added GPU_TEST_P macros

pull/258/merge
Vladislav Vinogradov 12 years ago
parent 4ba33fa1ed
commit 1a76242d99
  1. 6
      modules/gpu/test/nvidia/main_nvidia.cpp
  2. 405
      modules/gpu/test/test_bgfg.cpp
  3. 18
      modules/gpu/test/test_calib3d.cpp
  4. 332
      modules/gpu/test/test_color.cpp
  5. 11
      modules/gpu/test/test_copy_make_border.cpp
  6. 521
      modules/gpu/test/test_core.cpp
  7. 13
      modules/gpu/test/test_denoising.cpp
  8. 227
      modules/gpu/test/test_features2d.cpp
  9. 56
      modules/gpu/test/test_filters.cpp
  10. 2
      modules/gpu/test/test_global_motion.cpp
  11. 22
      modules/gpu/test/test_gpumat.cpp
  12. 12
      modules/gpu/test/test_hough.cpp
  13. 303
      modules/gpu/test/test_imgproc.cpp
  14. 8
      modules/gpu/test/test_labeling.cpp
  15. 36
      modules/gpu/test/test_nvidia.cpp
  16. 15
      modules/gpu/test/test_objdetect.cpp
  17. 60
      modules/gpu/test/test_opengl.cpp
  18. 623
      modules/gpu/test/test_optflow.cpp
  19. 1
      modules/gpu/test/test_precomp.hpp
  20. 4
      modules/gpu/test/test_pyramids.cpp
  21. 2
      modules/gpu/test/test_remap.cpp
  22. 8
      modules/gpu/test/test_resize.cpp
  23. 113
      modules/gpu/test/test_softcascade.cpp
  24. 2
      modules/gpu/test/test_threshold.cpp
  25. 964
      modules/gpu/test/test_video.cpp
  26. 16
      modules/gpu/test/test_warp_affine.cpp
  27. 21
      modules/gpu/test/test_warp_perspective.cpp
  28. 117
      modules/gpu/test/utility.cpp
  29. 72
      modules/gpu/test/utility.hpp

@ -276,6 +276,8 @@ static void devNullOutput(const std::string& msg)
(void)msg;
}
}
bool nvidia_NPPST_Integral_Image(const std::string& test_data_path, OutputLevel outputLevel)
{
path = test_data_path.c_str();
@ -292,8 +294,6 @@ bool nvidia_NPPST_Integral_Image(const std::string& test_data_path, OutputLevel
return testListerII.invoke();
}
}
bool nvidia_NPPST_Squared_Integral_Image(const std::string& test_data_path, OutputLevel outputLevel)
{
path = test_data_path;
@ -439,4 +439,4 @@ bool nvidia_NCV_Visualization(const std::string& test_data_path, OutputLevel out
return testListerVisualize.invoke();
}
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

