1)
     }
 }
 
-TEST_P(Divide_Array_Special, Case_16SC4x_32FC1)
+GPU_TEST_P(Divide_Array_Special, Case_16SC4x_32FC1)
 {
     cv::Mat mat1 = randomMat(size, CV_16SC4);
     cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0);
@@ -1102,7 +1099,7 @@ PARAM_TEST_CASE(Divide_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth
     }
 };
 
-TEST_P(Divide_Scalar, WithOutScale)
+GPU_TEST_P(Divide_Scalar, WithOutScale)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(1.0, 255.0);
@@ -1131,7 +1128,7 @@ TEST_P(Divide_Scalar, WithOutScale)
     }
 }
 
-TEST_P(Divide_Scalar, WithScale)
+GPU_TEST_P(Divide_Scalar, WithScale)
 {
     cv::Mat mat = randomMat(size, depth.first);
     cv::Scalar val = randomScalar(1.0, 255.0);
@@ -1188,7 +1185,7 @@ PARAM_TEST_CASE(Divide_Scalar_Inv, cv::gpu::DeviceInfo, cv::Size, std::pair<MatD
     }
 };
 
-TEST_P(Divide_Scalar_Inv, Accuracy)
+GPU_TEST_P(Divide_Scalar_Inv, Accuracy)
 {
     double scale = randomDouble(0.0, 255.0);
     cv::Mat mat = randomMat(size, depth.first, 1.0, 255.0);
@@ -1244,7 +1241,7 @@ PARAM_TEST_CASE(AbsDiff, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(AbsDiff, Array)
+GPU_TEST_P(AbsDiff, Array)
 {
     cv::Mat src1 = randomMat(size, depth);
     cv::Mat src2 = randomMat(size, depth);
@@ -1273,7 +1270,7 @@ TEST_P(AbsDiff, Array)
     }
 }
 
-TEST_P(AbsDiff, Scalar)
+GPU_TEST_P(AbsDiff, Scalar)
 {
     cv::Mat src = randomMat(size, depth);
     cv::Scalar val = randomScalar(0.0, 255.0);
@@ -1329,7 +1326,7 @@ PARAM_TEST_CASE(Abs, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Abs, Accuracy)
+GPU_TEST_P(Abs, Accuracy)
 {
     cv::Mat src = randomMat(size, depth);
 
@@ -1368,7 +1365,7 @@ PARAM_TEST_CASE(Sqr, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Sqr, Accuracy)
+GPU_TEST_P(Sqr, Accuracy)
 {
     cv::Mat src = randomMat(size, depth, 0, depth == CV_8U ? 16 : 255);
 
@@ -1393,28 +1390,31 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sqr, testing::Combine(
 ////////////////////////////////////////////////////////////////////////////////
 // Sqrt
 
-template <typename T> void sqrtImpl(const cv::Mat& src, cv::Mat& dst)
+namespace
 {
-    dst.create(src.size(), src.type());
-
-    for (int y = 0; y < src.rows; ++y)
+    template <typename T> void sqrtImpl(const cv::Mat& src, cv::Mat& dst)
     {
-        for (int x = 0; x < src.cols; ++x)
-            dst.at<T>(y, x) = static_cast<T>(std::sqrt(static_cast<float>(src.at<T>(y, x))));
-    }
-}
+        dst.create(src.size(), src.type());
 
-void sqrtGold(const cv::Mat& src, cv::Mat& dst)
-{
-    typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
+        for (int y = 0; y < src.rows; ++y)
+        {
+            for (int x = 0; x < src.cols; ++x)
+                dst.at<T>(y, x) = static_cast<T>(std::sqrt(static_cast<float>(src.at<T>(y, x))));
+        }
+    }
 
-    const func_t funcs[] =
+    void sqrtGold(const cv::Mat& src, cv::Mat& dst)
     {
-        sqrtImpl<uchar>, sqrtImpl<schar>, sqrtImpl<ushort>, sqrtImpl<short>,
-        sqrtImpl<int>, sqrtImpl<float>
-    };
+        typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
 
-    funcs[src.depth()](src, dst);
+        const func_t funcs[] =
+        {
+            sqrtImpl<uchar>, sqrtImpl<schar>, sqrtImpl<ushort>, sqrtImpl<short>,
+            sqrtImpl<int>, sqrtImpl<float>
+        };
+
+        funcs[src.depth()](src, dst);
+    }
 }
 
 PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
@@ -1435,7 +1435,7 @@ PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Sqrt, Accuracy)
+GPU_TEST_P(Sqrt, Accuracy)
 {
     cv::Mat src = randomMat(size, depth);
 
@@ -1460,28 +1460,31 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sqrt, testing::Combine(
 ////////////////////////////////////////////////////////////////////////////////
 // Log
 
-template <typename T> void logImpl(const cv::Mat& src, cv::Mat& dst)
+namespace
 {
-    dst.create(src.size(), src.type());
-
-    for (int y = 0; y < src.rows; ++y)
+    template <typename T> void logImpl(const cv::Mat& src, cv::Mat& dst)
     {
-        for (int x = 0; x < src.cols; ++x)
-            dst.at<T>(y, x) = static_cast<T>(std::log(static_cast<float>(src.at<T>(y, x))));
-    }
-}
+        dst.create(src.size(), src.type());
 
-void logGold(const cv::Mat& src, cv::Mat& dst)
-{
-    typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
+        for (int y = 0; y < src.rows; ++y)
+        {
+            for (int x = 0; x < src.cols; ++x)
+                dst.at<T>(y, x) = static_cast<T>(std::log(static_cast<float>(src.at<T>(y, x))));
+        }
+    }
 
-    const func_t funcs[] =
+    void logGold(const cv::Mat& src, cv::Mat& dst)
     {
-        logImpl<uchar>, logImpl<schar>, logImpl<ushort>, logImpl<short>,
-        logImpl<int>, logImpl<float>
-    };
+        typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
+
+        const func_t funcs[] =
+        {
+            logImpl<uchar>, logImpl<schar>, logImpl<ushort>, logImpl<short>,
+            logImpl<int>, logImpl<float>
+        };
 
-    funcs[src.depth()](src, dst);
+        funcs[src.depth()](src, dst);
+    }
 }
 
 PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
@@ -1502,7 +1505,7 @@ PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Log, Accuracy)
+GPU_TEST_P(Log, Accuracy)
 {
     cv::Mat src = randomMat(size, depth, 1.0, 255.0);
 
@@ -1527,38 +1530,41 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Log, testing::Combine(
 ////////////////////////////////////////////////////////////////////////////////
 // Exp
 
-template <typename T> void expImpl(const cv::Mat& src, cv::Mat& dst)
+namespace
 {
-    dst.create(src.size(), src.type());
-
-    for (int y = 0; y < src.rows; ++y)
+    template <typename T> void expImpl(const cv::Mat& src, cv::Mat& dst)
     {
-        for (int x = 0; x < src.cols; ++x)
-            dst.at<T>(y, x) = cv::saturate_cast<T>(static_cast<int>(std::exp(static_cast<float>(src.at<T>(y, x)))));
-    }
-}
-void expImpl_float(const cv::Mat& src, cv::Mat& dst)
-{
-    dst.create(src.size(), src.type());
+        dst.create(src.size(), src.type());
 
-    for (int y = 0; y < src.rows; ++y)
-    {
-        for (int x = 0; x < src.cols; ++x)
-            dst.at<float>(y, x) = std::exp(static_cast<float>(src.at<float>(y, x)));
+        for (int y = 0; y < src.rows; ++y)
+        {
+            for (int x = 0; x < src.cols; ++x)
+                dst.at<T>(y, x) = cv::saturate_cast<T>(static_cast<int>(std::exp(static_cast<float>(src.at<T>(y, x)))));
+        }
     }
-}
+    void expImpl_float(const cv::Mat& src, cv::Mat& dst)
+    {
+        dst.create(src.size(), src.type());
 
-void expGold(const cv::Mat& src, cv::Mat& dst)
-{
-    typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
+        for (int y = 0; y < src.rows; ++y)
+        {
+            for (int x = 0; x < src.cols; ++x)
+                dst.at<float>(y, x) = std::exp(static_cast<float>(src.at<float>(y, x)));
+        }
+    }
 
-    const func_t funcs[] =
+    void expGold(const cv::Mat& src, cv::Mat& dst)
     {
-        expImpl<uchar>, expImpl<schar>, expImpl<ushort>, expImpl<short>,
-        expImpl<int>, expImpl_float
-    };
+        typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
 
-    funcs[src.depth()](src, dst);
+        const func_t funcs[] =
+        {
+            expImpl<uchar>, expImpl<schar>, expImpl<ushort>, expImpl<short>,
+            expImpl<int>, expImpl_float
+        };
+
+        funcs[src.depth()](src, dst);
+    }
 }
 
 PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
@@ -1579,7 +1585,7 @@ PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Exp, Accuracy)
+GPU_TEST_P(Exp, Accuracy)
 {
     cv::Mat src = randomMat(size, depth, 0.0, 10.0);
 
@@ -1627,7 +1633,7 @@ PARAM_TEST_CASE(Compare_Array, cv::gpu::DeviceInfo, cv::Size, MatDepth, CmpCode,
     }
 };
 
-TEST_P(Compare_Array, Accuracy)
+GPU_TEST_P(Compare_Array, Accuracy)
 {
     cv::Mat src1 = randomMat(size, depth);
     cv::Mat src2 = randomMat(size, depth);
@@ -1729,7 +1735,7 @@ PARAM_TEST_CASE(Compare_Scalar, cv::gpu::DeviceInfo, cv::Size, MatType, CmpCode,
     }
 };
 
-TEST_P(Compare_Scalar, Accuracy)
+GPU_TEST_P(Compare_Scalar, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Scalar sc = randomScalar(0.0, 255.0);
@@ -1799,7 +1805,7 @@ PARAM_TEST_CASE(Bitwise_Array, cv::gpu::DeviceInfo, cv::Size, MatType)
     }
 };
 
-TEST_P(Bitwise_Array, Not)
+GPU_TEST_P(Bitwise_Array, Not)
 {
     cv::gpu::GpuMat dst;
     cv::gpu::bitwise_not(loadMat(src1), dst);
@@ -1809,7 +1815,7 @@ TEST_P(Bitwise_Array, Not)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(Bitwise_Array, Or)
+GPU_TEST_P(Bitwise_Array, Or)
 {
     cv::gpu::GpuMat dst;
     cv::gpu::bitwise_or(loadMat(src1), loadMat(src2), dst);
@@ -1819,7 +1825,7 @@ TEST_P(Bitwise_Array, Or)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(Bitwise_Array, And)
+GPU_TEST_P(Bitwise_Array, And)
 {
     cv::gpu::GpuMat dst;
     cv::gpu::bitwise_and(loadMat(src1), loadMat(src2), dst);
@@ -1829,7 +1835,7 @@ TEST_P(Bitwise_Array, And)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(Bitwise_Array, Xor)
+GPU_TEST_P(Bitwise_Array, Xor)
 {
     cv::gpu::GpuMat dst;
     cv::gpu::bitwise_xor(loadMat(src1), loadMat(src2), dst);
@@ -1872,7 +1878,7 @@ PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channel
     }
 };
 
-TEST_P(Bitwise_Scalar, Or)
+GPU_TEST_P(Bitwise_Scalar, Or)
 {
     cv::gpu::GpuMat dst;
     cv::gpu::bitwise_or(loadMat(src), val, dst);
@@ -1883,7 +1889,7 @@ TEST_P(Bitwise_Scalar, Or)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(Bitwise_Scalar, And)
+GPU_TEST_P(Bitwise_Scalar, And)
 {
     cv::gpu::GpuMat dst;
     cv::gpu::bitwise_and(loadMat(src), val, dst);
@@ -1894,7 +1900,7 @@ TEST_P(Bitwise_Scalar, And)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(Bitwise_Scalar, Xor)
+GPU_TEST_P(Bitwise_Scalar, Xor)
 {
     cv::gpu::GpuMat dst;
     cv::gpu::bitwise_xor(loadMat(src), val, dst);
@@ -1914,32 +1920,35 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Scalar, testing::Combine(
 //////////////////////////////////////////////////////////////////////////////
 // RShift
 
-template <typename T> void rhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
+namespace
 {
-    const int cn = src.channels();
+    template <typename T> void rhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
+    {
+        const int cn = src.channels();
 
-    dst.create(src.size(), src.type());
+        dst.create(src.size(), src.type());
 
-    for (int y = 0; y < src.rows; ++y)
-    {
-        for (int x = 0; x < src.cols; ++x)
+        for (int y = 0; y < src.rows; ++y)
         {
-            for (int c = 0; c < cn; ++c)
-                dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) >> val.val[c];
+            for (int x = 0; x < src.cols; ++x)
+            {
+                for (int c = 0; c < cn; ++c)
+                    dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) >> val.val[c];
+            }
         }
     }
-}
 
-void rhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
-{
-    typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
-
-    const func_t funcs[] =
+    void rhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
     {
-        rhiftImpl<uchar>, rhiftImpl<schar>, rhiftImpl<ushort>, rhiftImpl<short>, rhiftImpl<int>
-    };
+        typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
+
+        const func_t funcs[] =
+        {
+            rhiftImpl<uchar>, rhiftImpl<schar>, rhiftImpl<ushort>, rhiftImpl<short>, rhiftImpl<int>
+        };
 
-    funcs[src.depth()](src, val, dst);
+        funcs[src.depth()](src, val, dst);
+    }
 }
 
 PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
@@ -1962,7 +1971,7 @@ PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRo
     }
 };
 
-TEST_P(RShift, Accuracy)
+GPU_TEST_P(RShift, Accuracy)
 {
     int type = CV_MAKE_TYPE(depth, channels);
     cv::Mat src = randomMat(size, type);
@@ -1991,32 +2000,35 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, RShift, testing::Combine(
 //////////////////////////////////////////////////////////////////////////////
 // LShift
 
-template <typename T> void lhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
+namespace
 {
-    const int cn = src.channels();
+    template <typename T> void lhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
+    {
+        const int cn = src.channels();
 
-    dst.create(src.size(), src.type());
+        dst.create(src.size(), src.type());
 
-    for (int y = 0; y < src.rows; ++y)
-    {
-        for (int x = 0; x < src.cols; ++x)
+        for (int y = 0; y < src.rows; ++y)
         {
-            for (int c = 0; c < cn; ++c)
-                dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) << val.val[c];
+            for (int x = 0; x < src.cols; ++x)
+            {
+                for (int c = 0; c < cn; ++c)
+                    dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) << val.val[c];
+            }
         }
     }
-}
-
-void lhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
-{
-    typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
 
-    const func_t funcs[] =
+    void lhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
     {
-        lhiftImpl<uchar>, lhiftImpl<schar>, lhiftImpl<ushort>, lhiftImpl<short>, lhiftImpl<int>
-    };
+        typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
 
-    funcs[src.depth()](src, val, dst);
+        const func_t funcs[] =
+        {
+            lhiftImpl<uchar>, lhiftImpl<schar>, lhiftImpl<ushort>, lhiftImpl<short>, lhiftImpl<int>
+        };
+
+        funcs[src.depth()](src, val, dst);
+    }
 }
 
 PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
@@ -2039,7 +2051,7 @@ PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRo
     }
 };
 
-TEST_P(LShift, Accuracy)
+GPU_TEST_P(LShift, Accuracy)
 {
     int type = CV_MAKE_TYPE(depth, channels);
     cv::Mat src = randomMat(size, type);
@@ -2082,7 +2094,7 @@ PARAM_TEST_CASE(Min, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Min, Array)
+GPU_TEST_P(Min, Array)
 {
     cv::Mat src1 = randomMat(size, depth);
     cv::Mat src2 = randomMat(size, depth);
@@ -2110,7 +2122,7 @@ TEST_P(Min, Array)
     }
 }
 
-TEST_P(Min, Scalar)
+GPU_TEST_P(Min, Scalar)
 {
     cv::Mat src = randomMat(size, depth);
     double val = randomDouble(0.0, 255.0);
@@ -2165,7 +2177,7 @@ PARAM_TEST_CASE(Max, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Max, Array)
+GPU_TEST_P(Max, Array)
 {
     cv::Mat src1 = randomMat(size, depth);
     cv::Mat src2 = randomMat(size, depth);
@@ -2193,7 +2205,7 @@ TEST_P(Max, Array)
     }
 }
 
-TEST_P(Max, Scalar)
+GPU_TEST_P(Max, Scalar)
 {
     cv::Mat src = randomMat(size, depth);
     double val = randomDouble(0.0, 255.0);
@@ -2248,7 +2260,7 @@ PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(Pow, Accuracy)
+GPU_TEST_P(Pow, Accuracy)
 {
     cv::Mat src = randomMat(size, depth, 0.0, 10.0);
     double power = randomDouble(2.0, 4.0);
@@ -2311,7 +2323,7 @@ PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth,
     }
 };
 
-TEST_P(AddWeighted, Accuracy)
+GPU_TEST_P(AddWeighted, Accuracy)
 {
     cv::Mat src1 = randomMat(size, depth1);
     cv::Mat src2 = randomMat(size, depth2);
@@ -2354,6 +2366,8 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, AddWeighted, testing::Combine(
 //////////////////////////////////////////////////////////////////////////////
 // GEMM
 
+#ifdef HAVE_CUBLAS
+
 CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T);
 #define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
 
@@ -2377,7 +2391,7 @@ PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi)
     }
 };
 
-TEST_P(GEMM, Accuracy)
+GPU_TEST_P(GEMM, Accuracy)
 {
     cv::Mat src1 = randomMat(size, type, -10.0, 10.0);
     cv::Mat src2 = randomMat(size, type, -10.0, 10.0);
@@ -2385,17 +2399,6 @@ TEST_P(GEMM, Accuracy)
     double alpha = randomDouble(-10.0, 10.0);
     double beta = randomDouble(-10.0, 10.0);
 
-#ifndef HAVE_CUBLAS
-    try
-    {
-        cv::gpu::GpuMat dst;
-        cv::gpu::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
-    }
-    catch (const cv::Exception& e)
-    {
-        ASSERT_EQ(CV_StsNotImplemented, e.code);
-    }
-#else
     if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
     {
         try
@@ -2430,7 +2433,6 @@ TEST_P(GEMM, Accuracy)
 
         EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10);
     }
-#endif
 }
 
 INSTANTIATE_TEST_CASE_P(GPU_Core, GEMM, testing::Combine(
@@ -2440,6 +2442,8 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, GEMM, testing::Combine(
     ALL_GEMM_FLAGS,
     WHOLE_SUBMAT));
 
+#endif // HAVE_CUBLAS
+
 ////////////////////////////////////////////////////////////////////////////////
 // Transpose
 
@@ -2461,7 +2465,7 @@ PARAM_TEST_CASE(Transpose, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(Transpose, Accuracy)
+GPU_TEST_P(Transpose, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -2528,7 +2532,7 @@ PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, cv::Size, MatType, FlipCode, UseRoi)
     }
 };
 
-TEST_P(Flip, Accuracy)
+GPU_TEST_P(Flip, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -2580,7 +2584,7 @@ PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(LUT, OneChannel)
+GPU_TEST_P(LUT, OneChannel)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat lut = randomMat(cv::Size(256, 1), CV_8UC1);
@@ -2594,7 +2598,7 @@ TEST_P(LUT, OneChannel)
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
 
-TEST_P(LUT, MultiChannel)
+GPU_TEST_P(LUT, MultiChannel)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat lut = randomMat(cv::Size(256, 1), CV_MAKE_TYPE(CV_8U, src.channels()));
@@ -2633,7 +2637,7 @@ PARAM_TEST_CASE(Magnitude, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(Magnitude, NPP)
+GPU_TEST_P(Magnitude, NPP)
 {
     cv::Mat src = randomMat(size, CV_32FC2);
 