@ -0,0 +1,405 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
//////////////////////////////////////////////////////
// FGDStatModel
namespace cv
{
template<> void Ptr<CvBGStatModel>::delete_obj()
{
cvReleaseBGStatModel(&obj);
}
}
PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
int out_cn;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
out_cn = GET_PARAM(2);
}
};
GPU_TEST_P(FGDStatModel, Update)
{
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
IplImage ipl_frame = frame;
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
cv::gpu::GpuMat d_frame(frame);
cv::gpu::FGDStatModel d_model(out_cn);
d_model.create(d_frame);
cv::Mat h_background;
cv::Mat h_foreground;
cv::Mat h_background3;
cv::Mat backgroundDiff;
cv::Mat foregroundDiff;
for (int i = 0; i < 5; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
ipl_frame = frame;
int gold_count = cvUpdateBGStatModel(&ipl_frame, model);
d_frame.upload(frame);
int count = d_model.update(d_frame);
ASSERT_EQ(gold_count, count);
cv::Mat gold_background(model->background);
cv::Mat gold_foreground(model->foreground);
if (out_cn == 3)
d_model.background.download(h_background3);
else
{
d_model.background.download(h_background);
cv::cvtColor(h_background, h_background3, cv::COLOR_BGRA2BGR);
}
d_model.foreground.download(h_foreground);
ASSERT_MAT_NEAR(gold_background, h_background3, 1.0);
ASSERT_MAT_NEAR(gold_foreground, h_foreground, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(GPU_Video, FGDStatModel, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi")),
testing::Values(Channels(3), Channels(4))));
//////////////////////////////////////////////////////
// MOG
namespace
{
IMPLEMENT_PARAM_CLASS(UseGray, bool)
IMPLEMENT_PARAM_CLASS(LearningRate, double)
}
PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
bool useGray;
double learningRate;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
useGray = GET_PARAM(2);
learningRate = GET_PARAM(3);
useRoi = GET_PARAM(4);
}
};
GPU_TEST_P(MOG, Update)
{
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
cv::gpu::MOG_GPU mog;
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
cv::BackgroundSubtractorMOG mog_gold;
cv::Mat foreground_gold;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (useGray)
{
cv::Mat temp;
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
cv::swap(temp, frame);
}
mog(loadMat(frame, useRoi), foreground, (float)learningRate);
mog_gold(frame, foreground_gold, learningRate);
ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(GPU_Video, MOG, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi")),
testing::Values(UseGray(true), UseGray(false)),
testing::Values(LearningRate(0.0), LearningRate(0.01)),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// MOG2
PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
bool useGray;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
useGray = GET_PARAM(2);
useRoi = GET_PARAM(3);
}
};
GPU_TEST_P(MOG2, Update)
{
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
cv::gpu::MOG2_GPU mog2;
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
cv::BackgroundSubtractorMOG2 mog2_gold;
cv::Mat foreground_gold;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (useGray)
{
cv::Mat temp;
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
cv::swap(temp, frame);
}
mog2(loadMat(frame, useRoi), foreground);
mog2_gold(frame, foreground_gold);
double norm = cv::norm(foreground_gold, cv::Mat(foreground), cv::NORM_L1);
norm /= foreground_gold.size().area();
ASSERT_LE(norm, 0.09);
}
}
GPU_TEST_P(MOG2, getBackgroundImage)
{
if (useGray)
return;
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cv::gpu::MOG2_GPU mog2;
cv::gpu::GpuMat foreground;
cv::BackgroundSubtractorMOG2 mog2_gold;
cv::Mat foreground_gold;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
mog2(loadMat(frame, useRoi), foreground);
mog2_gold(frame, foreground_gold);
}
cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi);
mog2.getBackgroundImage(background);
cv::Mat background_gold;
mog2_gold.getBackgroundImage(background_gold);
ASSERT_MAT_NEAR(background_gold, background, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, MOG2, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi")),
testing::Values(UseGray(true), UseGray(false)),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// VIBE
PARAM_TEST_CASE(VIBE, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
{
};
GPU_TEST_P(VIBE, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const int type = GET_PARAM(2);
const bool useRoi = GET_PARAM(3);
const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
cv::Mat frame = randomMat(size, type, 0.0, 100);
cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
cv::gpu::VIBE_GPU vibe;
cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
vibe.initialize(d_frame);
for (int i = 0; i < 20; ++i)
vibe(d_frame, d_fgmask);
frame = randomMat(size, type, 160, 255);
d_frame = loadMat(frame, useRoi);
vibe(d_frame, d_fgmask);
// now fgmask should be entirely foreground
ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, VIBE, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4)),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// GMG
PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
{
};
GPU_TEST_P(GMG, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const int depth = GET_PARAM(2);
const int channels = GET_PARAM(3);
const bool useRoi = GET_PARAM(4);
const int type = CV_MAKE_TYPE(depth, channels);
const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0));
const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
cv::Mat frame = randomMat(size, type, 0, 100);
cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
cv::gpu::GMG_GPU gmg;
gmg.numInitializationFrames = 5;
gmg.smoothingRadius = 0;
gmg.initialize(d_frame.size(), 0, 255);
cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
for (int i = 0; i < gmg.numInitializationFrames; ++i)
{
gmg(d_frame, d_fgmask);
// fgmask should be entirely background during training
ASSERT_MAT_NEAR(zeros, d_fgmask, 0);
}
frame = randomMat(size, type, 160, 255);
d_frame = loadMat(frame, useRoi);
gmg(d_frame, d_fgmask);
// now fgmask should be entirely foreground
ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, GMG, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)),
testing::Values(Channels(1), Channels(3), Channels(4)),
WHOLE_SUBMAT));
#endif // HAVE_CUDA

@ -43,8 +43,6 @@
#ifdef HAVE_CUDA
namespace {
//////////////////////////////////////////////////////////////////////////
// StereoBM
@ -60,7 +58,7 @@ struct StereoBM : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(StereoBM, Regression)
GPU_TEST_P(StereoBM, Regression)
{
cv::Mat left_image = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
cv::Mat right_image = readImage("stereobm/aloe-R.png", cv::IMREAD_GRAYSCALE);
@ -95,7 +93,7 @@ struct StereoBeliefPropagation : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(StereoBeliefPropagation, Regression)
GPU_TEST_P(StereoBeliefPropagation, Regression)
{
cv::Mat left_image = readImage("stereobp/aloe-L.png");
cv::Mat right_image = readImage("stereobp/aloe-R.png");
@ -133,7 +131,7 @@ struct StereoConstantSpaceBP : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(StereoConstantSpaceBP, Regression)
GPU_TEST_P(StereoConstantSpaceBP, Regression)
{
cv::Mat left_image = readImage("csstereobp/aloe-L.png");
cv::Mat right_image = readImage("csstereobp/aloe-R.png");
@ -177,7 +175,7 @@ struct TransformPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(TransformPoints, Accuracy)
GPU_TEST_P(TransformPoints, Accuracy)
{
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
@ -225,7 +223,7 @@ struct ProjectPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(ProjectPoints, Accuracy)
GPU_TEST_P(ProjectPoints, Accuracy)
{
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
@ -275,7 +273,7 @@ struct SolvePnPRansac : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(SolvePnPRansac, Accuracy)
GPU_TEST_P(SolvePnPRansac, Accuracy)
{
cv::Mat object = randomMat(cv::Size(5000, 1), CV_32FC3, 0, 100);
cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
@ -324,7 +322,7 @@ PARAM_TEST_CASE(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth, Use
}
};
TEST_P(ReprojectImageTo3D, Accuracy)
GPU_TEST_P(ReprojectImageTo3D, Accuracy)
{
cv::Mat disp = randomMat(size, depth, 5.0, 30.0);
cv::Mat Q = randomMat(cv::Size(4, 4), CV_32FC1, 0.1, 1.0);
@ -344,6 +342,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ReprojectImageTo3D, testing::Combine(
testing::Values(MatDepth(CV_8U), MatDepth(CV_16S)),
WHOLE_SUBMAT));
} // namespace
#endif // HAVE_CUDA