@@ -2648,7 +2652,7 @@ TEST_P(Magnitude, NPP)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-4);
 }
 
-TEST_P(Magnitude, Sqr_NPP)
+GPU_TEST_P(Magnitude, Sqr_NPP)
 {
     cv::Mat src = randomMat(size, CV_32FC2);
 
@@ -2664,7 +2668,7 @@ TEST_P(Magnitude, Sqr_NPP)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-1);
 }
 
-TEST_P(Magnitude, Accuracy)
+GPU_TEST_P(Magnitude, Accuracy)
 {
     cv::Mat x = randomMat(size, CV_32FC1);
     cv::Mat y = randomMat(size, CV_32FC1);
@@ -2678,7 +2682,7 @@ TEST_P(Magnitude, Accuracy)
     EXPECT_MAT_NEAR(dst_gold, dst, 1e-4);
 }
 
-TEST_P(Magnitude, Sqr_Accuracy)
+GPU_TEST_P(Magnitude, Sqr_Accuracy)
 {
     cv::Mat x = randomMat(size, CV_32FC1);
     cv::Mat y = randomMat(size, CV_32FC1);
@@ -2701,7 +2705,10 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Magnitude, testing::Combine(
 ////////////////////////////////////////////////////////////////////////////////
 // Phase
 
-IMPLEMENT_PARAM_CLASS(AngleInDegrees, bool)
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(AngleInDegrees, bool)
+}
 
 PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
 {
@@ -2721,7 +2728,7 @@ PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
     }
 };
 
-TEST_P(Phase, Accuracy)
+GPU_TEST_P(Phase, Accuracy)
 {
     cv::Mat x = randomMat(size, CV_32FC1);
     cv::Mat y = randomMat(size, CV_32FC1);
@@ -2762,7 +2769,7 @@ PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseR
     }
 };
 
-TEST_P(CartToPolar, Accuracy)
+GPU_TEST_P(CartToPolar, Accuracy)
 {
     cv::Mat x = randomMat(size, CV_32FC1);
     cv::Mat y = randomMat(size, CV_32FC1);
@@ -2806,7 +2813,7 @@ PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseR
     }
 };
 
-TEST_P(PolarToCart, Accuracy)
+GPU_TEST_P(PolarToCart, Accuracy)
 {
     cv::Mat magnitude = randomMat(size, CV_32FC1);
     cv::Mat angle = randomMat(size, CV_32FC1);
@@ -2848,7 +2855,7 @@ PARAM_TEST_CASE(MeanStdDev, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(MeanStdDev, Accuracy)
+GPU_TEST_P(MeanStdDev, Accuracy)
 {
     cv::Mat src = randomMat(size, CV_8UC1);
 
@@ -2908,7 +2915,7 @@ PARAM_TEST_CASE(Norm, cv::gpu::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi)
     }
 };
 
-TEST_P(Norm, Accuracy)
+GPU_TEST_P(Norm, Accuracy)
 {
     cv::Mat src = randomMat(size, depth);
 
@@ -2952,7 +2959,7 @@ PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, cv::Size, NormCode, UseRoi)
     }
 };
 
-TEST_P(NormDiff, Accuracy)
+GPU_TEST_P(NormDiff, Accuracy)
 {
     cv::Mat src1 = randomMat(size, CV_8UC1);
     cv::Mat src2 = randomMat(size, CV_8UC1);
@@ -2973,81 +2980,84 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, NormDiff, testing::Combine(
 //////////////////////////////////////////////////////////////////////////////
 // Sum
 
-template <typename T>
-cv::Scalar absSumImpl(const cv::Mat& src)
+namespace
 {
-    const int cn = src.channels();
+    template <typename T>
+    cv::Scalar absSumImpl(const cv::Mat& src)
+    {
+        const int cn = src.channels();
 
-    cv::Scalar sum = cv::Scalar::all(0);
+        cv::Scalar sum = cv::Scalar::all(0);
 
-    for (int y = 0; y < src.rows; ++y)
-    {
-        for (int x = 0; x < src.cols; ++x)
+        for (int y = 0; y < src.rows; ++y)
         {
-            for (int c = 0; c < cn; ++c)
-                sum[c] += std::abs(src.at<T>(y, x * cn + c));
+            for (int x = 0; x < src.cols; ++x)
+            {
+                for (int c = 0; c < cn; ++c)
+                    sum[c] += std::abs(src.at<T>(y, x * cn + c));
+            }
         }
-    }
-
-    return sum;
-}
 
-cv::Scalar absSumGold(const cv::Mat& src)
-{
-    typedef cv::Scalar (*func_t)(const cv::Mat& src);
+        return sum;
+    }
 
-    static const func_t funcs[] =
+    cv::Scalar absSumGold(const cv::Mat& src)
     {
-        absSumImpl<uchar>,
-        absSumImpl<schar>,
-        absSumImpl<ushort>,
-        absSumImpl<short>,
-        absSumImpl<int>,
-        absSumImpl<float>,
-        absSumImpl<double>
-    };
-
-    return funcs[src.depth()](src);
-}
+        typedef cv::Scalar (*func_t)(const cv::Mat& src);
 
-template <typename T>
-cv::Scalar sqrSumImpl(const cv::Mat& src)
-{
-    const int cn = src.channels();
+        static const func_t funcs[] =
+        {
+            absSumImpl<uchar>,
+            absSumImpl<schar>,
+            absSumImpl<ushort>,
+            absSumImpl<short>,
+            absSumImpl<int>,
+            absSumImpl<float>,
+            absSumImpl<double>
+        };
 
-    cv::Scalar sum = cv::Scalar::all(0);
+        return funcs[src.depth()](src);
+    }
 
-    for (int y = 0; y < src.rows; ++y)
+    template <typename T>
+    cv::Scalar sqrSumImpl(const cv::Mat& src)
     {
-        for (int x = 0; x < src.cols; ++x)
+        const int cn = src.channels();
+
+        cv::Scalar sum = cv::Scalar::all(0);
+
+        for (int y = 0; y < src.rows; ++y)
         {
-            for (int c = 0; c < cn; ++c)
+            for (int x = 0; x < src.cols; ++x)
             {
-                const T val = src.at<T>(y, x * cn + c);
-                sum[c] += val * val;
+                for (int c = 0; c < cn; ++c)
+                {
+                    const T val = src.at<T>(y, x * cn + c);
+                    sum[c] += val * val;
+                }
             }
         }
-    }
-
-    return sum;
-}
 
-cv::Scalar sqrSumGold(const cv::Mat& src)
-{
-    typedef cv::Scalar (*func_t)(const cv::Mat& src);
+        return sum;
+    }
 
-    static const func_t funcs[] =
+    cv::Scalar sqrSumGold(const cv::Mat& src)
     {
-        sqrSumImpl<uchar>,
-        sqrSumImpl<schar>,
-        sqrSumImpl<ushort>,
-        sqrSumImpl<short>,
-        sqrSumImpl<int>,
-        sqrSumImpl<float>,
-        sqrSumImpl<double>
-    };
+        typedef cv::Scalar (*func_t)(const cv::Mat& src);
+
+        static const func_t funcs[] =
+        {
+            sqrSumImpl<uchar>,
+            sqrSumImpl<schar>,
+            sqrSumImpl<ushort>,
+            sqrSumImpl<short>,
+            sqrSumImpl<int>,
+            sqrSumImpl<float>,
+            sqrSumImpl<double>
+        };
 
-    return funcs[src.depth()](src);
+        return funcs[src.depth()](src);
+    }
 }
 
 PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
@@ -3072,7 +3082,7 @@ PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(Sum, Simple)
+GPU_TEST_P(Sum, Simple)
 {
     cv::Scalar val = cv::gpu::sum(loadMat(src, useRoi));
 
@@ -3081,7 +3091,7 @@ TEST_P(Sum, Simple)
     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 }
 
-TEST_P(Sum, Abs)
+GPU_TEST_P(Sum, Abs)
 {
     cv::Scalar val = cv::gpu::absSum(loadMat(src, useRoi));
 
@@ -3090,7 +3100,7 @@ TEST_P(Sum, Abs)
     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 }
 
-TEST_P(Sum, Sqr)
+GPU_TEST_P(Sum, Sqr)
 {
     cv::Scalar val = cv::gpu::sqrSum(loadMat(src, useRoi));
 
@@ -3126,7 +3136,7 @@ PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(MinMax, WithoutMask)
+GPU_TEST_P(MinMax, WithoutMask)
 {
     cv::Mat src = randomMat(size, depth);
 
@@ -3155,7 +3165,7 @@ TEST_P(MinMax, WithoutMask)
     }
 }
 
-TEST_P(MinMax, WithMask)
+GPU_TEST_P(MinMax, WithMask)
 {
     cv::Mat src = randomMat(size, depth);
     cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
@@ -3185,7 +3195,7 @@ TEST_P(MinMax, WithMask)
     }
 }
 
-TEST_P(MinMax, NullPtr)
+GPU_TEST_P(MinMax, NullPtr)
 {
     cv::Mat src = randomMat(size, depth);
 
@@ -3225,28 +3235,31 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, MinMax, testing::Combine(
 ////////////////////////////////////////////////////////////////////////////////
 // MinMaxLoc
 
-template <typename T>
-void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
-{
-    EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
-}
-
-void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
+namespace
 {
-    typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
+    template <typename T>
+    void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
+    {
+        EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
+    }
 
-    static const func_t funcs[] =
+    void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
     {
-        expectEqualImpl<uchar>,
-        expectEqualImpl<schar>,
-        expectEqualImpl<ushort>,
-        expectEqualImpl<short>,
-        expectEqualImpl<int>,
-        expectEqualImpl<float>,
-        expectEqualImpl<double>
-    };
+        typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
+
+        static const func_t funcs[] =
+        {
+            expectEqualImpl<uchar>,
+            expectEqualImpl<schar>,
+            expectEqualImpl<ushort>,
+            expectEqualImpl<short>,
+            expectEqualImpl<int>,
+            expectEqualImpl<float>,
+            expectEqualImpl<double>
+        };
 
-    funcs[src.depth()](src, loc_gold, loc);
+        funcs[src.depth()](src, loc_gold, loc);
+    }
 }
 
 PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
@@ -3267,7 +3280,7 @@ PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(MinMaxLoc, WithoutMask)
+GPU_TEST_P(MinMaxLoc, WithoutMask)
 {
     cv::Mat src = randomMat(size, depth);
 
@@ -3302,7 +3315,7 @@ TEST_P(MinMaxLoc, WithoutMask)
     }
 }
 
-TEST_P(MinMaxLoc, WithMask)
+GPU_TEST_P(MinMaxLoc, WithMask)
 {
     cv::Mat src = randomMat(size, depth);
     cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
@@ -3338,7 +3351,7 @@ TEST_P(MinMaxLoc, WithMask)
     }
 }
 
-TEST_P(MinMaxLoc, NullPtr)
+GPU_TEST_P(MinMaxLoc, NullPtr)
 {
     cv::Mat src = randomMat(size, depth);
 
@@ -3407,7 +3420,7 @@ PARAM_TEST_CASE(CountNonZero, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
     }
 };
 
-TEST_P(CountNonZero, Accuracy)
+GPU_TEST_P(CountNonZero, Accuracy)
 {
     cv::Mat srcBase = randomMat(size, CV_8U, 0.0, 1.5);
     cv::Mat src;
@@ -3484,7 +3497,7 @@ PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, Reduc
 
 };
 
-TEST_P(Reduce, Rows)
+GPU_TEST_P(Reduce, Rows)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -3497,7 +3510,7 @@ TEST_P(Reduce, Rows)
     EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 0.02);
 }
 
-TEST_P(Reduce, Cols)
+GPU_TEST_P(Reduce, Cols)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -3525,6 +3538,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Reduce, testing::Combine(
     ALL_REDUCE_CODES,
     WHOLE_SUBMAT));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_denoising.cpp b/modules/gpu/test/test_denoising.cpp
index 80bf3dbe29..fe0c548c71 100644
--- a/modules/gpu/test/test_denoising.cpp
+++ b/modules/gpu/test/test_denoising.cpp
@@ -69,7 +69,7 @@ PARAM_TEST_CASE(BilateralFilter, cv::gpu::DeviceInfo, cv::Size, MatType)
     }
 };
 
-TEST_P(BilateralFilter, Accuracy)
+GPU_TEST_P(BilateralFilter, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -105,7 +105,7 @@ struct BruteForceNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(BruteForceNonLocalMeans, Regression)
+GPU_TEST_P(BruteForceNonLocalMeans, Regression)
 {
     using cv::gpu::GpuMat;
 
@@ -134,8 +134,6 @@ TEST_P(BruteForceNonLocalMeans, Regression)
 
 INSTANTIATE_TEST_CASE_P(GPU_Denoising, BruteForceNonLocalMeans, ALL_DEVICES);
 
-
-
 ////////////////////////////////////////////////////////
 // Fast Force Non local means
 
@@ -150,7 +148,7 @@ struct FastNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(FastNonLocalMeans, Regression)
+GPU_TEST_P(FastNonLocalMeans, Regression)
 {
     using cv::gpu::GpuMat;
 
@@ -167,8 +165,8 @@ TEST_P(FastNonLocalMeans, Regression)
     fnlmd.labMethod(GpuMat(bgr),  dbgr, 20, 10);
 
 #if 0
-    //dumpImage("denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
-    //dumpImage("denoising/fnlm_denoised_lena_gray.png", cv::Mat(dgray));
+    dumpImage("denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
+    dumpImage("denoising/fnlm_denoised_lena_gray.png", cv::Mat(dgray));
 #endif
 
     cv::Mat bgr_gold  = readImage("denoising/fnlm_denoised_lena_bgr.png", cv::IMREAD_COLOR);
@@ -181,5 +179,4 @@ TEST_P(FastNonLocalMeans, Regression)
 
 INSTANTIATE_TEST_CASE_P(GPU_Denoising, FastNonLocalMeans, ALL_DEVICES);
 
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_features2d.cpp b/modules/gpu/test/test_features2d.cpp
index c76fe91663..3879ac0534 100644
--- a/modules/gpu/test/test_features2d.cpp
+++ b/modules/gpu/test/test_features2d.cpp
@@ -43,118 +43,122 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
-bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
+namespace
 {
-    const double maxPtDif = 1.0;
-    const double maxSizeDif = 1.0;
-    const double maxAngleDif = 2.0;
-    const double maxResponseDif = 0.1;
-
-    double dist = cv::norm(p1.pt - p2.pt);
-
-    if (dist < maxPtDif &&
-        fabs(p1.size - p2.size) < maxSizeDif &&
-        abs(p1.angle - p2.angle) < maxAngleDif &&
-        abs(p1.response - p2.response) < maxResponseDif &&
-        p1.octave == p2.octave &&
-        p1.class_id == p2.class_id)
+    bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
     {
-        return true;
-    }
+        const double maxPtDif = 1.0;
+        const double maxSizeDif = 1.0;
+        const double maxAngleDif = 2.0;
+        const double maxResponseDif = 0.1;
 
-    return false;
-}
+        double dist = cv::norm(p1.pt - p2.pt);
 
-struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
-{
-    bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
-    {
-        return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
-    }
-};
+        if (dist < maxPtDif &&
+            fabs(p1.size - p2.size) < maxSizeDif &&
+            abs(p1.angle - p2.angle) < maxAngleDif &&
+            abs(p1.response - p2.response) < maxResponseDif &&
+            p1.octave == p2.octave &&
+            p1.class_id == p2.class_id)
+        {
+            return true;
+        }
 
-testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
-{
-    if (gold.size() != actual.size())
-    {
-        return testing::AssertionFailure() << "KeyPoints size mistmach\n"
-                                           << "\"" << gold_expr << "\" : " << gold.size() << "\n"
-                                           << "\"" << actual_expr << "\" : " << actual.size();
+        return false;
     }
 
-    std::sort(actual.begin(), actual.end(), KeyPointLess());
-    std::sort(gold.begin(), gold.end(), KeyPointLess());
+    struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
+    {
+        bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
+        {
+            return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
+        }
+    };
 
-    for (size_t i = 0; i < gold.size(); ++i)
+    testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
     {
-        const cv::KeyPoint& p1 = gold[i];
-        const cv::KeyPoint& p2 = actual[i];
+        if (gold.size() != actual.size())
+        {
+            return testing::AssertionFailure() << "KeyPoints size mistmach\n"
+                                               << "\"" << gold_expr << "\" : " << gold.size() << "\n"
+                                               << "\"" << actual_expr << "\" : " << actual.size();
+        }
 
-        if (!keyPointsEquals(p1, p2))
+        std::sort(actual.begin(), actual.end(), KeyPointLess());
+        std::sort(gold.begin(), gold.end(), KeyPointLess());
+
+        for (size_t i = 0; i < gold.size(); ++i)
         {
-            return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
-                                               << "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
-                                               << "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
-                                               << "size : " << p1.size << " vs " << p2.size << "\n"
-                                               << "angle : " << p1.angle << " vs " << p2.angle << "\n"
-                                               << "response : " << p1.response << " vs " << p2.response << "\n"
-                                               << "octave : " << p1.octave << " vs " << p2.octave << "\n"
-                                               << "class_id : " << p1.class_id << " vs " << p2.class_id;
+            const cv::KeyPoint& p1 = gold[i];
+            const cv::KeyPoint& p2 = actual[i];
+
+            if (!keyPointsEquals(p1, p2))
+            {
+                return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
+                                                   << "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
+                                                   << "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
+                                                   << "size : " << p1.size << " vs " << p2.size << "\n"
+                                                   << "angle : " << p1.angle << " vs " << p2.angle << "\n"
+                                                   << "response : " << p1.response << " vs " << p2.response << "\n"
+                                                   << "octave : " << p1.octave << " vs " << p2.octave << "\n"
+                                                   << "class_id : " << p1.class_id << " vs " << p2.class_id;
+            }
         }
+
+        return ::testing::AssertionSuccess();
     }
 
-    return ::testing::AssertionSuccess();
-}
+    #define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
 
-#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
+    int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
+    {
+        std::sort(actual.begin(), actual.end(), KeyPointLess());
+        std::sort(gold.begin(), gold.end(), KeyPointLess());
 
-int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
-{
-    std::sort(actual.begin(), actual.end(), KeyPointLess());
-    std::sort(gold.begin(), gold.end(), KeyPointLess());
+        int validCount = 0;
 
-    int validCount = 0;
+        for (size_t i = 0; i < gold.size(); ++i)
+        {
+            const cv::KeyPoint& p1 = gold[i];
+            const cv::KeyPoint& p2 = actual[i];
 
-    for (size_t i = 0; i < gold.size(); ++i)
-    {
-        const cv::KeyPoint& p1 = gold[i];
-        const cv::KeyPoint& p2 = actual[i];
+            if (keyPointsEquals(p1, p2))
+                ++validCount;
+        }
 
-        if (keyPointsEquals(p1, p2))
-            ++validCount;
+        return validCount;
     }
 
-    return validCount;
-}
+    int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
+    {
+        int validCount = 0;
 
-int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
-{
-    int validCount = 0;
+        for (size_t i = 0; i < matches.size(); ++i)
+        {
+            const cv::DMatch& m = matches[i];
 
-    for (size_t i = 0; i < matches.size(); ++i)
-    {
-        const cv::DMatch& m = matches[i];
+            const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
+            const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
 
-        const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
-        const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
+            if (keyPointsEquals(p1, p2))
+                ++validCount;
+        }
 
-        if (keyPointsEquals(p1, p2))
-            ++validCount;
+        return validCount;
     }
-
-    return validCount;
 }
 
 /////////////////////////////////////////////////////////////////////////////////////////////////
 // SURF
 
-IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
-IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
-IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
-IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
-IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
+    IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
+    IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
+    IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
+    IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
+}
 
 PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
 {
@@ -178,7 +182,7 @@ PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves,
     }
 };
 
-TEST_P(SURF, Detector)
+GPU_TEST_P(SURF, Detector)
 {
     cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
     ASSERT_FALSE(image.empty());
@@ -226,7 +230,7 @@ TEST_P(SURF, Detector)
     }
 }
 
-TEST_P(SURF, Detector_Masked)
+GPU_TEST_P(SURF, Detector_Masked)
 {
     cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
     ASSERT_FALSE(image.empty());
@@ -277,7 +281,7 @@ TEST_P(SURF, Detector_Masked)
     }
 }
 
-TEST_P(SURF, Descriptor)
+GPU_TEST_P(SURF, Descriptor)
 {
     cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
     ASSERT_FALSE(image.empty());
@@ -343,8 +347,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, SURF, testing::Combine(
 /////////////////////////////////////////////////////////////////////////////////////////////////
 // FAST
 
-IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
-IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
+    IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
+}
 
 PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression)
 {
@@ -362,7 +369,7 @@ PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression
     }
 };
 
-TEST_P(FAST, Accuracy)
+GPU_TEST_P(FAST, Accuracy)
 {
     cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
     ASSERT_FALSE(image.empty());
@@ -402,14 +409,17 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, FAST, testing::Combine(
 /////////////////////////////////////////////////////////////////////////////////////////////////
 // ORB
 
-IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
-IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
-IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
-IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
-IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
-IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
-IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
-IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
+    IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
+    IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
+    IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
+    IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
+    IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
+    IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
+    IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
+}
 
 CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE)
 
@@ -443,7 +453,7 @@ PARAM_TEST_CASE(ORB, cv::gpu::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, OR
     }
 };
 
-TEST_P(ORB, Accuracy)
+GPU_TEST_P(ORB, Accuracy)
 {
     cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
     ASSERT_FALSE(image.empty());
@@ -505,8 +515,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, ORB,  testing::Combine(
 /////////////////////////////////////////////////////////////////////////////////////////////////
 // BruteForceMatcher
 
-IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
-IMPLEMENT_PARAM_CLASS(UseMask, bool)
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
+    IMPLEMENT_PARAM_CLASS(UseMask, bool)
+}
 
 PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, NormCode, DescriptorSize, UseMask)
 {
@@ -568,7 +581,7 @@ PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, NormCode, DescriptorSize
     }
 };
 
-TEST_P(BruteForceMatcher, Match_Single)
+GPU_TEST_P(BruteForceMatcher, Match_Single)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -595,7 +608,7 @@ TEST_P(BruteForceMatcher, Match_Single)
     ASSERT_EQ(0, badCount);
 }
 
-TEST_P(BruteForceMatcher, Match_Collection)
+GPU_TEST_P(BruteForceMatcher, Match_Collection)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -649,7 +662,7 @@ TEST_P(BruteForceMatcher, Match_Collection)
     ASSERT_EQ(0, badCount);
 }
 
-TEST_P(BruteForceMatcher, KnnMatch_2_Single)
+GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -688,7 +701,7 @@ TEST_P(BruteForceMatcher, KnnMatch_2_Single)
     ASSERT_EQ(0, badCount);
 }
 
-TEST_P(BruteForceMatcher, KnnMatch_3_Single)
+GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Single)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -727,7 +740,7 @@ TEST_P(BruteForceMatcher, KnnMatch_3_Single)
     ASSERT_EQ(0, badCount);
 }
 
-TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
+GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -789,7 +802,7 @@ TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
     ASSERT_EQ(0, badCount);
 }
 
-TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
+GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -851,7 +864,7 @@ TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
     ASSERT_EQ(0, badCount);
 }
 
-TEST_P(BruteForceMatcher, RadiusMatch_Single)
+GPU_TEST_P(BruteForceMatcher, RadiusMatch_Single)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -900,7 +913,7 @@ TEST_P(BruteForceMatcher, RadiusMatch_Single)
     }
 }
 
-TEST_P(BruteForceMatcher, RadiusMatch_Collection)
+GPU_TEST_P(BruteForceMatcher, RadiusMatch_Collection)
 {
     cv::gpu::BFMatcher_GPU matcher(normCode);
 
@@ -985,6 +998,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, BruteForceMatcher, testing::Combine(
     testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)),
     testing::Values(UseMask(false), UseMask(true))));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_filters.cpp b/modules/gpu/test/test_filters.cpp
index 92d6fc0022..779a6d7c40 100644
--- a/modules/gpu/test/test_filters.cpp
+++ b/modules/gpu/test/test_filters.cpp
@@ -43,27 +43,30 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
-IMPLEMENT_PARAM_CLASS(KSize, cv::Size)
-
-cv::Mat getInnerROI(cv::InputArray m_, cv::Size ksize)
+namespace
 {
-    cv::Mat m = getMat(m_);
-    cv::Rect roi(ksize.width, ksize.height, m.cols - 2 * ksize.width, m.rows - 2 * ksize.height);
-    return m(roi);
-}
+    IMPLEMENT_PARAM_CLASS(KSize, cv::Size)
+    IMPLEMENT_PARAM_CLASS(Anchor, cv::Point)
+    IMPLEMENT_PARAM_CLASS(Deriv_X, int)
+    IMPLEMENT_PARAM_CLASS(Deriv_Y, int)
+    IMPLEMENT_PARAM_CLASS(Iterations, int)
 
-cv::Mat getInnerROI(cv::InputArray m, int ksize)
-{
-    return getInnerROI(m, cv::Size(ksize, ksize));
+    cv::Mat getInnerROI(cv::InputArray m_, cv::Size ksize)
+    {
+        cv::Mat m = getMat(m_);
+        cv::Rect roi(ksize.width, ksize.height, m.cols - 2 * ksize.width, m.rows - 2 * ksize.height);
+        return m(roi);
+    }
+
+    cv::Mat getInnerROI(cv::InputArray m, int ksize)
+    {
+        return getInnerROI(m, cv::Size(ksize, ksize));
+    }
 }
 
 /////////////////////////////////////////////////////////////////////////////////////////////////
 // Blur
 
-IMPLEMENT_PARAM_CLASS(Anchor, cv::Point)
-
 PARAM_TEST_CASE(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor, UseRoi)
 {
     cv::gpu::DeviceInfo devInfo;
@@ -86,7 +89,7 @@ PARAM_TEST_CASE(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor, Use
     }
 };
 
-TEST_P(Blur, Accuracy)
+GPU_TEST_P(Blur, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -110,9 +113,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Blur, testing::Combine(
 /////////////////////////////////////////////////////////////////////////////////////////////////
 // Sobel
 
-IMPLEMENT_PARAM_CLASS(Deriv_X, int)
-IMPLEMENT_PARAM_CLASS(Deriv_Y, int)
-
 PARAM_TEST_CASE(Sobel, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, KSize, Deriv_X, Deriv_Y, BorderType, UseRoi)
 {
     cv::gpu::DeviceInfo devInfo;
@@ -145,7 +145,7 @@ PARAM_TEST_CASE(Sobel, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, KSize,
     }
 };
 
-TEST_P(Sobel, Accuracy)
+GPU_TEST_P(Sobel, Accuracy)
 {
     if (dx == 0 && dy == 0)
         return;
@@ -208,7 +208,7 @@ PARAM_TEST_CASE(Scharr, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, Deriv
     }
 };
 
-TEST_P(Scharr, Accuracy)
+GPU_TEST_P(Scharr, Accuracy)
 {
     if (dx + dy != 1)
         return;
@@ -268,7 +268,7 @@ PARAM_TEST_CASE(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels,
     }
 };
 
-TEST_P(GaussianBlur, Accuracy)
+GPU_TEST_P(GaussianBlur, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     double sigma1 = randomDouble(0.1, 1.0);
@@ -347,7 +347,7 @@ PARAM_TEST_CASE(Laplacian, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, UseRoi
     }
 };
 
-TEST_P(Laplacian, Accuracy)
+GPU_TEST_P(Laplacian, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -370,8 +370,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Laplacian, testing::Combine(
 /////////////////////////////////////////////////////////////////////////////////////////////////
 // Erode
 
-IMPLEMENT_PARAM_CLASS(Iterations, int)
-
 PARAM_TEST_CASE(Erode, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iterations, UseRoi)
 {
     cv::gpu::DeviceInfo devInfo;
@@ -394,7 +392,7 @@ PARAM_TEST_CASE(Erode, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iteration
     }
 };
 
-TEST_P(Erode, Accuracy)
+GPU_TEST_P(Erode, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
@@ -443,7 +441,7 @@ PARAM_TEST_CASE(Dilate, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iteratio
     }
 };
 
-TEST_P(Dilate, Accuracy)
+GPU_TEST_P(Dilate, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
@@ -497,7 +495,7 @@ PARAM_TEST_CASE(MorphEx, cv::gpu::DeviceInfo, cv::Size, MatType, MorphOp, Anchor
     }
 };
 
-TEST_P(MorphEx, Accuracy)
+GPU_TEST_P(MorphEx, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
@@ -551,7 +549,7 @@ PARAM_TEST_CASE(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor,
     }
 };
 
-TEST_P(Filter2D, Accuracy)
+GPU_TEST_P(Filter2D, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat kernel = randomMat(cv::Size(ksize.width, ksize.height), CV_32FC1, 0.0, 1.0);
@@ -574,6 +572,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Filter2D, testing::Combine(
     testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT)),
     WHOLE_SUBMAT));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_global_motion.cpp b/modules/gpu/test/test_global_motion.cpp
index b37d080684..48fc428cee 100644
--- a/modules/gpu/test/test_global_motion.cpp
+++ b/modules/gpu/test/test_global_motion.cpp
@@ -51,7 +51,7 @@ struct CompactPoints : testing::TestWithParam<gpu::DeviceInfo>
     virtual void SetUp() { gpu::setDevice(GetParam().deviceID()); }
 };
 
-TEST_P(CompactPoints, CanCompactizeSmallInput)
+GPU_TEST_P(CompactPoints, CanCompactizeSmallInput)
 {
     Mat src0(1, 3, CV_32FC2);
     src0.at<Point2f>(0,0) = Point2f(0,0);
diff --git a/modules/gpu/test/test_gpumat.cpp b/modules/gpu/test/test_gpumat.cpp
index 9d7e545de2..9ece87caa3 100644
--- a/modules/gpu/test/test_gpumat.cpp
+++ b/modules/gpu/test/test_gpumat.cpp
@@ -44,8 +44,6 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
 ////////////////////////////////////////////////////////////////////////////////
 // SetTo
 
@@ -67,7 +65,7 @@ PARAM_TEST_CASE(SetTo, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(SetTo, Zero)
+GPU_TEST_P(SetTo, Zero)
 {
     cv::Scalar zero = cv::Scalar::all(0);
 
@@ -77,7 +75,7 @@ TEST_P(SetTo, Zero)
     EXPECT_MAT_NEAR(cv::Mat::zeros(size, type), mat, 0.0);
 }
 
-TEST_P(SetTo, SameVal)
+GPU_TEST_P(SetTo, SameVal)
 {
     cv::Scalar val = cv::Scalar::all(randomDouble(0.0, 255.0));
 
@@ -102,7 +100,7 @@ TEST_P(SetTo, SameVal)
     }
 }
 
-TEST_P(SetTo, DifferentVal)
+GPU_TEST_P(SetTo, DifferentVal)
 {
     cv::Scalar val = randomScalar(0.0, 255.0);
 
@@ -127,7 +125,7 @@ TEST_P(SetTo, DifferentVal)
     }
 }
 
-TEST_P(SetTo, Masked)
+GPU_TEST_P(SetTo, Masked)
 {
     cv::Scalar val = randomScalar(0.0, 255.0);
     cv::Mat mat_gold = randomMat(size, type);
@@ -184,7 +182,7 @@ PARAM_TEST_CASE(CopyTo, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(CopyTo, WithOutMask)
+GPU_TEST_P(CopyTo, WithOutMask)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -195,7 +193,7 @@ TEST_P(CopyTo, WithOutMask)
     EXPECT_MAT_NEAR(src, dst, 0.0);
 }
 
-TEST_P(CopyTo, Masked)
+GPU_TEST_P(CopyTo, Masked)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
@@ -255,7 +253,7 @@ PARAM_TEST_CASE(ConvertTo, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth, Us
     }
 };
 
-TEST_P(ConvertTo, WithOutScaling)
+GPU_TEST_P(ConvertTo, WithOutScaling)
 {
     cv::Mat src = randomMat(size, depth1);
 
@@ -285,7 +283,7 @@ TEST_P(ConvertTo, WithOutScaling)
     }
 }
 
-TEST_P(ConvertTo, WithScaling)
+GPU_TEST_P(ConvertTo, WithScaling)
 {
     cv::Mat src = randomMat(size, depth1);
     double a = randomDouble(0.0, 1.0);
@@ -336,7 +334,7 @@ struct EnsureSizeIsEnough : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(EnsureSizeIsEnough, BufferReuse)
+GPU_TEST_P(EnsureSizeIsEnough, BufferReuse)
 {
     cv::gpu::GpuMat buffer(100, 100, CV_8U);
     cv::gpu::GpuMat old = buffer;
@@ -358,6 +356,4 @@ TEST_P(EnsureSizeIsEnough, BufferReuse)
 
 INSTANTIATE_TEST_CASE_P(GPU_GpuMat, EnsureSizeIsEnough, ALL_DEVICES);
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_hough.cpp b/modules/gpu/test/test_hough.cpp
index c418d6ad74..9044e5b0d0 100644
--- a/modules/gpu/test/test_hough.cpp
+++ b/modules/gpu/test/test_hough.cpp
@@ -43,8 +43,6 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
 ///////////////////////////////////////////////////////////////////////////////////////////////////////
 // HoughLines
 
@@ -79,7 +77,7 @@ PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(HoughLines, Accuracy)
+GPU_TEST_P(HoughLines, Accuracy)
 {
     const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
     cv::gpu::setDevice(devInfo.deviceID());
@@ -88,7 +86,7 @@ TEST_P(HoughLines, Accuracy)
 
     const float rho = 1.0f;
     const float theta = (float) (1.5 * CV_PI / 180.0);
-    onst int threshold = 100;
+    const int threshold = 100;
 
     cv::Mat src(size, CV_8UC1);
     generateLines(src);
@@ -124,7 +122,7 @@ PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(HoughCircles, Accuracy)
+GPU_TEST_P(HoughCircles, Accuracy)
 {
     const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
     cv::gpu::setDevice(devInfo.deviceID());
@@ -188,7 +186,7 @@ PARAM_TEST_CASE(GeneralizedHough, cv::gpu::DeviceInfo, UseRoi)
 {
 };
 
-TEST_P(GeneralizedHough, POSITION)
+GPU_TEST_P(GeneralizedHough, POSITION)
 {
     const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
     cv::gpu::setDevice(devInfo.deviceID());
@@ -251,6 +249,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, GeneralizedHough, testing::Combine(
     ALL_DEVICES,
     WHOLE_SUBMAT));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_imgproc.cpp b/modules/gpu/test/test_imgproc.cpp
index 71d4a8e654..41a94299bf 100644
--- a/modules/gpu/test/test_imgproc.cpp
+++ b/modules/gpu/test/test_imgproc.cpp
@@ -43,8 +43,6 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
 ///////////////////////////////////////////////////////////////////////////////////////////////////////
 // Integral
 
@@ -64,7 +62,7 @@ PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, cv::Size, UseRoi)
     }
 };
 
-TEST_P(Integral, Accuracy)
+GPU_TEST_P(Integral, Accuracy)
 {
     cv::Mat src = randomMat(size, CV_8UC1);
 
@@ -97,7 +95,7 @@ struct HistEven : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(HistEven, Accuracy)
+GPU_TEST_P(HistEven, Accuracy)
 {
     cv::Mat img = readImage("stereobm/aloe-L.png");
     ASSERT_FALSE(img.empty());
@@ -132,18 +130,21 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HistEven, ALL_DEVICES);
 ///////////////////////////////////////////////////////////////////////////////////////////////////////
 // CalcHist
 
-void calcHistGold(const cv::Mat& src, cv::Mat& hist)
+namespace
 {
-    hist.create(1, 256, CV_32SC1);
-    hist.setTo(cv::Scalar::all(0));
-
-    int* hist_row = hist.ptr<int>();
-    for (int y = 0; y < src.rows; ++y)
+    void calcHistGold(const cv::Mat& src, cv::Mat& hist)
     {
-        const uchar* src_row = src.ptr(y);
+        hist.create(1, 256, CV_32SC1);
+        hist.setTo(cv::Scalar::all(0));
 
-        for (int x = 0; x < src.cols; ++x)
-            ++hist_row[src_row[x]];
+        int* hist_row = hist.ptr<int>();
+        for (int y = 0; y < src.rows; ++y)
+        {
+            const uchar* src_row = src.ptr(y);
+
+            for (int x = 0; x < src.cols; ++x)
+                ++hist_row[src_row[x]];
+        }
     }
 }
 
@@ -162,7 +163,7 @@ PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size)
     }
 };
 
-TEST_P(CalcHist, Accuracy)
+GPU_TEST_P(CalcHist, Accuracy)
 {
     cv::Mat src = randomMat(size, CV_8UC1);
 
@@ -196,7 +197,7 @@ PARAM_TEST_CASE(EqualizeHist, cv::gpu::DeviceInfo, cv::Size)
     }
 };
 
-TEST_P(EqualizeHist, Accuracy)
+GPU_TEST_P(EqualizeHist, Accuracy)
 {
     cv::Mat src = randomMat(size, CV_8UC1);
 
@@ -230,7 +231,7 @@ PARAM_TEST_CASE(ColumnSum, cv::gpu::DeviceInfo, cv::Size)
     }
 };
 
-TEST_P(ColumnSum, Accuracy)
+GPU_TEST_P(ColumnSum, Accuracy)
 {
     cv::Mat src = randomMat(size, CV_32FC1);
 
@@ -264,8 +265,11 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, ColumnSum, testing::Combine(
 ////////////////////////////////////////////////////////
 // Canny
 
-IMPLEMENT_PARAM_CLASS(AppertureSize, int);
-IMPLEMENT_PARAM_CLASS(L2gradient, bool);
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(AppertureSize, int);
+    IMPLEMENT_PARAM_CLASS(L2gradient, bool);
+}
 
 PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
 {
@@ -285,7 +289,7 @@ PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
     }
 };
 
-TEST_P(Canny, Accuracy)
+GPU_TEST_P(Canny, Accuracy)
 {
     cv::Mat img = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
     ASSERT_FALSE(img.empty());
@@ -349,7 +353,7 @@ struct MeanShift : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(MeanShift, Filtering)
+GPU_TEST_P(MeanShift, Filtering)
 {
     cv::Mat img_template;
     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
@@ -371,7 +375,7 @@ TEST_P(MeanShift, Filtering)
     EXPECT_MAT_NEAR(img_template, result, 0.0);
 }
 
-TEST_P(MeanShift, Proc)
+GPU_TEST_P(MeanShift, Proc)
 {
     cv::FileStorage fs;
     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
@@ -402,7 +406,10 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShift, ALL_DEVICES);
 ////////////////////////////////////////////////////////////////////////////////
 // MeanShiftSegmentation
 
-IMPLEMENT_PARAM_CLASS(MinSize, int);
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(MinSize, int);
+}
 
 PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize)
 {
@@ -418,7 +425,7 @@ PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize)
     }
 };
 
-TEST_P(MeanShiftSegmentation, Regression)
+GPU_TEST_P(MeanShiftSegmentation, Regression)
 {
     cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4);
     ASSERT_FALSE(img.empty());
@@ -448,26 +455,29 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShiftSegmentation, testing::Combine(
 ////////////////////////////////////////////////////////////////////////////
 // Blend
 
-template <typename T>
-void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
+namespace
 {
-    result_gold.create(img1.size(), img1.type());
-
-    int cn = img1.channels();
-
-    for (int y = 0; y < img1.rows; ++y)
+    template <typename T>
+    void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
     {
-        const float* weights1_row = weights1.ptr<float>(y);
-        const float* weights2_row = weights2.ptr<float>(y);
-        const T* img1_row = img1.ptr<T>(y);
-        const T* img2_row = img2.ptr<T>(y);
-        T* result_gold_row = result_gold.ptr<T>(y);
+        result_gold.create(img1.size(), img1.type());
 
-        for (int x = 0; x < img1.cols * cn; ++x)
+        int cn = img1.channels();
+
+        for (int y = 0; y < img1.rows; ++y)
         {
-            float w1 = weights1_row[x / cn];
-            float w2 = weights2_row[x / cn];
-            result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
+            const float* weights1_row = weights1.ptr<float>(y);
+            const float* weights2_row = weights2.ptr<float>(y);
+            const T* img1_row = img1.ptr<T>(y);
+            const T* img2_row = img2.ptr<T>(y);
+            T* result_gold_row = result_gold.ptr<T>(y);
+
+            for (int x = 0; x < img1.cols * cn; ++x)
+            {
+                float w1 = weights1_row[x / cn];
+                float w2 = weights2_row[x / cn];
+                result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
+            }
         }
     }
 }
@@ -490,7 +500,7 @@ PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(Blend, Accuracy)
+GPU_TEST_P(Blend, Accuracy)
 {
     int depth = CV_MAT_DEPTH(type);
 
@@ -520,47 +530,50 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, testing::Combine(
 ////////////////////////////////////////////////////////
 // Convolve
 
-void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
+namespace
 {
-    // reallocate the output array if needed
-    C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
-    cv::Size dftSize;
-
-    // compute the size of DFT transform
-    dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
-    dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
-
-    // allocate temporary buffers and initialize them with 0s
-    cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
-    cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
-
-    // copy A and B to the top-left corners of tempA and tempB, respectively
-    cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
-    A.copyTo(roiA);
-    cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
-    B.copyTo(roiB);
-
-    // now transform the padded A & B in-place;
-    // use "nonzeroRows" hint for faster processing
-    cv::dft(tempA, tempA, 0, A.rows);
-    cv::dft(tempB, tempB, 0, B.rows);
-
-    // multiply the spectrums;
-    // the function handles packed spectrum representations well
-    cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
-
-    // transform the product back from the frequency domain.
-    // Even though all the result rows will be non-zero,
-    // you need only the first C.rows of them, and thus you
-    // pass nonzeroRows == C.rows
-    cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
-
-    // now copy the result back to C.
-    tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
-}
+    void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
+    {
+        // reallocate the output array if needed
+        C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
+        cv::Size dftSize;
+
+        // compute the size of DFT transform
+        dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
+        dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
+
+        // allocate temporary buffers and initialize them with 0s
+        cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
+        cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
+
+        // copy A and B to the top-left corners of tempA and tempB, respectively
+        cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
+        A.copyTo(roiA);
+        cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
+        B.copyTo(roiB);
+
+        // now transform the padded A & B in-place;
+        // use "nonzeroRows" hint for faster processing
+        cv::dft(tempA, tempA, 0, A.rows);
+        cv::dft(tempB, tempB, 0, B.rows);
+
+        // multiply the spectrums;
+        // the function handles packed spectrum representations well
+        cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
+
+        // transform the product back from the frequency domain.
+        // Even though all the result rows will be non-zero,
+        // you need only the first C.rows of them, and thus you
+        // pass nonzeroRows == C.rows
+        cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
+
+        // now copy the result back to C.
+        tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
+    }
 
-IMPLEMENT_PARAM_CLASS(KSize, int);
-IMPLEMENT_PARAM_CLASS(Ccorr, bool);
+    IMPLEMENT_PARAM_CLASS(KSize, int);
+    IMPLEMENT_PARAM_CLASS(Ccorr, bool);
+}
 
 PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
 {
@@ -580,7 +593,7 @@ PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
     }
 };
 
-TEST_P(Convolve, Accuracy)
+GPU_TEST_P(Convolve, Accuracy)
 {
     cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
     cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
@@ -606,7 +619,10 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Convolve, testing::Combine(
 CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
 #define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED))
 
-IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
+}
 
 PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
 {
@@ -628,7 +644,7 @@ PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Ch
     }
 };
 
-TEST_P(MatchTemplate8U, Accuracy)
+GPU_TEST_P(MatchTemplate8U, Accuracy)
 {
     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
@@ -674,7 +690,7 @@ PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, C
     }
 };
 
-TEST_P(MatchTemplate32F, Regression)
+GPU_TEST_P(MatchTemplate32F, Regression)
 {
     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
@@ -712,7 +728,7 @@ PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod)
     }
 };
 
-TEST_P(MatchTemplateBlackSource, Accuracy)
+GPU_TEST_P(MatchTemplateBlackSource, Accuracy)
 {
     cv::Mat image = readImage("matchtemplate/black.png");
     ASSERT_FALSE(image.empty());
@@ -757,7 +773,7 @@ PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::
     }
 };
 
-TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
+GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
 {
     cv::Mat image = readImage(imageName);
     ASSERT_FALSE(image.empty());
@@ -806,7 +822,7 @@ struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::gpu::Device
     }
 };
 
-TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
+GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
 {
     cv::Mat scene = readImage("matchtemplate/scene.png");
     ASSERT_FALSE(scene.empty());
@@ -829,7 +845,7 @@ TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
     ASSERT_EQ(0, minLoc.y);
 }
 
-TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
+GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
 {
     cv::Mat scene = readImage("matchtemplate/scene.png");
     ASSERT_FALSE(scene.empty());
@@ -879,7 +895,7 @@ PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags)
     }
 };
 
-TEST_P(MulSpectrums, Simple)
+GPU_TEST_P(MulSpectrums, Simple)
 {
     cv::gpu::GpuMat c;
     cv::gpu::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
@@ -890,7 +906,7 @@ TEST_P(MulSpectrums, Simple)
     EXPECT_MAT_NEAR(c_gold, c, 1e-2);
 }
 
-TEST_P(MulSpectrums, Scaled)
+GPU_TEST_P(MulSpectrums, Scaled)
 {
     float scale = 1.f / size.area();
 
@@ -924,31 +940,34 @@ struct Dft : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
+namespace
 {
-    SCOPED_TRACE(hint);
+    void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
+    {
+        SCOPED_TRACE(hint);
 
-    cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
+        cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
 
-    cv::Mat b_gold;
-    cv::dft(a, b_gold, flags);
+        cv::Mat b_gold;
+        cv::dft(a, b_gold, flags);
 
-    cv::gpu::GpuMat d_b;
-    cv::gpu::GpuMat d_b_data;
-    if (inplace)
-    {
-        d_b_data.create(1, a.size().area(), CV_32FC2);
-        d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
-    }
-    cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
+        cv::gpu::GpuMat d_b;
+        cv::gpu::GpuMat d_b_data;
+        if (inplace)
+        {
+            d_b_data.create(1, a.size().area(), CV_32FC2);
+            d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
+        }
+        cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
 
-    EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
-    ASSERT_EQ(CV_32F, d_b.depth());
-    ASSERT_EQ(2, d_b.channels());
-    EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
+        EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
+        ASSERT_EQ(CV_32F, d_b.depth());
+        ASSERT_EQ(2, d_b.channels());
+        EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
+    }
 }
 
-TEST_P(Dft, C2C)
+GPU_TEST_P(Dft, C2C)
 {
     int cols = randomInt(2, 100);
     int rows = randomInt(2, 100);
@@ -973,43 +992,46 @@ TEST_P(Dft, C2C)
     }
 }
 
-void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
+namespace
 {
-    SCOPED_TRACE(hint);
+    void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
+    {
+        SCOPED_TRACE(hint);
 
-    cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
+        cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
 
-    cv::gpu::GpuMat d_b, d_c;
-    cv::gpu::GpuMat d_b_data, d_c_data;
-    if (inplace)
-    {
-        if (a.cols == 1)
-        {
-            d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
-            d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
-        }
-        else
+        cv::gpu::GpuMat d_b, d_c;
+        cv::gpu::GpuMat d_b_data, d_c_data;
+        if (inplace)
         {
-            d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
-            d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
+            if (a.cols == 1)
+            {
+                d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
+                d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
+            }
+            else
+            {
+                d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
+                d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
+            }
+            d_c_data.create(1, a.size().area(), CV_32F);
+            d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
         }
-        d_c_data.create(1, a.size().area(), CV_32F);
-        d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
-    }
 
-    cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
-    cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
+        cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
+        cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
 
-    EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
-    EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
-    ASSERT_EQ(CV_32F, d_c.depth());
-    ASSERT_EQ(1, d_c.channels());
+        EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
+        EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
+        ASSERT_EQ(CV_32F, d_c.depth());
+        ASSERT_EQ(1, d_c.channels());
 
-    cv::Mat c(d_c);
-    EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
+        cv::Mat c(d_c);
+        EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
+    }
 }
 
-TEST_P(Dft, R2CThenC2R)
+GPU_TEST_P(Dft, R2CThenC2R)
 {
     int cols = randomInt(2, 100);
     int rows = randomInt(2, 100);
@@ -1036,8 +1058,11 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Dft, ALL_DEVICES);
 ///////////////////////////////////////////////////////////////////////////////////////////////////////
 // CornerHarris
 
-IMPLEMENT_PARAM_CLASS(BlockSize, int);
-IMPLEMENT_PARAM_CLASS(ApertureSize, int);
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(BlockSize, int);
+    IMPLEMENT_PARAM_CLASS(ApertureSize, int);
+}
 
 PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize)
 {
@@ -1059,7 +1084,7 @@ PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSiz
     }
 };
 
-TEST_P(CornerHarris, Accuracy)
+GPU_TEST_P(CornerHarris, Accuracy)
 {
     cv::Mat src = readImageType("stereobm/aloe-L.png", type);
     ASSERT_FALSE(src.empty());
@@ -1105,7 +1130,7 @@ PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, BlockS
     }
 };
 
-TEST_P(CornerMinEigen, Accuracy)
+GPU_TEST_P(CornerMinEigen, Accuracy)
 {
     cv::Mat src = readImageType("stereobm/aloe-L.png", type);
     ASSERT_FALSE(src.empty());
@@ -1126,6 +1151,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
     testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
     testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_labeling.cpp b/modules/gpu/test/test_labeling.cpp
index 68d2cf4049..b19fd2e1b4 100644
--- a/modules/gpu/test/test_labeling.cpp
+++ b/modules/gpu/test/test_labeling.cpp
@@ -43,8 +43,8 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
+namespace
+{
     struct GreedyLabeling
     {
         struct dot
@@ -166,7 +166,7 @@ struct Labeling : testing::TestWithParam<cv::gpu::DeviceInfo>
     }
 };
 
-TEST_P(Labeling, ConnectedComponents)
+GPU_TEST_P(Labeling, ConnectedComponents)
 {
     cv::Mat image;
     cvtColor(loat_image(), image, CV_BGR2GRAY);
@@ -191,6 +191,6 @@ TEST_P(Labeling, ConnectedComponents)
     host.checkCorrectness(cv::Mat(components));
 }
 
-INSTANTIATE_TEST_CASE_P(ConnectedComponents, Labeling, ALL_DEVICES);
+INSTANTIATE_TEST_CASE_P(GPU_ConnectedComponents, Labeling, ALL_DEVICES);
 
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_nvidia.cpp b/modules/gpu/test/test_nvidia.cpp
index 484f3cfbba..53ed8c2235 100644
--- a/modules/gpu/test/test_nvidia.cpp
+++ b/modules/gpu/test/test_nvidia.cpp
@@ -41,11 +41,9 @@
 
 #include "test_precomp.hpp"
 
-#if defined HAVE_CUDA
-  OutputLevel nvidiaTestOutputLevel = OutputLevelNone;
-#endif
+#ifdef HAVE_CUDA
 
-#if defined HAVE_CUDA && !defined(CUDA_DISABLER)
+OutputLevel nvidiaTestOutputLevel = OutputLevelNone;
 
 using namespace cvtest;
 using namespace testing;
@@ -69,77 +67,77 @@ struct NVidiaTest : TestWithParam<cv::gpu::DeviceInfo>
 struct NPPST : NVidiaTest {};
 struct NCV : NVidiaTest {};
 
-//TEST_P(NPPST, Integral)
-//{
-//    bool res = nvidia_NPPST_Integral_Image(path, nvidiaTestOutputLevel);
+GPU_TEST_P(NPPST, Integral)
+{
+    bool res = nvidia_NPPST_Integral_Image(_path, nvidiaTestOutputLevel);
 
-//    ASSERT_TRUE(res);
-//}
+    ASSERT_TRUE(res);
+}
 
-TEST_P(NPPST, SquaredIntegral)
+GPU_TEST_P(NPPST, SquaredIntegral)
 {
     bool res = nvidia_NPPST_Squared_Integral_Image(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NPPST, RectStdDev)
+GPU_TEST_P(NPPST, RectStdDev)
 {
     bool res = nvidia_NPPST_RectStdDev(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NPPST, Resize)
+GPU_TEST_P(NPPST, Resize)
 {
     bool res = nvidia_NPPST_Resize(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NPPST, VectorOperations)
+GPU_TEST_P(NPPST, VectorOperations)
 {
     bool res = nvidia_NPPST_Vector_Operations(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NPPST, Transpose)
+GPU_TEST_P(NPPST, Transpose)
 {
     bool res = nvidia_NPPST_Transpose(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NCV, VectorOperations)
+GPU_TEST_P(NCV, VectorOperations)
 {
     bool res = nvidia_NCV_Vector_Operations(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NCV, HaarCascadeLoader)
+GPU_TEST_P(NCV, HaarCascadeLoader)
 {
     bool res = nvidia_NCV_Haar_Cascade_Loader(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NCV, HaarCascadeApplication)
+GPU_TEST_P(NCV, HaarCascadeApplication)
 {
     bool res = nvidia_NCV_Haar_Cascade_Application(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NCV, HypothesesFiltration)
+GPU_TEST_P(NCV, HypothesesFiltration)
 {
     bool res = nvidia_NCV_Hypotheses_Filtration(_path, nvidiaTestOutputLevel);
 
     ASSERT_TRUE(res);
 }
 
-TEST_P(NCV, Visualization)
+GPU_TEST_P(NCV, Visualization)
 {
     // this functionality doesn't used in gpu module
     bool res = nvidia_NCV_Visualization(_path, nvidiaTestOutputLevel);
diff --git a/modules/gpu/test/test_objdetect.cpp b/modules/gpu/test/test_objdetect.cpp
index 4fb295d4c7..fd610d9b50 100644
--- a/modules/gpu/test/test_objdetect.cpp
+++ b/modules/gpu/test/test_objdetect.cpp
@@ -43,8 +43,6 @@
 
 #ifdef HAVE_CUDA
 
-namespace {
-
 //#define DUMP
 
 struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
@@ -176,7 +174,7 @@ struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
 };
 
 // desabled while resize does not fixed
-TEST_P(HOG, DISABLED_Detect)
+GPU_TEST_P(HOG, Detect)
 {
     cv::Mat img_rgb = readImage("hog/road.png");
     ASSERT_FALSE(img_rgb.empty());
@@ -201,7 +199,7 @@ TEST_P(HOG, DISABLED_Detect)
     f.close();
 }
 
-TEST_P(HOG, GetDescriptors)
+GPU_TEST_P(HOG, GetDescriptors)
 {
     // Load image (e.g. train data, composed from windows)
     cv::Mat img_rgb = readImage("hog/train_data.png");
@@ -288,6 +286,7 @@ TEST_P(HOG, GetDescriptors)
 INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, ALL_DEVICES);
 
 //============== caltech hog tests =====================//
+
 struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string> >
 {
     cv::gpu::DeviceInfo devInfo;
@@ -303,7 +302,7 @@ struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::gpu::Device
     }
 };
 
-TEST_P(CalTech, HOG)
+GPU_TEST_P(CalTech, HOG)
 {
     cv::gpu::GpuMat d_img(img);
     cv::Mat markedImage(img.clone());
@@ -350,7 +349,7 @@ PARAM_TEST_CASE(LBP_Read_classifier, cv::gpu::DeviceInfo, int)
     }
 };
 
-TEST_P(LBP_Read_classifier, Accuracy)
+GPU_TEST_P(LBP_Read_classifier, Accuracy)
 {
     cv::gpu::CascadeClassifier_GPU classifier;
     std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
@@ -372,7 +371,7 @@ PARAM_TEST_CASE(LBP_classify, cv::gpu::DeviceInfo, int)
     }
 };
 
-TEST_P(LBP_classify, Accuracy)
+GPU_TEST_P(LBP_classify, Accuracy)
 {
     std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
     std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png";
@@ -422,6 +421,4 @@ TEST_P(LBP_classify, Accuracy)
 INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify,
                         testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
 
-} // namespace
-
 #endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_opengl.cpp b/modules/gpu/test/test_opengl.cpp
index 3bb3e09ea0..9b69db6d44 100644
--- a/modules/gpu/test/test_opengl.cpp
+++ b/modules/gpu/test/test_opengl.cpp
@@ -68,7 +68,7 @@ PARAM_TEST_CASE(GlBuffer, cv::Size, MatType)
     }
 };
 
-TEST_P(GlBuffer, Constructor1)
+GPU_TEST_P(GlBuffer, Constructor1)
 {
     cv::GlBuffer buf(size.height, size.width, type, cv::GlBuffer::ARRAY_BUFFER, true);
 
@@ -77,7 +77,7 @@ TEST_P(GlBuffer, Constructor1)
     EXPECT_EQ(type, buf.type());
 }
 
-TEST_P(GlBuffer, Constructor2)
+GPU_TEST_P(GlBuffer, Constructor2)
 {
     cv::GlBuffer buf(size, type, cv::GlBuffer::ARRAY_BUFFER, true);
 
@@ -86,7 +86,7 @@ TEST_P(GlBuffer, Constructor2)
     EXPECT_EQ(type, buf.type());
 }
 
-TEST_P(GlBuffer, ConstructorFromMat)
+GPU_TEST_P(GlBuffer, ConstructorFromMat)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -98,7 +98,7 @@ TEST_P(GlBuffer, ConstructorFromMat)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, ConstructorFromGpuMat)
+GPU_TEST_P(GlBuffer, ConstructorFromGpuMat)
 {
     cv::Mat gold = randomMat(size, type);
     cv::gpu::GpuMat d_gold(gold);
@@ -111,7 +111,7 @@ TEST_P(GlBuffer, ConstructorFromGpuMat)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, ConstructorFromGlBuffer)
+GPU_TEST_P(GlBuffer, ConstructorFromGlBuffer)
 {
     cv::GlBuffer buf_gold(size, type, cv::GlBuffer::ARRAY_BUFFER, true);
 
@@ -123,7 +123,7 @@ TEST_P(GlBuffer, ConstructorFromGlBuffer)
     EXPECT_EQ(buf_gold.type(), buf.type());
 }
 
-TEST_P(GlBuffer, ConstructorFromGlTexture2D)
+GPU_TEST_P(GlBuffer, ConstructorFromGlTexture2D)
 {
     const int depth = CV_MAT_DEPTH(type);
     const int cn = CV_MAT_CN(type);
@@ -142,7 +142,7 @@ TEST_P(GlBuffer, ConstructorFromGlTexture2D)
     EXPECT_MAT_NEAR(gold, bufData, 1e-2);
 }
 
-TEST_P(GlBuffer, Create)
+GPU_TEST_P(GlBuffer, Create)
 {
     cv::GlBuffer buf;
     buf.create(size.height, size.width, type, cv::GlBuffer::ARRAY_BUFFER, true);
@@ -152,7 +152,7 @@ TEST_P(GlBuffer, Create)
     EXPECT_EQ(type, buf.type());
 }
 
-TEST_P(GlBuffer, CopyFromMat)
+GPU_TEST_P(GlBuffer, CopyFromMat)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -165,7 +165,7 @@ TEST_P(GlBuffer, CopyFromMat)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, CopyFromGpuMat)
+GPU_TEST_P(GlBuffer, CopyFromGpuMat)
 {
     cv::Mat gold = randomMat(size, type);
     cv::gpu::GpuMat d_gold(gold);
@@ -179,7 +179,7 @@ TEST_P(GlBuffer, CopyFromGpuMat)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, CopyFromGlBuffer)
+GPU_TEST_P(GlBuffer, CopyFromGlBuffer)
 {
     cv::Mat gold = randomMat(size, type);
     cv::GlBuffer buf_gold(gold, cv::GlBuffer::ARRAY_BUFFER, true);
@@ -195,7 +195,7 @@ TEST_P(GlBuffer, CopyFromGlBuffer)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, CopyFromGlTexture2D)
+GPU_TEST_P(GlBuffer, CopyFromGlTexture2D)
 {
     const int depth = CV_MAT_DEPTH(type);
     const int cn = CV_MAT_CN(type);
@@ -215,7 +215,7 @@ TEST_P(GlBuffer, CopyFromGlTexture2D)
     EXPECT_MAT_NEAR(gold, bufData, 1e-2);
 }
 
-TEST_P(GlBuffer, CopyToGpuMat)
+GPU_TEST_P(GlBuffer, CopyToGpuMat)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -227,7 +227,7 @@ TEST_P(GlBuffer, CopyToGpuMat)
     EXPECT_MAT_NEAR(gold, dst, 0);
 }
 
-TEST_P(GlBuffer, CopyToGlBuffer)
+GPU_TEST_P(GlBuffer, CopyToGlBuffer)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -244,7 +244,7 @@ TEST_P(GlBuffer, CopyToGlBuffer)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, CopyToGlTexture2D)
+GPU_TEST_P(GlBuffer, CopyToGlTexture2D)
 {
     const int depth = CV_MAT_DEPTH(type);
     const int cn = CV_MAT_CN(type);
@@ -265,7 +265,7 @@ TEST_P(GlBuffer, CopyToGlTexture2D)
     EXPECT_MAT_NEAR(gold, texData, 1e-2);
 }
 
-TEST_P(GlBuffer, Clone)
+GPU_TEST_P(GlBuffer, Clone)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -281,7 +281,7 @@ TEST_P(GlBuffer, Clone)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, MapHostRead)
+GPU_TEST_P(GlBuffer, MapHostRead)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -294,7 +294,7 @@ TEST_P(GlBuffer, MapHostRead)
     buf.unmapHost();
 }
 
-TEST_P(GlBuffer, MapHostWrite)
+GPU_TEST_P(GlBuffer, MapHostWrite)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -311,7 +311,7 @@ TEST_P(GlBuffer, MapHostWrite)
     EXPECT_MAT_NEAR(gold, bufData, 0);
 }
 
-TEST_P(GlBuffer, MapDevice)
+GPU_TEST_P(GlBuffer, MapDevice)
 {
     cv::Mat gold = randomMat(size, type);
 
@@ -358,7 +358,7 @@ PARAM_TEST_CASE(GlTexture2D, cv::Size, MatType)
     }
 };
 
-TEST_P(GlTexture2D, Constructor1)
+GPU_TEST_P(GlTexture2D, Constructor1)
 {
     cv::GlTexture2D tex(size.height, size.width, format, true);
 
@@ -367,7 +367,7 @@ TEST_P(GlTexture2D, Constructor1)
     EXPECT_EQ(format, tex.format());
 }
 
-TEST_P(GlTexture2D, Constructor2)
+GPU_TEST_P(GlTexture2D, Constructor2)
 {
     cv::GlTexture2D tex(size, format, true);
 
@@ -376,7 +376,7 @@ TEST_P(GlTexture2D, Constructor2)
     EXPECT_EQ(format, tex.format());
 }
 
-TEST_P(GlTexture2D, ConstructorFromMat)
+GPU_TEST_P(GlTexture2D, ConstructorFromMat)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
 
@@ -388,7 +388,7 @@ TEST_P(GlTexture2D, ConstructorFromMat)
     EXPECT_MAT_NEAR(gold, texData, 1e-2);
 }
 
-TEST_P(GlTexture2D, ConstructorFromGpuMat)
+GPU_TEST_P(GlTexture2D, ConstructorFromGpuMat)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
     cv::gpu::GpuMat d_gold(gold);
@@ -401,7 +401,7 @@ TEST_P(GlTexture2D, ConstructorFromGpuMat)
     EXPECT_MAT_NEAR(gold, texData, 1e-2);
 }
 
-TEST_P(GlTexture2D, ConstructorFromGlBuffer)
+GPU_TEST_P(GlTexture2D, ConstructorFromGlBuffer)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
     cv::GlBuffer buf_gold(gold, cv::GlBuffer::PIXEL_UNPACK_BUFFER, true);
@@ -414,7 +414,7 @@ TEST_P(GlTexture2D, ConstructorFromGlBuffer)
     EXPECT_MAT_NEAR(gold, texData, 1e-2);
 }
 
-TEST_P(GlTexture2D, ConstructorFromGlTexture2D)
+GPU_TEST_P(GlTexture2D, ConstructorFromGlTexture2D)
 {
     cv::GlTexture2D tex_gold(size, format, true);
     cv::GlTexture2D tex(tex_gold);
@@ -425,7 +425,7 @@ TEST_P(GlTexture2D, ConstructorFromGlTexture2D)
     EXPECT_EQ(tex_gold.format(), tex.format());
 }
 
-TEST_P(GlTexture2D, Create)
+GPU_TEST_P(GlTexture2D, Create)
 {
     cv::GlTexture2D tex;
     tex.create(size.height, size.width, format, true);
@@ -435,7 +435,7 @@ TEST_P(GlTexture2D, Create)
     EXPECT_EQ(format, tex.format());
 }
 
-TEST_P(GlTexture2D, CopyFromMat)
+GPU_TEST_P(GlTexture2D, CopyFromMat)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
 
@@ -448,7 +448,7 @@ TEST_P(GlTexture2D, CopyFromMat)
     EXPECT_MAT_NEAR(gold, texData, 1e-2);
 }
 
-TEST_P(GlTexture2D, CopyFromGpuMat)
+GPU_TEST_P(GlTexture2D, CopyFromGpuMat)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
     cv::gpu::GpuMat d_gold(gold);
@@ -462,7 +462,7 @@ TEST_P(GlTexture2D, CopyFromGpuMat)
     EXPECT_MAT_NEAR(gold, texData, 1e-2);
 }
 
-TEST_P(GlTexture2D, CopyFromGlBuffer)
+GPU_TEST_P(GlTexture2D, CopyFromGlBuffer)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
     cv::GlBuffer buf_gold(gold, cv::GlBuffer::PIXEL_UNPACK_BUFFER, true);
@@ -476,7 +476,7 @@ TEST_P(GlTexture2D, CopyFromGlBuffer)
     EXPECT_MAT_NEAR(gold, texData, 1e-2);
 }
 
-TEST_P(GlTexture2D, CopyToGpuMat)
+GPU_TEST_P(GlTexture2D, CopyToGpuMat)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
 
@@ -488,7 +488,7 @@ TEST_P(GlTexture2D, CopyToGpuMat)
     EXPECT_MAT_NEAR(gold, dst, 1e-2);
 }
 
-TEST_P(GlTexture2D, CopyToGlBuffer)
+GPU_TEST_P(GlTexture2D, CopyToGlBuffer)
 {
     cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
 
diff --git a/modules/gpu/test/test_optflow.cpp b/modules/gpu/test/test_optflow.cpp
new file mode 100644
index 0000000000..c93ebbe19e
--- /dev/null
+++ b/modules/gpu/test/test_optflow.cpp
@@ -0,0 +1,623 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include "test_precomp.hpp"
+
+#ifdef HAVE_CUDA
+
+//////////////////////////////////////////////////////
+// BroxOpticalFlow
+
+//#define BROX_DUMP
+
+struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
+{
+    cv::gpu::DeviceInfo devInfo;
+
+    virtual void SetUp()
+    {
+        devInfo = GetParam();
+
+        cv::gpu::setDevice(devInfo.deviceID());
+    }
+};
+
+GPU_TEST_P(BroxOpticalFlow, Regression)
+{
+    cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
+    ASSERT_FALSE(frame0.empty());
+
+    cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
+    ASSERT_FALSE(frame1.empty());
+
+    cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
+                                  10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
+
+    cv::gpu::GpuMat u;
+    cv::gpu::GpuMat v;
+    brox(loadMat(frame0), loadMat(frame1), u, v);
+
+    std::string fname(cvtest::TS::ptr()->get_data_path());
+    if (devInfo.majorVersion() >= 2)
+        fname += "opticalflow/brox_optical_flow_cc20.bin";
+    else
+        fname += "opticalflow/brox_optical_flow.bin";
+
+#ifndef BROX_DUMP
+    std::ifstream f(fname.c_str(), std::ios_base::binary);
+
+    int rows, cols;
+
+    f.read((char*) &rows, sizeof(rows));
+    f.read((char*) &cols, sizeof(cols));
+
+    cv::Mat u_gold(rows, cols, CV_32FC1);
+
+    for (int i = 0; i < u_gold.rows; ++i)
+        f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
+
+    cv::Mat v_gold(rows, cols, CV_32FC1);
+
+    for (int i = 0; i < v_gold.rows; ++i)
+        f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
+
+    EXPECT_MAT_NEAR(u_gold, u, 0);
+    EXPECT_MAT_NEAR(v_gold, v, 0);
+#else
+    std::ofstream f(fname.c_str(), std::ios_base::binary);
+
+    f.write((char*) &u.rows, sizeof(u.rows));
+    f.write((char*) &u.cols, sizeof(u.cols));
+
+    cv::Mat h_u(u);
+    cv::Mat h_v(v);
+
+    for (int i = 0; i < u.rows; ++i)
+        f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
+
+    for (int i = 0; i < v.rows; ++i)
+        f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
+#endif
+}
+
+GPU_TEST_P(BroxOpticalFlow, OpticalFlowNan)
+{
+    cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
+    ASSERT_FALSE(frame0.empty());
+
+    cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
+    ASSERT_FALSE(frame1.empty());
+
+    cv::Mat r_frame0, r_frame1;
+    cv::resize(frame0, r_frame0, cv::Size(1380,1000));
+    cv::resize(frame1, r_frame1, cv::Size(1380,1000));
+
+    cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
+                                  5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/);
+
+    cv::gpu::GpuMat u;
+    cv::gpu::GpuMat v;
+    brox(loadMat(r_frame0), loadMat(r_frame1), u, v);
+
+    cv::Mat h_u, h_v;
+    u.download(h_u);
+    v.download(h_v);
+
+    EXPECT_TRUE(cv::checkRange(h_u));
+    EXPECT_TRUE(cv::checkRange(h_v));
+};
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
+
+//////////////////////////////////////////////////////
+// GoodFeaturesToTrack
+
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(MinDistance, double)
+}
+
+PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
+{
+    cv::gpu::DeviceInfo devInfo;
+    double minDistance;
+
+    virtual void SetUp()
+    {
+        devInfo = GET_PARAM(0);
+        minDistance = GET_PARAM(1);
+
+        cv::gpu::setDevice(devInfo.deviceID());
+    }
+};
+
+GPU_TEST_P(GoodFeaturesToTrack, Accuracy)
+{
+    cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(image.empty());
+
+    int maxCorners = 1000;
+    double qualityLevel = 0.01;
+
+    cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
+
+    cv::gpu::GpuMat d_pts;
+    detector(loadMat(image), d_pts);
+
+    ASSERT_FALSE(d_pts.empty());
+
+    std::vector<cv::Point2f> pts(d_pts.cols);
+    cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*) &pts[0]);
+    d_pts.download(pts_mat);
+
+    std::vector<cv::Point2f> pts_gold;
+    cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
+
+    ASSERT_EQ(pts_gold.size(), pts.size());
+
+    size_t mistmatch = 0;
+    for (size_t i = 0; i < pts.size(); ++i)
+    {
+        cv::Point2i a = pts_gold[i];
+        cv::Point2i b = pts[i];
+
+        bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
+
+        if (!eq)
+            ++mistmatch;
+    }
+
+    double bad_ratio = static_cast<double>(mistmatch) / pts.size();
+
+    ASSERT_LE(bad_ratio, 0.01);
+}
+
+GPU_TEST_P(GoodFeaturesToTrack, EmptyCorners)
+{
+    int maxCorners = 1000;
+    double qualityLevel = 0.01;
+
+    cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
+
+    cv::gpu::GpuMat src(100, 100, CV_8UC1, cv::Scalar::all(0));
+    cv::gpu::GpuMat corners(1, maxCorners, CV_32FC2);
+
+    detector(src, corners);
+
+    ASSERT_TRUE(corners.empty());
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
+    ALL_DEVICES,
+    testing::Values(MinDistance(0.0), MinDistance(3.0))));
+
+//////////////////////////////////////////////////////
+// PyrLKOpticalFlow
+
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(UseGray, bool)
+}
+
+PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
+{
+    cv::gpu::DeviceInfo devInfo;
+    bool useGray;
+
+    virtual void SetUp()
+    {
+        devInfo = GET_PARAM(0);
+        useGray = GET_PARAM(1);
+
+        cv::gpu::setDevice(devInfo.deviceID());
+    }
+};
+
+GPU_TEST_P(PyrLKOpticalFlow, Sparse)
+{
+    cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
+    ASSERT_FALSE(frame0.empty());
+
+    cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
+    ASSERT_FALSE(frame1.empty());
+
+    cv::Mat gray_frame;
+    if (useGray)
+        gray_frame = frame0;
+    else
+        cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
+
+    std::vector<cv::Point2f> pts;
+    cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
+
+    cv::gpu::GpuMat d_pts;
+    cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
+    d_pts.upload(pts_mat);
+
+    cv::gpu::PyrLKOpticalFlow pyrLK;
+
+    cv::gpu::GpuMat d_nextPts;
+    cv::gpu::GpuMat d_status;
+    pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
+
+    std::vector<cv::Point2f> nextPts(d_nextPts.cols);
+    cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]);
+    d_nextPts.download(nextPts_mat);
+
+    std::vector<unsigned char> status(d_status.cols);
+    cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]);
+    d_status.download(status_mat);
+
+    std::vector<cv::Point2f> nextPts_gold;
+    std::vector<unsigned char> status_gold;
+    cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
+
+    ASSERT_EQ(nextPts_gold.size(), nextPts.size());
+    ASSERT_EQ(status_gold.size(), status.size());
+
+    size_t mistmatch = 0;
+    for (size_t i = 0; i < nextPts.size(); ++i)
+    {
+        cv::Point2i a = nextPts[i];
+        cv::Point2i b = nextPts_gold[i];
+
+        if (status[i] != status_gold[i])
+        {
+            ++mistmatch;
+            continue;
+        }
+
+        if (status[i])
+        {
+            bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
+
+            if (!eq)
+                ++mistmatch;
+        }
+    }
+
+    double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
+
+    ASSERT_LE(bad_ratio, 0.01);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
+    ALL_DEVICES,
+    testing::Values(UseGray(true), UseGray(false))));
+
+//////////////////////////////////////////////////////
+// FarnebackOpticalFlow
+
+namespace
+{
+    IMPLEMENT_PARAM_CLASS(PyrScale, double)
+    IMPLEMENT_PARAM_CLASS(PolyN, int)
+    CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN)
+    IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
+}
+
+PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
+{
+    cv::gpu::DeviceInfo devInfo;
+    double pyrScale;
+    int polyN;
+    int flags;
+    bool useInitFlow;
+
+    virtual void SetUp()
+    {
+        devInfo = GET_PARAM(0);
+        pyrScale = GET_PARAM(1);
+        polyN = GET_PARAM(2);
+        flags = GET_PARAM(3);
+        useInitFlow = GET_PARAM(4);
+
+        cv::gpu::setDevice(devInfo.deviceID());
+    }
+};
+
+GPU_TEST_P(FarnebackOpticalFlow, Accuracy)
+{
+    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame0.empty());
+
+    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame1.empty());
+
+    double polySigma = polyN <= 5 ? 1.1 : 1.5;
+
+    cv::gpu::FarnebackOpticalFlow farn;
+    farn.pyrScale = pyrScale;
+    farn.polyN = polyN;
+    farn.polySigma = polySigma;
+    farn.flags = flags;
+
+    cv::gpu::GpuMat d_flowx, d_flowy;
+    farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
+
+    cv::Mat flow;
+    if (useInitFlow)
+    {
+        cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
+        cv::merge(flowxy, 2, flow);
+
+        farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
+        farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
+    }
+
+    cv::calcOpticalFlowFarneback(
+        frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
+        farn.numIters, farn.polyN, farn.polySigma, farn.flags);
+
+    std::vector<cv::Mat> flowxy;
+    cv::split(flow, flowxy);
+
+    EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
+    EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
+    ALL_DEVICES,
+    testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
+    testing::Values(PolyN(5), PolyN(7)),
+    testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
+    testing::Values(UseInitFlow(false), UseInitFlow(true))));
+
+//////////////////////////////////////////////////////
+// OpticalFlowDual_TVL1
+
+PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::gpu::DeviceInfo, UseRoi)
+{
+    cv::gpu::DeviceInfo devInfo;
+    bool useRoi;
+
+    virtual void SetUp()
+    {
+        devInfo = GET_PARAM(0);
+        useRoi = GET_PARAM(1);
+
+        cv::gpu::setDevice(devInfo.deviceID());
+    }
+};
+
+GPU_TEST_P(OpticalFlowDual_TVL1, Accuracy)
+{
+    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame0.empty());
+
+    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame1.empty());
+
+    cv::gpu::OpticalFlowDual_TVL1_GPU d_alg;
+    cv::gpu::GpuMat d_flowx = createMat(frame0.size(), CV_32FC1, useRoi);
+    cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi);
+    d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy);
+
+    cv::OpticalFlowDual_TVL1 alg;
+    cv::Mat flow;
+    alg(frame0, frame1, flow);
+    cv::Mat gold[2];
+    cv::split(flow, gold);
+
+    EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3);
+    EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
+    ALL_DEVICES,
+    WHOLE_SUBMAT));
+
+//////////////////////////////////////////////////////
+// OpticalFlowBM
+
+namespace
+{
+    void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
+                           cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
+                           cv::Mat& velx, cv::Mat& vely)
+    {
+        cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
+
+        velx.create(sz, CV_32FC1);
+        vely.create(sz, CV_32FC1);
+
+        CvMat cvprev = prev;
+        CvMat cvcurr = curr;
+
+        CvMat cvvelx = velx;
+        CvMat cvvely = vely;
+
+        cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
+    }
+}
+
+struct OpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
+{
+};
+
+GPU_TEST_P(OpticalFlowBM, Accuracy)
+{
+    cv::gpu::DeviceInfo devInfo = GetParam();
+    cv::gpu::setDevice(devInfo.deviceID());
+
+    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame0.empty());
+
+    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame1.empty());
+
+    cv::Size block_size(16, 16);
+    cv::Size shift_size(1, 1);
+    cv::Size max_range(16, 16);
+
+    cv::gpu::GpuMat d_velx, d_vely, buf;
+    cv::gpu::calcOpticalFlowBM(loadMat(frame0), loadMat(frame1),
+                               block_size, shift_size, max_range, false,
+                               d_velx, d_vely, buf);
+
+    cv::Mat velx, vely;
+    calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
+
+    EXPECT_MAT_NEAR(velx, d_velx, 0);
+    EXPECT_MAT_NEAR(vely, d_vely, 0);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowBM, ALL_DEVICES);
+
+//////////////////////////////////////////////////////
+// FastOpticalFlowBM
+
+namespace
+{
+    void FastOpticalFlowBM_gold(const cv::Mat_<uchar>& I0, const cv::Mat_<uchar>& I1, cv::Mat_<float>& velx, cv::Mat_<float>& vely, int search_window, int block_window)
+    {
+        velx.create(I0.size());
+        vely.create(I0.size());
+
+        int search_radius = search_window / 2;
+        int block_radius = block_window / 2;
+
+        for (int y = 0; y < I0.rows; ++y)
+        {
+            for (int x = 0; x < I0.cols; ++x)
+            {
+                int bestDist = std::numeric_limits<int>::max();
+                int bestDx = 0;
+                int bestDy = 0;
+
+                for (int dy = -search_radius; dy <= search_radius; ++dy)
+                {
+                    for (int dx = -search_radius; dx <= search_radius; ++dx)
+                    {
+                        int dist = 0;
+
+                        for (int by = -block_radius; by <= block_radius; ++by)
+                        {
+                            for (int bx = -block_radius; bx <= block_radius; ++bx)
+                            {
+                                int I0_val = I0(cv::borderInterpolate(y + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + bx, I0.cols, cv::BORDER_DEFAULT));
+                                int I1_val = I1(cv::borderInterpolate(y + dy + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + dx + bx, I0.cols, cv::BORDER_DEFAULT));
+
+                                dist += std::abs(I0_val - I1_val);
+                            }
+                        }
+
+                        if (dist < bestDist)
+                        {
+                            bestDist = dist;
+                            bestDx = dx;
+                            bestDy = dy;
+                        }
+                    }
+                }
+
+                velx(y, x) = (float) bestDx;
+                vely(y, x) = (float) bestDy;
+            }
+        }
+    }
+
+    double calc_rmse(const cv::Mat_<float>& flow1, const cv::Mat_<float>& flow2)
+    {
+        double sum = 0.0;
+
+        for (int y = 0; y < flow1.rows; ++y)
+        {
+            for (int x = 0; x < flow1.cols; ++x)
+            {
+                double diff = flow1(y, x) - flow2(y, x);
+                sum += diff * diff;
+            }
+        }
+
+        return std::sqrt(sum / flow1.size().area());
+    }
+}
+
+struct FastOpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
+{
+};
+
+GPU_TEST_P(FastOpticalFlowBM, Accuracy)
+{
+    const double MAX_RMSE = 0.6;
+
+    int search_window = 15;
+    int block_window = 5;
+
+    cv::gpu::DeviceInfo devInfo = GetParam();
+    cv::gpu::setDevice(devInfo.deviceID());
+
+    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame0.empty());
+
+    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(frame1.empty());
+
+    cv::Size smallSize(320, 240);
+    cv::Mat frame0_small;
+    cv::Mat frame1_small;
+
+    cv::resize(frame0, frame0_small, smallSize);
+    cv::resize(frame1, frame1_small, smallSize);
+
+    cv::gpu::GpuMat d_flowx;
+    cv::gpu::GpuMat d_flowy;
+    cv::gpu::FastOpticalFlowBM fastBM;
+
+    fastBM(loadMat(frame0_small), loadMat(frame1_small), d_flowx, d_flowy, search_window, block_window);
+
+    cv::Mat_<float> flowx;
+    cv::Mat_<float> flowy;
+    FastOpticalFlowBM_gold(frame0_small, frame1_small, flowx, flowy, search_window, block_window);
+
+    double err;
+
+    err = calc_rmse(flowx, cv::Mat(d_flowx));
+    EXPECT_LE(err, MAX_RMSE);
+
+    err = calc_rmse(flowy, cv::Mat(d_flowy));
+    EXPECT_LE(err, MAX_RMSE);
+}
+
+INSTANTIATE_TEST_CASE_P(GPU_Video, FastOpticalFlowBM, ALL_DEVICES);
+
+#endif // HAVE_CUDA
diff --git a/modules/gpu/test/test_precomp.hpp b/modules/gpu/test/test_precomp.hpp
index 7eb53d5f3d..e7ade6aed7 100644
--- a/modules/gpu/test/test_precomp.hpp
+++ b/modules/gpu/test/test_precomp.hpp
@@ -51,6 +51,7 @@
 #define __OPENCV_TEST_PRECOMP_HPP__
 
 #include <cmath>
+#include <ctime>
 #include <cstdio>
 #include <iostream>
 #include <fstream>
diff --git a/modules/gpu/test/test_pyramids.cpp b/modules/gpu/test/test_pyramids.cpp
index 1abd7841ef..c3d56b63a0 100644
--- a/modules/gpu/test/test_pyramids.cpp
+++ b/modules/gpu/test/test_pyramids.cpp
@@ -64,7 +64,7 @@ PARAM_TEST_CASE(PyrDown, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(PyrDown, Accuracy)
+GPU_TEST_P(PyrDown, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -104,7 +104,7 @@ PARAM_TEST_CASE(PyrUp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
     }
 };
 
-TEST_P(PyrUp, Accuracy)
+GPU_TEST_P(PyrUp, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
diff --git a/modules/gpu/test/test_remap.cpp b/modules/gpu/test/test_remap.cpp
index 978e1044a7..a815ed0e0d 100644
--- a/modules/gpu/test/test_remap.cpp
+++ b/modules/gpu/test/test_remap.cpp
@@ -152,7 +152,7 @@ PARAM_TEST_CASE(Remap, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, Bo
     }
 };
 
-TEST_P(Remap, Accuracy)
+GPU_TEST_P(Remap, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Scalar val = randomScalar(0.0, 255.0);
diff --git a/modules/gpu/test/test_resize.cpp b/modules/gpu/test/test_resize.cpp
index cae2dbf411..a34da54fdb 100644
--- a/modules/gpu/test/test_resize.cpp
+++ b/modules/gpu/test/test_resize.cpp
@@ -136,7 +136,7 @@ PARAM_TEST_CASE(Resize, cv::gpu::DeviceInfo, cv::Size, MatType, double, Interpol
     }
 };
 
-TEST_P(Resize, Accuracy)
+GPU_TEST_P(Resize, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -157,8 +157,8 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Resize, testing::Combine(
     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
     WHOLE_SUBMAT));
 
-
 /////////////////
+
 PARAM_TEST_CASE(ResizeSameAsHost, cv::gpu::DeviceInfo, cv::Size, MatType, double, Interpolation, UseRoi)
 {
     cv::gpu::DeviceInfo devInfo;
@@ -182,7 +182,7 @@ PARAM_TEST_CASE(ResizeSameAsHost, cv::gpu::DeviceInfo, cv::Size, MatType, double
 };
 
 // downscaling only: used for classifiers
-TEST_P(ResizeSameAsHost, Accuracy)
+GPU_TEST_P(ResizeSameAsHost, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
 
@@ -224,7 +224,7 @@ PARAM_TEST_CASE(ResizeNPP, cv::gpu::DeviceInfo, MatType, double, Interpolation)
     }
 };
 
-TEST_P(ResizeNPP, Accuracy)
+GPU_TEST_P(ResizeNPP, Accuracy)
 {
     cv::Mat src = readImageType("stereobp/aloe-L.png", type);
     ASSERT_FALSE(src.empty());
diff --git a/modules/gpu/test/test_softcascade.cpp b/modules/gpu/test/test_softcascade.cpp
index cc397404a0..9cc1a5e397 100644
--- a/modules/gpu/test/test_softcascade.cpp
+++ b/modules/gpu/test/test_softcascade.cpp
@@ -40,14 +40,14 @@
 //
 //M*/
 
-#include <test_precomp.hpp>
-#include <time.h>
+#include "test_precomp.hpp"
 
 #ifdef HAVE_CUDA
+
 using cv::gpu::GpuMat;
 
 // show detection results on input image with cv::imshow
-// #define SHOW_DETECTIONS
+//#define SHOW_DETECTIONS
 
 #if defined SHOW_DETECTIONS
 # define SHOW(res)           \
@@ -57,22 +57,22 @@ using cv::gpu::GpuMat;
 # define SHOW(res)
 #endif
 
-#define GPU_TEST_P(fixture, name, params)                         \
-    class fixture##_##name : public fixture {                     \
-     public:                                                      \
-      fixture##_##name() {}                                       \
-     protected:                                                   \
-      virtual void body();                                        \
-    };                                                            \
-    TEST_P(fixture##_##name, name /*none*/){ body();}             \
-    INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params);  \
-    void fixture##_##name::body()
+TEST(SCascadeTest, readCascade)
+{
+    std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
+    cv::gpu::SCascade cascade;
 
-namespace {
+    cv::FileStorage fs(xml, cv::FileStorage::READ);
+    ASSERT_TRUE(fs.isOpened());
+
+    ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
+}
 
+namespace
+{
     typedef cv::gpu::SCascade::Detection Detection;
 
-    static cv::Rect getFromTable(int idx)
+    cv::Rect getFromTable(int idx)
     {
         static const cv::Rect rois[] =
         {
@@ -92,16 +92,16 @@ namespace {
         return rois[idx];
     }
 
-    static std::string itoa(long i)
+    std::string itoa(long i)
     {
         static char s[65];
         sprintf(s, "%ld", i);
         return std::string(s);
     }
 
-    static void print(std::ostream &out, const Detection& d)
+    void print(std::ostream &out, const Detection& d)
     {
-#if defined SHOW_DETECTIONS
+    #if defined SHOW_DETECTIONS
         out << "\x1b[32m[ detection]\x1b[0m ("
             << std::setw(4)  << d.x
             << " "
@@ -113,22 +113,22 @@ namespace {
             << ") "
             << std::setw(12) << d.confidence
             <<  std::endl;
-#else
+    #else
         (void)out; (void)d;
-#endif
+    #endif
     }
 
-    static void printTotal(std::ostream &out, int detbytes)
+    void printTotal(std::ostream &out, int detbytes)
     {
-#if defined SHOW_DETECTIONS
+    #if defined SHOW_DETECTIONS
         out << "\x1b[32m[          ]\x1b[0m Total detections " << (detbytes / sizeof(Detection)) << std::endl;
-#else
+    #else
         (void)out; (void)detbytes;
-#endif
+    #endif
     }
 
 #if defined SHOW_DETECTIONS
-    static std::string getImageName(int level)
+    std::string getImageName(int level)
     {
         time_t rawtime;
         struct tm * timeinfo;
@@ -141,7 +141,7 @@ namespace {
         return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
     }
 
-    static void writeResult(const cv::Mat& result, const int level)
+    void writeResult(const cv::Mat& result, const int level)
     {
         std::string path = cv::tempfile(getImageName(level).c_str());
         cv::imwrite(path, result);
@@ -150,13 +150,11 @@ namespace {
 #endif
 }
 
-typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestRoi;
-GPU_TEST_P(SCascadeTestRoi, detect,
-    testing::Combine(
-        ALL_DEVICES,
-        testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
-        testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
-        testing::Range(0, 5)))
+PARAM_TEST_CASE(SCascadeTestRoi, cv::gpu::DeviceInfo, std::string, std::string, int)
+{
+};
+
+GPU_TEST_P(SCascadeTestRoi, Detect)
 {
     cv::gpu::setDevice(GET_PARAM(0).deviceID());
     cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
@@ -202,26 +200,24 @@ GPU_TEST_P(SCascadeTestRoi, detect,
     }
 
     SHOW(result);
-
 }
 
-TEST(SCascadeTest, readCascade)
-{
-    std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
-    cv::gpu::SCascade cascade;
-
-    cv::FileStorage fs(xml, cv::FileStorage::READ);
-    ASSERT_TRUE(fs.isOpened());
+INSTANTIATE_TEST_CASE_P(GPU_SoftCascade, SCascadeTestRoi, testing::Combine(
+    ALL_DEVICES,
+    testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
+    testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
+    testing::Range(0, 5)));
 
-    ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
-}
+struct SCascadeTestAll : testing::TestWithParam<cv::gpu::DeviceInfo>
+{
+    virtual void SetUp()
+    {
+        cv::gpu::setDevice(GetParam().deviceID());
+    }
+};
 
-typedef ::testing::TestWithParam<cv::gpu::DeviceInfo > SCascadeTestAll;
-GPU_TEST_P(SCascadeTestAll, detect,
-        ALL_DEVICES
-        )
+GPU_TEST_P(SCascadeTestAll, detect)
 {
-    cv::gpu::setDevice(GetParam().deviceID());
     std::string xml =  cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
     cv::gpu::SCascade cascade;
 
@@ -239,20 +235,16 @@ GPU_TEST_P(SCascadeTestAll, detect,
     GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2));
     sub.setTo(cv::Scalar::all(1));
 
-    objectBoxes.setTo(0);
     cascade.detect(colored, rois, objectBoxes);
 
     typedef cv::gpu::SCascade::Detection Detection;
     cv::Mat detections(objectBoxes);
     int a = *(detections.ptr<int>(0));
-    ASSERT_EQ(a ,2448);
+    ASSERT_EQ(a, 2448);
 }
 
-GPU_TEST_P(SCascadeTestAll, detectOnIntegral,
-        ALL_DEVICES
-        )
+GPU_TEST_P(SCascadeTestAll, detectOnIntegral)
 {
-    cv::gpu::setDevice(GetParam().deviceID());
     std::string xml =  cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
     cv::gpu::SCascade cascade;
 
@@ -283,15 +275,11 @@ GPU_TEST_P(SCascadeTestAll, detectOnIntegral,
     typedef cv::gpu::SCascade::Detection Detection;
     cv::Mat detections(objectBoxes);
     int a = *(detections.ptr<int>(0));
-
-    ASSERT_EQ( a ,1024);
+    ASSERT_EQ(a, 1024);
 }
 
-GPU_TEST_P(SCascadeTestAll, detectStream,
-        ALL_DEVICES
-        )
+GPU_TEST_P(SCascadeTestAll, detectStream)
 {
-    cv::gpu::setDevice(GetParam().deviceID());
     std::string xml =  cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
     cv::gpu::SCascade cascade;
 
@@ -318,8 +306,9 @@ GPU_TEST_P(SCascadeTestAll, detectStream,
     typedef cv::gpu::SCascade::Detection Detection;
     cv::Mat detections(objectBoxes);
     int a = *(detections.ptr<int>(0));
-    ASSERT_EQ(a ,2448);
+    ASSERT_EQ(a, 2448);
 }
 
+INSTANTIATE_TEST_CASE_P(GPU_SoftCascade, SCascadeTestAll, ALL_DEVICES);
 
-#endif
\ No newline at end of file
+#endif
diff --git a/modules/gpu/test/test_threshold.cpp b/modules/gpu/test/test_threshold.cpp
index c569210456..43e651ad81 100644
--- a/modules/gpu/test/test_threshold.cpp
+++ b/modules/gpu/test/test_threshold.cpp
@@ -66,7 +66,7 @@ PARAM_TEST_CASE(Threshold, cv::gpu::DeviceInfo, cv::Size, MatType, ThreshOp, Use
     }
 };
 
-TEST_P(Threshold, Accuracy)
+GPU_TEST_P(Threshold, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     double maxVal = randomDouble(20.0, 127.0);
diff --git a/modules/gpu/test/test_video.cpp b/modules/gpu/test/test_video.cpp
index c56e3d2ebd..4cbbf0bf89 100644
--- a/modules/gpu/test/test_video.cpp
+++ b/modules/gpu/test/test_video.cpp
@@ -43,946 +43,6 @@
 
 #ifdef HAVE_CUDA
 
-//#define DUMP
-
-//////////////////////////////////////////////////////
-// BroxOpticalFlow
-
-#define BROX_OPTICAL_FLOW_DUMP_FILE            "opticalflow/brox_optical_flow.bin"
-#define BROX_OPTICAL_FLOW_DUMP_FILE_CC20       "opticalflow/brox_optical_flow_cc20.bin"
-
-struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
-{
-    cv::gpu::DeviceInfo devInfo;
-
-    virtual void SetUp()
-    {
-        devInfo = GetParam();
-
-        cv::gpu::setDevice(devInfo.deviceID());
-    }
-};
-
-TEST_P(BroxOpticalFlow, Regression)
-{
-    cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
-    ASSERT_FALSE(frame0.empty());
-
-    cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
-    ASSERT_FALSE(frame1.empty());
-
-    cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
-                                  10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
-
-    cv::gpu::GpuMat u;
-    cv::gpu::GpuMat v;
-    brox(loadMat(frame0), loadMat(frame1), u, v);
-
-#ifndef DUMP
-    std::string fname(cvtest::TS::ptr()->get_data_path());
-    if (devInfo.majorVersion() >= 2)
-        fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
-    else
-        fname += BROX_OPTICAL_FLOW_DUMP_FILE;
-
-    std::ifstream f(fname.c_str(), std::ios_base::binary);
-
-    int rows, cols;
-
-    f.read((char*)&rows, sizeof(rows));
-    f.read((char*)&cols, sizeof(cols));
-
-    cv::Mat u_gold(rows, cols, CV_32FC1);
-
-    for (int i = 0; i < u_gold.rows; ++i)
-        f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
-
-    cv::Mat v_gold(rows, cols, CV_32FC1);
-
-    for (int i = 0; i < v_gold.rows; ++i)
-        f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
-
-    EXPECT_MAT_NEAR(u_gold, u, 0);
-    EXPECT_MAT_NEAR(v_gold, v, 0);
-#else
-    std::string fname(cvtest::TS::ptr()->get_data_path());
-    if (devInfo.majorVersion() >= 2)
-        fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
-    else
-        fname += BROX_OPTICAL_FLOW_DUMP_FILE;
-
-    std::ofstream f(fname.c_str(), std::ios_base::binary);
-
-    f.write((char*)&u.rows, sizeof(u.rows));
-    f.write((char*)&u.cols, sizeof(u.cols));
-
-    cv::Mat h_u(u);
-    cv::Mat h_v(v);
-
-    for (int i = 0; i < u.rows; ++i)
-        f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
-
-    for (int i = 0; i < v.rows; ++i)
-        f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
-
-#endif
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
-
-//////////////////////////////////////////////////////
-// GoodFeaturesToTrack
-
-IMPLEMENT_PARAM_CLASS(MinDistance, double)
-
-PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
-{
-    cv::gpu::DeviceInfo devInfo;
-    double minDistance;
-
-    virtual void SetUp()
-    {
-        devInfo = GET_PARAM(0);
-        minDistance = GET_PARAM(1);
-
-        cv::gpu::setDevice(devInfo.deviceID());
-    }
-};
-
-TEST_P(GoodFeaturesToTrack, Accuracy)
-{
-    cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(image.empty());
-
-    int maxCorners = 1000;
-    double qualityLevel = 0.01;
-
-    cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
-
-    if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
-    {
-        try
-        {
-            cv::gpu::GpuMat d_pts;
-            detector(loadMat(image), d_pts);
-        }
-        catch (const cv::Exception& e)
-        {
-            ASSERT_EQ(CV_StsNotImplemented, e.code);
-        }
-    }
-    else
-    {
-        cv::gpu::GpuMat d_pts;
-        detector(loadMat(image), d_pts);
-
-        std::vector<cv::Point2f> pts(d_pts.cols);
-        cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]);
-        d_pts.download(pts_mat);
-
-        std::vector<cv::Point2f> pts_gold;
-        cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
-
-        ASSERT_EQ(pts_gold.size(), pts.size());
-
-        size_t mistmatch = 0;
-        for (size_t i = 0; i < pts.size(); ++i)
-        {
-            cv::Point2i a = pts_gold[i];
-            cv::Point2i b = pts[i];
-
-            bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
-
-            if (!eq)
-                ++mistmatch;
-        }
-
-        double bad_ratio = static_cast<double>(mistmatch) / pts.size();
-
-        ASSERT_LE(bad_ratio, 0.01);
-    }
-}
-
-TEST_P(GoodFeaturesToTrack, EmptyCorners)
-{
-    int maxCorners = 1000;
-    double qualityLevel = 0.01;
-
-    cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
-
-    cv::gpu::GpuMat src(100, 100, CV_8UC1, cv::Scalar::all(0));
-    cv::gpu::GpuMat corners(1, maxCorners, CV_32FC2);
-
-    detector(src, corners);
-
-    ASSERT_TRUE( corners.empty() );
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
-    ALL_DEVICES,
-    testing::Values(MinDistance(0.0), MinDistance(3.0))));
-
-//////////////////////////////////////////////////////
-// PyrLKOpticalFlow
-
-IMPLEMENT_PARAM_CLASS(UseGray, bool)
-
-PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
-{
-    cv::gpu::DeviceInfo devInfo;
-    bool useGray;
-
-    virtual void SetUp()
-    {
-        devInfo = GET_PARAM(0);
-        useGray = GET_PARAM(1);
-
-        cv::gpu::setDevice(devInfo.deviceID());
-    }
-};
-
-TEST_P(PyrLKOpticalFlow, Sparse)
-{
-    cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
-    ASSERT_FALSE(frame0.empty());
-
-    cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
-    ASSERT_FALSE(frame1.empty());
-
-    cv::Mat gray_frame;
-    if (useGray)
-        gray_frame = frame0;
-    else
-        cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
-
-    std::vector<cv::Point2f> pts;
-    cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
-
-    cv::gpu::GpuMat d_pts;
-    cv::Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void*)&pts[0]);
-    d_pts.upload(pts_mat);
-
-    cv::gpu::PyrLKOpticalFlow pyrLK;
-
-    cv::gpu::GpuMat d_nextPts;
-    cv::gpu::GpuMat d_status;
-    pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
-
-    std::vector<cv::Point2f> nextPts(d_nextPts.cols);
-    cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
-    d_nextPts.download(nextPts_mat);
-
-    std::vector<unsigned char> status(d_status.cols);
-    cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
-    d_status.download(status_mat);
-
-    std::vector<cv::Point2f> nextPts_gold;
-    std::vector<unsigned char> status_gold;
-    cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
-
-    ASSERT_EQ(nextPts_gold.size(), nextPts.size());
-    ASSERT_EQ(status_gold.size(), status.size());
-
-    size_t mistmatch = 0;
-    for (size_t i = 0; i < nextPts.size(); ++i)
-    {
-        cv::Point2i a = nextPts[i];
-        cv::Point2i b = nextPts_gold[i];
-
-        if (status[i] != status_gold[i])
-        {
-            ++mistmatch;
-            continue;
-        }
-
-        if (status[i])
-        {
-            bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
-
-            if (!eq)
-                ++mistmatch;
-        }
-    }
-
-    double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
-
-    ASSERT_LE(bad_ratio, 0.01);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
-    ALL_DEVICES,
-    testing::Values(UseGray(true), UseGray(false))));
-
-//////////////////////////////////////////////////////
-// FarnebackOpticalFlow
-
-IMPLEMENT_PARAM_CLASS(PyrScale, double)
-IMPLEMENT_PARAM_CLASS(PolyN, int)
-CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN)
-IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
-
-PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
-{
-    cv::gpu::DeviceInfo devInfo;
-    double pyrScale;
-    int polyN;
-    int flags;
-    bool useInitFlow;
-
-    virtual void SetUp()
-    {
-        devInfo = GET_PARAM(0);
-        pyrScale = GET_PARAM(1);
-        polyN = GET_PARAM(2);
-        flags = GET_PARAM(3);
-        useInitFlow = GET_PARAM(4);
-
-        cv::gpu::setDevice(devInfo.deviceID());
-    }
-};
-
-TEST_P(FarnebackOpticalFlow, Accuracy)
-{
-    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame0.empty());
-
-    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame1.empty());
-
-    double polySigma = polyN <= 5 ? 1.1 : 1.5;
-
-    cv::gpu::FarnebackOpticalFlow calc;
-    calc.pyrScale = pyrScale;
-    calc.polyN = polyN;
-    calc.polySigma = polySigma;
-    calc.flags = flags;
-
-    cv::gpu::GpuMat d_flowx, d_flowy;
-    calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
-
-    cv::Mat flow;
-    if (useInitFlow)
-    {
-        cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
-        cv::merge(flowxy, 2, flow);
-    }
-
-    if (useInitFlow)
-    {
-        calc.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
-        calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
-    }
-
-    cv::calcOpticalFlowFarneback(
-        frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize,
-        calc.numIters,  calc.polyN, calc.polySigma, calc.flags);
-
-    std::vector<cv::Mat> flowxy;
-    cv::split(flow, flowxy);
-
-    EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
-    EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
-    ALL_DEVICES,
-    testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
-    testing::Values(PolyN(5), PolyN(7)),
-    testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
-    testing::Values(UseInitFlow(false), UseInitFlow(true))));
-
-struct OpticalFlowNan : public BroxOpticalFlow {};
-
-TEST_P(OpticalFlowNan, Regression)
-{
-    cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
-    ASSERT_FALSE(frame0.empty());
-    cv::Mat r_frame0, r_frame1;
-    cv::resize(frame0, r_frame0, cv::Size(1380,1000));
-
-    cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
-    ASSERT_FALSE(frame1.empty());
-    cv::resize(frame1, r_frame1, cv::Size(1380,1000));
-
-    cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
-                                  5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/);
-
-    cv::gpu::GpuMat u;
-    cv::gpu::GpuMat v;
-    brox(loadMat(r_frame0), loadMat(r_frame1), u, v);
-
-    cv::Mat h_u, h_v;
-    u.download(h_u);
-    v.download(h_v);
-    EXPECT_TRUE(cv::checkRange(h_u));
-    EXPECT_TRUE(cv::checkRange(h_v));
-};
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowNan, ALL_DEVICES);
-
-//////////////////////////////////////////////////////
-// OpticalFlowDual_TVL1
-
-PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::gpu::DeviceInfo, UseRoi)
-{
-};
-
-TEST_P(OpticalFlowDual_TVL1, Accuracy)
-{
-    cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
-    cv::gpu::setDevice(devInfo.deviceID());
-
-    const bool useRoi = GET_PARAM(1);
-
-    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame0.empty());
-
-    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame1.empty());
-
-    cv::gpu::OpticalFlowDual_TVL1_GPU d_alg;
-    cv::gpu::GpuMat d_flowx = createMat(frame0.size(), CV_32FC1, useRoi);
-    cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi);
-    d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy);
-
-    cv::OpticalFlowDual_TVL1 alg;
-    cv::Mat flow;
-    alg(frame0, frame1, flow);
-    cv::Mat gold[2];
-    cv::split(flow, gold);
-
-    EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3);
-    EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
-    ALL_DEVICES,
-    WHOLE_SUBMAT));
-
-//////////////////////////////////////////////////////
-// OpticalFlowBM
-
-void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
-                       cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
-                       cv::Mat& velx, cv::Mat& vely)
-{
-    cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
-
-    velx.create(sz, CV_32FC1);
-    vely.create(sz, CV_32FC1);
-
-    CvMat cvprev = prev;
-    CvMat cvcurr = curr;
-
-    CvMat cvvelx = velx;
-    CvMat cvvely = vely;
-
-    cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
-}
-
-struct OpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
-{
-};
-
-TEST_P(OpticalFlowBM, Accuracy)
-{
-    cv::gpu::DeviceInfo devInfo = GetParam();
-    cv::gpu::setDevice(devInfo.deviceID());
-
-    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame0.empty());
-
-    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame1.empty());
-
-    cv::Size block_size(16, 16);
-    cv::Size shift_size(1, 1);
-    cv::Size max_range(16, 16);
-
-    cv::gpu::GpuMat d_velx, d_vely, buf;
-    cv::gpu::calcOpticalFlowBM(loadMat(frame0), loadMat(frame1),
-                               block_size, shift_size, max_range, false,
-                               d_velx, d_vely, buf);
-
-    cv::Mat velx, vely;
-    calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
-
-    EXPECT_MAT_NEAR(velx, d_velx, 0);
-    EXPECT_MAT_NEAR(vely, d_vely, 0);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowBM, ALL_DEVICES);
-
-//////////////////////////////////////////////////////
-// FastOpticalFlowBM
-
-static void FastOpticalFlowBM_gold(const cv::Mat_<uchar>& I0, const cv::Mat_<uchar>& I1, cv::Mat_<float>& velx, cv::Mat_<float>& vely, int search_window, int block_window)
-{
-    velx.create(I0.size());
-    vely.create(I0.size());
-
-    int search_radius = search_window / 2;
-    int block_radius = block_window / 2;
-
-    for (int y = 0; y < I0.rows; ++y)
-    {
-        for (int x = 0; x < I0.cols; ++x)
-        {
-            int bestDist = std::numeric_limits<int>::max();
-            int bestDx = 0;
-            int bestDy = 0;
-
-            for (int dy = -search_radius; dy <= search_radius; ++dy)
-            {
-                for (int dx = -search_radius; dx <= search_radius; ++dx)
-                {
-                    int dist = 0;
-
-                    for (int by = -block_radius; by <= block_radius; ++by)
-                    {
-                        for (int bx = -block_radius; bx <= block_radius; ++bx)
-                        {
-                            int I0_val = I0(cv::borderInterpolate(y + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + bx, I0.cols, cv::BORDER_DEFAULT));
-                            int I1_val = I1(cv::borderInterpolate(y + dy + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + dx + bx, I0.cols, cv::BORDER_DEFAULT));
-
-                            dist += std::abs(I0_val - I1_val);
-                        }
-                    }
-
-                    if (dist < bestDist)
-                    {
-                        bestDist = dist;
-                        bestDx = dx;
-                        bestDy = dy;
-                    }
-                }
-            }
-
-            velx(y, x) = (float) bestDx;
-            vely(y, x) = (float) bestDy;
-        }
-    }
-}
-
-static double calc_rmse(const cv::Mat_<float>& flow1, const cv::Mat_<float>& flow2)
-{
-    double sum = 0.0;
-
-    for (int y = 0; y < flow1.rows; ++y)
-    {
-        for (int x = 0; x < flow1.cols; ++x)
-        {
-            double diff = flow1(y, x) - flow2(y, x);
-            sum += diff * diff;
-        }
-    }
-
-    return std::sqrt(sum / flow1.size().area());
-}
-
-struct FastOpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
-{
-};
-
-TEST_P(FastOpticalFlowBM, Accuracy)
-{
-    const double MAX_RMSE = 0.6;
-
-    int search_window = 15;
-    int block_window = 5;
-
-    cv::gpu::DeviceInfo devInfo = GetParam();
-    cv::gpu::setDevice(devInfo.deviceID());
-
-    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame0.empty());
-
-    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
-    ASSERT_FALSE(frame1.empty());
-
-    cv::Size smallSize(320, 240);
-    cv::Mat frame0_small;
-    cv::Mat frame1_small;
-
-    cv::resize(frame0, frame0_small, smallSize);
-    cv::resize(frame1, frame1_small, smallSize);
-
-    cv::gpu::GpuMat d_flowx;
-    cv::gpu::GpuMat d_flowy;
-    cv::gpu::FastOpticalFlowBM fastBM;
-
-    fastBM(loadMat(frame0_small), loadMat(frame1_small), d_flowx, d_flowy, search_window, block_window);
-
-    cv::Mat_<float> flowx;
-    cv::Mat_<float> flowy;
-    FastOpticalFlowBM_gold(frame0_small, frame1_small, flowx, flowy, search_window, block_window);
-
-    double err;
-
-    err = calc_rmse(flowx, cv::Mat(d_flowx));
-    EXPECT_LE(err, MAX_RMSE);
-
-    err = calc_rmse(flowy, cv::Mat(d_flowy));
-    EXPECT_LE(err, MAX_RMSE);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, FastOpticalFlowBM, ALL_DEVICES);
-
-//////////////////////////////////////////////////////
-// FGDStatModel
-
-namespace cv
-{
-    template<> void Ptr<CvBGStatModel>::delete_obj()
-    {
-        cvReleaseBGStatModel(&obj);
-    }
-}
-
-PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels)
-{
-    cv::gpu::DeviceInfo devInfo;
-    std::string inputFile;
-    int out_cn;
-
-    virtual void SetUp()
-    {
-        devInfo = GET_PARAM(0);
-        cv::gpu::setDevice(devInfo.deviceID());
-
-        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
-
-        out_cn = GET_PARAM(2);
-    }
-};
-
-TEST_P(FGDStatModel, Update)
-{
-    cv::VideoCapture cap(inputFile);
-    ASSERT_TRUE(cap.isOpened());
-
-    cv::Mat frame;
-    cap >> frame;
-    ASSERT_FALSE(frame.empty());
-
-    IplImage ipl_frame = frame;
-    cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
-
-    cv::gpu::GpuMat d_frame(frame);
-    cv::gpu::FGDStatModel d_model(out_cn);
-    d_model.create(d_frame);
-
-    cv::Mat h_background;
-    cv::Mat h_foreground;
-    cv::Mat h_background3;
-
-    cv::Mat backgroundDiff;
-    cv::Mat foregroundDiff;
-
-    for (int i = 0; i < 5; ++i)
-    {
-        cap >> frame;
-        ASSERT_FALSE(frame.empty());
-
-        ipl_frame = frame;
-        int gold_count = cvUpdateBGStatModel(&ipl_frame, model);
-
-        d_frame.upload(frame);
-
-        int count = d_model.update(d_frame);
-
-        ASSERT_EQ(gold_count, count);
-
-        cv::Mat gold_background(model->background);
-        cv::Mat gold_foreground(model->foreground);
-
-        if (out_cn == 3)
-            d_model.background.download(h_background3);
-        else
-        {
-            d_model.background.download(h_background);
-            cv::cvtColor(h_background, h_background3, cv::COLOR_BGRA2BGR);
-        }
-        d_model.foreground.download(h_foreground);
-
-        ASSERT_MAT_NEAR(gold_background, h_background3, 1.0);
-        ASSERT_MAT_NEAR(gold_foreground, h_foreground, 0.0);
-    }
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, FGDStatModel, testing::Combine(
-    ALL_DEVICES,
-    testing::Values(std::string("768x576.avi")),
-    testing::Values(Channels(3), Channels(4))));
-
-//////////////////////////////////////////////////////
-// MOG
-
-IMPLEMENT_PARAM_CLASS(LearningRate, double)
-
-PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi)
-{
-    cv::gpu::DeviceInfo devInfo;
-    std::string inputFile;
-    bool useGray;
-    double learningRate;
-    bool useRoi;
-
-    virtual void SetUp()
-    {
-        devInfo = GET_PARAM(0);
-        cv::gpu::setDevice(devInfo.deviceID());
-
-        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
-
-        useGray = GET_PARAM(2);
-
-        learningRate = GET_PARAM(3);
-
-        useRoi = GET_PARAM(4);
-    }
-};
-
-TEST_P(MOG, Update)
-{
-    cv::VideoCapture cap(inputFile);
-    ASSERT_TRUE(cap.isOpened());
-
-    cv::Mat frame;
-    cap >> frame;
-    ASSERT_FALSE(frame.empty());
-
-    cv::gpu::MOG_GPU mog;
-    cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
-
-    cv::BackgroundSubtractorMOG mog_gold;
-    cv::Mat foreground_gold;
-
-    for (int i = 0; i < 10; ++i)
-    {
-        cap >> frame;
-        ASSERT_FALSE(frame.empty());
-
-        if (useGray)
-        {
-            cv::Mat temp;
-            cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
-            cv::swap(temp, frame);
-        }
-
-        mog(loadMat(frame, useRoi), foreground, (float)learningRate);
-
-        mog_gold(frame, foreground_gold, learningRate);
-
-        ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0);
-    }
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, MOG, testing::Combine(
-    ALL_DEVICES,
-    testing::Values(std::string("768x576.avi")),
-    testing::Values(UseGray(true), UseGray(false)),
-    testing::Values(LearningRate(0.0), LearningRate(0.01)),
-    WHOLE_SUBMAT));
-
-//////////////////////////////////////////////////////
-// MOG2
-
-PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, UseRoi)
-{
-    cv::gpu::DeviceInfo devInfo;
-    std::string inputFile;
-    bool useGray;
-    bool useRoi;
-
-    virtual void SetUp()
-    {
-        devInfo = GET_PARAM(0);
-        cv::gpu::setDevice(devInfo.deviceID());
-
-        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
-
-        useGray = GET_PARAM(2);
-
-        useRoi = GET_PARAM(3);
-    }
-};
-
-TEST_P(MOG2, Update)
-{
-    cv::VideoCapture cap(inputFile);
-    ASSERT_TRUE(cap.isOpened());
-
-    cv::Mat frame;
-    cap >> frame;
-    ASSERT_FALSE(frame.empty());
-
-    cv::gpu::MOG2_GPU mog2;
-    cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
-
-    cv::BackgroundSubtractorMOG2 mog2_gold;
-    cv::Mat foreground_gold;
-
-    for (int i = 0; i < 10; ++i)
-    {
-        cap >> frame;
-        ASSERT_FALSE(frame.empty());
-
-        if (useGray)
-        {
-            cv::Mat temp;
-            cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
-            cv::swap(temp, frame);
-        }
-
-        mog2(loadMat(frame, useRoi), foreground);
-
-        mog2_gold(frame, foreground_gold);
-
-        double norm = cv::norm(foreground_gold, cv::Mat(foreground), cv::NORM_L1);
-
-        norm /= foreground_gold.size().area();
-
-        ASSERT_LE(norm, 0.09);
-    }
-}
-
-TEST_P(MOG2, getBackgroundImage)
-{
-    if (useGray)
-        return;
-
-    cv::VideoCapture cap(inputFile);
-    ASSERT_TRUE(cap.isOpened());
-
-    cv::Mat frame;
-
-    cv::gpu::MOG2_GPU mog2;
-    cv::gpu::GpuMat foreground;
-
-    cv::BackgroundSubtractorMOG2 mog2_gold;
-    cv::Mat foreground_gold;
-
-    for (int i = 0; i < 10; ++i)
-    {
-        cap >> frame;
-        ASSERT_FALSE(frame.empty());
-
-        mog2(loadMat(frame, useRoi), foreground);
-
-        mog2_gold(frame, foreground_gold);
-    }
-
-    cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi);
-    mog2.getBackgroundImage(background);
-
-    cv::Mat background_gold;
-    mog2_gold.getBackgroundImage(background_gold);
-
-    ASSERT_MAT_NEAR(background_gold, background, 0);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, MOG2, testing::Combine(
-    ALL_DEVICES,
-    testing::Values(std::string("768x576.avi")),
-    testing::Values(UseGray(true), UseGray(false)),
-    WHOLE_SUBMAT));
-
-//////////////////////////////////////////////////////
-// VIBE
-
-PARAM_TEST_CASE(VIBE, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
-{
-};
-
-TEST_P(VIBE, Accuracy)
-{
-    const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
-    cv::gpu::setDevice(devInfo.deviceID());
-    const cv::Size size = GET_PARAM(1);
-    const int type = GET_PARAM(2);
-    const bool useRoi = GET_PARAM(3);
-
-    const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
-
-    cv::Mat frame = randomMat(size, type, 0.0, 100);
-    cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
-
-    cv::gpu::VIBE_GPU vibe;
-    cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
-    vibe.initialize(d_frame);
-
-    for (int i = 0; i < 20; ++i)
-        vibe(d_frame, d_fgmask);
-
-    frame = randomMat(size, type, 160, 255);
-    d_frame = loadMat(frame, useRoi);
-    vibe(d_frame, d_fgmask);
-
-    // now fgmask should be entirely foreground
-    ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, VIBE, testing::Combine(
-    ALL_DEVICES,
-    DIFFERENT_SIZES,
-    testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4)),
-    WHOLE_SUBMAT));
-
-//////////////////////////////////////////////////////
-// GMG
-
-PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
-{
-};
-
-TEST_P(GMG, Accuracy)
-{
-    const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
-    cv::gpu::setDevice(devInfo.deviceID());
-    const cv::Size size = GET_PARAM(1);
-    const int depth = GET_PARAM(2);
-    const int channels = GET_PARAM(3);
-    const bool useRoi = GET_PARAM(4);
-
-    const int type = CV_MAKE_TYPE(depth, channels);
-
-    const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0));
-    const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
-
-    cv::Mat frame = randomMat(size, type, 0, 100);
-    cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
-
-    cv::gpu::GMG_GPU gmg;
-    gmg.numInitializationFrames = 5;
-    gmg.smoothingRadius = 0;
-    gmg.initialize(d_frame.size(), 0, 255);
-
-    cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
-
-    for (int i = 0; i < gmg.numInitializationFrames; ++i)
-    {
-        gmg(d_frame, d_fgmask);
-
-        // fgmask should be entirely background during training
-        ASSERT_MAT_NEAR(zeros, d_fgmask, 0);
-    }
-
-    frame = randomMat(size, type, 160, 255);
-    d_frame = loadMat(frame, useRoi);
-    gmg(d_frame, d_fgmask);
-
-    // now fgmask should be entirely foreground
-    ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
-}
-
-INSTANTIATE_TEST_CASE_P(GPU_Video, GMG, testing::Combine(
-    ALL_DEVICES,
-    DIFFERENT_SIZES,
-    testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)),
-    testing::Values(Channels(1), Channels(3), Channels(4)),
-    WHOLE_SUBMAT));
-
 #ifdef WIN32
 
 //////////////////////////////////////////////////////
@@ -993,8 +53,6 @@ PARAM_TEST_CASE(VideoWriter, cv::gpu::DeviceInfo, std::string)
     cv::gpu::DeviceInfo devInfo;
     std::string inputFile;
 
-    std::string outputFile;
-
     virtual void SetUp()
     {
         devInfo = GET_PARAM(0);
@@ -1002,17 +60,17 @@ PARAM_TEST_CASE(VideoWriter, cv::gpu::DeviceInfo, std::string)
 
         cv::gpu::setDevice(devInfo.deviceID());
 
-        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + inputFile;
-        outputFile = cv::tempfile(".avi");
+        inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + std::string("video/") + inputFile;
     }
 };
 
-TEST_P(VideoWriter, Regression)
+GPU_TEST_P(VideoWriter, Regression)
 {
+    std::string outputFile = cv::tempfile(".avi");
     const double FPS = 25.0;
 
     cv::VideoCapture reader(inputFile);
-    ASSERT_TRUE( reader.isOpened() );
+    ASSERT_TRUE(reader.isOpened());
 
     cv::gpu::VideoWriter_GPU d_writer;
 
@@ -1036,12 +94,12 @@ TEST_P(VideoWriter, Regression)
     d_writer.close();
 
     reader.open(outputFile);
-    ASSERT_TRUE( reader.isOpened() );
+    ASSERT_TRUE(reader.isOpened());
 
     for (int i = 0; i < 5; ++i)
     {
         reader >> frame;
-        ASSERT_FALSE( frame.empty() );
+        ASSERT_FALSE(frame.empty());
     }
 }
 
@@ -1068,21 +126,21 @@ PARAM_TEST_CASE(VideoReader, cv::gpu::DeviceInfo, std::string)
     }
 };
 
-TEST_P(VideoReader, Regression)
+GPU_TEST_P(VideoReader, Regression)
 {
     cv::gpu::VideoReader_GPU reader(inputFile);
-    ASSERT_TRUE( reader.isOpened() );
+    ASSERT_TRUE(reader.isOpened());
 
     cv::gpu::GpuMat frame;
 
     for (int i = 0; i < 10; ++i)
     {
-        ASSERT_TRUE( reader.read(frame) );
-        ASSERT_FALSE( frame.empty() );
+        ASSERT_TRUE(reader.read(frame));
+        ASSERT_FALSE(frame.empty());
     }
 
     reader.close();
-    ASSERT_FALSE( reader.isOpened() );
+    ASSERT_FALSE(reader.isOpened());
 }
 
 INSTANTIATE_TEST_CASE_P(GPU_Video, VideoReader, testing::Combine(
diff --git a/modules/gpu/test/test_warp_affine.cpp b/modules/gpu/test/test_warp_affine.cpp
index 065c6755ef..de8bc5d795 100644
--- a/modules/gpu/test/test_warp_affine.cpp
+++ b/modules/gpu/test/test_warp_affine.cpp
@@ -48,6 +48,7 @@ namespace
     cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
     {
         cv::Mat M(2, 3, CV_64FC1);
+
         M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
         M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) =  std::cos(angle); M.at<double>(1, 2) = 0.0;
 
@@ -74,22 +75,23 @@ PARAM_TEST_CASE(BuildWarpAffineMaps, cv::gpu::DeviceInfo, cv::Size, Inverse)
     }
 };
 
-TEST_P(BuildWarpAffineMaps, Accuracy)
+GPU_TEST_P(BuildWarpAffineMaps, Accuracy)
 {
     cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
+    cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
+
     cv::gpu::GpuMat xmap, ymap;
     cv::gpu::buildWarpAffineMaps(M, inverse, size, xmap, ymap);
 
     int interpolation = cv::INTER_NEAREST;
     int borderMode = cv::BORDER_CONSTANT;
+    int flags = interpolation;
+    if (inverse)
+        flags |= cv::WARP_INVERSE_MAP;
 
-    cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
     cv::Mat dst;
     cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
 
-    int flags = interpolation;
-    if (inverse)
-        flags |= cv::WARP_INVERSE_MAP;
     cv::Mat dst_gold;
     cv::warpAffine(src, dst_gold, M, size, flags, borderMode);
 
@@ -199,7 +201,7 @@ PARAM_TEST_CASE(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Int
     }
 };
 
-TEST_P(WarpAffine, Accuracy)
+GPU_TEST_P(WarpAffine, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
@@ -247,7 +249,7 @@ PARAM_TEST_CASE(WarpAffineNPP, cv::gpu::DeviceInfo, MatType, Inverse, Interpolat
     }
 };
 
-TEST_P(WarpAffineNPP, Accuracy)
+GPU_TEST_P(WarpAffineNPP, Accuracy)
 {
     cv::Mat src = readImageType("stereobp/aloe-L.png", type);
     cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
diff --git a/modules/gpu/test/test_warp_perspective.cpp b/modules/gpu/test/test_warp_perspective.cpp
index 95c089bb93..534edc0d2b 100644
--- a/modules/gpu/test/test_warp_perspective.cpp
+++ b/modules/gpu/test/test_warp_perspective.cpp
@@ -48,6 +48,7 @@ namespace
     cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
     {
         cv::Mat M(3, 3, CV_64FC1);
+
         M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
         M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) =  std::cos(angle); M.at<double>(1, 2) = 0.0;
         M.at<double>(2, 0) = 0.0            ; M.at<double>(2, 1) =  0.0            ; M.at<double>(2, 2) = 1.0;
@@ -75,21 +76,25 @@ PARAM_TEST_CASE(BuildWarpPerspectiveMaps, cv::gpu::DeviceInfo, cv::Size, Inverse
     }
 };
 
-TEST_P(BuildWarpPerspectiveMaps, Accuracy)
+GPU_TEST_P(BuildWarpPerspectiveMaps, Accuracy)
 {
     cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
+
     cv::gpu::GpuMat xmap, ymap;
     cv::gpu::buildWarpPerspectiveMaps(M, inverse, size, xmap, ymap);
 
     cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
-    cv::Mat dst;
-    cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), cv::INTER_NEAREST, cv::BORDER_CONSTANT);
-
-    int flags = cv::INTER_NEAREST;
+    int interpolation = cv::INTER_NEAREST;
+    int borderMode = cv::BORDER_CONSTANT;
+    int flags = interpolation;
     if (inverse)
         flags |= cv::WARP_INVERSE_MAP;
+
+    cv::Mat dst;
+    cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
+
     cv::Mat dst_gold;
-    cv::warpPerspective(src, dst_gold, M, size, flags, cv::BORDER_CONSTANT);
+    cv::warpPerspective(src, dst_gold, M, size, flags, borderMode);
 
     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 }
@@ -199,7 +204,7 @@ PARAM_TEST_CASE(WarpPerspective, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse
     }
 };
 
-TEST_P(WarpPerspective, Accuracy)
+GPU_TEST_P(WarpPerspective, Accuracy)
 {
     cv::Mat src = randomMat(size, type);
     cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
@@ -247,7 +252,7 @@ PARAM_TEST_CASE(WarpPerspectiveNPP, cv::gpu::DeviceInfo, MatType, Inverse, Inter
     }
 };
 
-TEST_P(WarpPerspectiveNPP, Accuracy)
+GPU_TEST_P(WarpPerspectiveNPP, Accuracy)
 {
     cv::Mat src = readImageType("stereobp/aloe-L.png", type);
     cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
diff --git a/modules/gpu/test/utility.cpp b/modules/gpu/test/utility.cpp
index 2a4cebc8d0..88f7963242 100644
--- a/modules/gpu/test/utility.cpp
+++ b/modules/gpu/test/utility.cpp
@@ -67,7 +67,7 @@ double randomDouble(double minVal, double maxVal)
 
 Size randomSize(int minVal, int maxVal)
 {
-    return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
+    return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
 }
 
 Scalar randomScalar(double minVal, double maxVal)
@@ -83,7 +83,7 @@ Mat randomMat(Size size, int type, double minVal, double maxVal)
 //////////////////////////////////////////////////////////////////////
 // GpuMat create
 
-cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi)
+GpuMat createMat(Size size, int type, bool useRoi)
 {
     Size size0 = size;
 
@@ -122,21 +122,13 @@ Mat readImageType(const std::string& fname, int type)
     if (CV_MAT_CN(type) == 4)
     {
         Mat temp;
-        cvtColor(src, temp, cv::COLOR_BGR2BGRA);
+        cvtColor(src, temp, COLOR_BGR2BGRA);
         swap(src, temp);
     }
     src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
     return src;
 }
 
-//////////////////////////////////////////////////////////////////////
-// Image dumping
-
-void dumpImage(const std::string& fileName, const cv::Mat& image)
-{
-    cv::imwrite(TS::ptr()->get_data_path() + fileName, image);
-}
-
 //////////////////////////////////////////////////////////////////////
 // Gpu devices
 
@@ -156,7 +148,7 @@ void DeviceManager::load(int i)
     devices_.clear();
     devices_.reserve(1);
 
-    ostringstream msg;
+    std::ostringstream msg;
 
     if (i < 0 || i >= getCudaEnabledDeviceCount())
     {
@@ -195,21 +187,39 @@ void DeviceManager::loadAll()
 //////////////////////////////////////////////////////////////////////
 // Additional assertion
 
-Mat getMat(InputArray arr)
+namespace
 {
-    if (arr.kind() == _InputArray::GPU_MAT)
+    template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
     {
-        Mat m;
-        arr.getGpuMat().download(m);
-        return m;
+        const int cn = m.channels();
+
+        std::ostringstream ostr;
+        ostr << "(";
+
+        p.x /= cn;
+
+        ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
+        for (int c = 1; c < m.channels(); ++c)
+        {
+            ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
+        }
+        ostr << ")";
+
+        return ostr.str();
     }
 
-    return arr.getMat();
-}
+    std::string printMatVal(const Mat& m, Point p)
+    {
+        typedef std::string (*func_t)(const Mat& m, Point p);
 
-double checkNorm(InputArray m1, InputArray m2)
-{
-    return norm(getMat(m1), getMat(m2), NORM_INF);
+        static const func_t funcs[] =
+        {
+            printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
+            printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
+        };
+
+        return funcs[m.depth()](m, p);
+    }
 }
 
 void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
@@ -229,8 +239,8 @@ void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minL
 
     for (int y = 0; y < src.rows; ++y)
     {
-        const schar* src_row = src.ptr<signed char>(y);
-        const uchar* mask_row = mask.empty() ? 0 : mask.ptr<unsigned char>(y);
+        const schar* src_row = src.ptr<schar>(y);
+        const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);
 
         for (int x = 0; x < src.cols; ++x)
         {
@@ -260,42 +270,19 @@ void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minL
     if (maxLoc_) *maxLoc_ = maxLoc;
 }
 
-namespace
+Mat getMat(InputArray arr)
 {
-    template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
+    if (arr.kind() == _InputArray::GPU_MAT)
     {
-        const int cn = m.channels();
-
-        ostringstream ostr;
-        ostr << "(";
-
-        p.x /= cn;
-
-        ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
-        for (int c = 1; c < m.channels(); ++c)
-        {
-            ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
-        }
-        ostr << ")";
-
-        return ostr.str();
+        Mat m;
+        arr.getGpuMat().download(m);
+        return m;
     }
 
-    std::string printMatVal(const Mat& m, Point p)
-    {
-        typedef std::string (*func_t)(const Mat& m, Point p);
-
-        static const func_t funcs[] =
-        {
-            printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
-            printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
-        };
-
-        return funcs[m.depth()](m, p);
-    }
+    return arr.getMat();
 }
 
-testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1_, cv::InputArray m2_, double eps)
+AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
 {
     Mat m1 = getMat(m1_);
     Mat m2 = getMat(m2_);
@@ -344,18 +331,6 @@ double checkSimilarity(InputArray m1, InputArray m2)
 //////////////////////////////////////////////////////////////////////
 // Helper structs for value-parameterized tests
 
-vector<MatDepth> depths(int depth_start, int depth_end)
-{
-    vector<MatDepth> v;
-
-    v.reserve((depth_end - depth_start + 1));
-
-    for (int depth = depth_start; depth <= depth_end; ++depth)
-        v.push_back(depth);
-
-    return v;
-}
-
 vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
 {
     vector<MatType> v;
@@ -366,7 +341,7 @@ vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
     {
         for (int cn = cn_start; cn <= cn_end; ++cn)
         {
-            v.push_back(CV_MAKETYPE(depth, cn));
+            v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
         }
     }
 
@@ -401,6 +376,14 @@ void PrintTo(const Inverse& inverse, std::ostream* os)
         (*os) << "direct";
 }
 
+//////////////////////////////////////////////////////////////////////
+// Other
+
+void dumpImage(const std::string& fileName, const Mat& image)
+{
+    imwrite(TS::ptr()->get_data_path() + fileName, image);
+}
+
 void showDiff(InputArray gold_, InputArray actual_, double eps)
 {
     Mat gold = getMat(gold_);
diff --git a/modules/gpu/test/utility.hpp b/modules/gpu/test/utility.hpp
index a32aabea59..674e9a17ee 100644
--- a/modules/gpu/test/utility.hpp
+++ b/modules/gpu/test/utility.hpp
@@ -39,8 +39,14 @@
 //
 //M*/
 
-#ifndef __OPENCV_TEST_UTILITY_HPP__
-#define __OPENCV_TEST_UTILITY_HPP__
+#ifndef __OPENCV_GPU_TEST_UTILITY_HPP__
+#define __OPENCV_GPU_TEST_UTILITY_HPP__
+
+#include "opencv2/core/core.hpp"
+#include "opencv2/core/gpumat.hpp"
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv2/ts/ts.hpp"
+#include "opencv2/ts/ts_perf.hpp"
 
 //////////////////////////////////////////////////////////////////////
 // random generators
@@ -66,11 +72,6 @@ cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
 //! read image from testdata folder and convert it to specified type
 cv::Mat readImageType(const std::string& fname, int type);
 
-//////////////////////////////////////////////////////////////////////
-// Image dumping
-
-void dumpImage(const std::string& fileName, const cv::Mat& image);
-
 //////////////////////////////////////////////////////////////////////
 // Gpu devices
 
@@ -96,12 +97,10 @@ private:
 //////////////////////////////////////////////////////////////////////
 // Additional assertion
 
-cv::Mat getMat(cv::InputArray arr);
-
-double checkNorm(cv::InputArray m1, cv::InputArray m2);
-
 void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat());
 
+cv::Mat getMat(cv::InputArray arr);
+
 testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1, cv::InputArray m2, double eps);
 
 #define EXPECT_MAT_NEAR(m1, m2, eps) EXPECT_PRED_FORMAT3(assertMatNear, m1, m2, eps)
@@ -164,6 +163,45 @@ double checkSimilarity(cv::InputArray m1, cv::InputArray m2);
 //////////////////////////////////////////////////////////////////////
 // Helper structs for value-parameterized tests
 
+#define GPU_TEST_P(test_case_name, test_name) \
+  class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
+      : public test_case_name { \
+   public: \
+    GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {} \
+    virtual void TestBody(); \
+   private: \
+    void UnsafeTestBody(); \
+    static int AddToRegistry() { \
+      ::testing::UnitTest::GetInstance()->parameterized_test_registry(). \
+          GetTestCasePatternHolder<test_case_name>(\
+              #test_case_name, __FILE__, __LINE__)->AddTestPattern(\
+                  #test_case_name, \
+                  #test_name, \
+                  new ::testing::internal::TestMetaFactory< \
+                      GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \
+      return 0; \
+    } \
+    static int gtest_registering_dummy_; \
+    GTEST_DISALLOW_COPY_AND_ASSIGN_(\
+        GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
+  }; \
+  int GTEST_TEST_CLASS_NAME_(test_case_name, \
+                             test_name)::gtest_registering_dummy_ = \
+      GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \
+  void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \
+  { \
+    try \
+    { \
+      UnsafeTestBody(); \
+    } \
+    catch (...) \
+    { \
+      cv::gpu::resetDevice(); \
+      throw; \
+    } \
+  } \
+  void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::UnsafeTestBody()
+
 #define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
 #define GET_PARAM(k) std::tr1::get< k >(GetParam())
 
@@ -178,11 +216,8 @@ namespace cv { namespace gpu
 
 using perf::MatDepth;
 
-//! return vector with depths from specified range.
-std::vector<MatDepth> depths(int depth_start, int depth_end);
-
 #define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F))
-#define DEPTHS(depth_start, depth_end) testing::ValuesIn(depths(depth_start, depth_end))
+
 #define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)),   \
                                     std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)),  \
                                     std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)),  \
@@ -237,8 +272,6 @@ private:
 
 void PrintTo(const UseRoi& useRoi, std::ostream* os);
 
-#define WHOLE testing::Values(UseRoi(false))
-#define SUBMAT testing::Values(UseRoi(true))
 #define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true))
 
 // Direct/Inverse
@@ -253,7 +286,9 @@ public:
 private:
     bool val_;
 };
+
 void PrintTo(const Inverse& useRoi, std::ostream* os);
+
 #define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))
 
 // Param class
@@ -291,6 +326,7 @@ CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WA
 //////////////////////////////////////////////////////////////////////
 // Other
 
+void dumpImage(const std::string& fileName, const cv::Mat& image);
 void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
 
-#endif // __OPENCV_TEST_UTILITY_HPP__
+#endif // __OPENCV_GPU_TEST_UTILITY_HPP__