@ -43,8 +43,6 @@
#ifdef HAVE_CUDA
namespace {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// cvtColor
@ -70,7 +68,7 @@ PARAM_TEST_CASE(CvtColor, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
}
};
TEST_P(CvtColor, BGR2RGB)
GPU_TEST_P(CvtColor, BGR2RGB)
{
cv::Mat src = img;
@ -83,7 +81,7 @@ TEST_P(CvtColor, BGR2RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR2RGBA)
GPU_TEST_P(CvtColor, BGR2RGBA)
{
cv::Mat src = img;
@ -96,7 +94,7 @@ TEST_P(CvtColor, BGR2RGBA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR2BGRA)
GPU_TEST_P(CvtColor, BGR2BGRA)
{
cv::Mat src = img;
@ -109,7 +107,7 @@ TEST_P(CvtColor, BGR2BGRA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGRA2RGB)
GPU_TEST_P(CvtColor, BGRA2RGB)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@ -123,7 +121,7 @@ TEST_P(CvtColor, BGRA2RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGRA2BGR)
GPU_TEST_P(CvtColor, BGRA2BGR)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@ -137,7 +135,7 @@ TEST_P(CvtColor, BGRA2BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGRA2RGBA)
GPU_TEST_P(CvtColor, BGRA2RGBA)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@ -151,7 +149,7 @@ TEST_P(CvtColor, BGRA2RGBA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR2GRAY)
GPU_TEST_P(CvtColor, BGR2GRAY)
{
cv::Mat src = img;
@ -164,7 +162,7 @@ TEST_P(CvtColor, BGR2GRAY)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, RGB2GRAY)
GPU_TEST_P(CvtColor, RGB2GRAY)
{
cv::Mat src = img;
@ -177,7 +175,7 @@ TEST_P(CvtColor, RGB2GRAY)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, GRAY2BGR)
GPU_TEST_P(CvtColor, GRAY2BGR)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2GRAY);
@ -191,7 +189,7 @@ TEST_P(CvtColor, GRAY2BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, GRAY2BGRA)
GPU_TEST_P(CvtColor, GRAY2BGRA)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2GRAY);
@ -205,7 +203,7 @@ TEST_P(CvtColor, GRAY2BGRA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGRA2GRAY)
GPU_TEST_P(CvtColor, BGRA2GRAY)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@ -219,7 +217,7 @@ TEST_P(CvtColor, BGRA2GRAY)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, RGBA2GRAY)
GPU_TEST_P(CvtColor, RGBA2GRAY)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2RGBA);
@ -233,7 +231,7 @@ TEST_P(CvtColor, RGBA2GRAY)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, BGR2BGR565)
GPU_TEST_P(CvtColor, BGR2BGR565)
{
if (depth != CV_8U)
return;
@ -249,7 +247,7 @@ TEST_P(CvtColor, BGR2BGR565)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, RGB2BGR565)
GPU_TEST_P(CvtColor, RGB2BGR565)
{
if (depth != CV_8U)
return;
@ -265,7 +263,7 @@ TEST_P(CvtColor, RGB2BGR565)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5652BGR)
GPU_TEST_P(CvtColor, BGR5652BGR)
{
if (depth != CV_8U)
return;
@ -282,7 +280,7 @@ TEST_P(CvtColor, BGR5652BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5652RGB)
GPU_TEST_P(CvtColor, BGR5652RGB)
{
if (depth != CV_8U)
return;
@ -299,7 +297,7 @@ TEST_P(CvtColor, BGR5652RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGRA2BGR565)
GPU_TEST_P(CvtColor, BGRA2BGR565)
{
if (depth != CV_8U)
return;
@ -316,7 +314,7 @@ TEST_P(CvtColor, BGRA2BGR565)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, RGBA2BGR565)
GPU_TEST_P(CvtColor, RGBA2BGR565)
{
if (depth != CV_8U)
return;
@ -333,7 +331,7 @@ TEST_P(CvtColor, RGBA2BGR565)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5652BGRA)
GPU_TEST_P(CvtColor, BGR5652BGRA)
{
if (depth != CV_8U)
return;
@ -350,7 +348,7 @@ TEST_P(CvtColor, BGR5652BGRA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5652RGBA)
GPU_TEST_P(CvtColor, BGR5652RGBA)
{
if (depth != CV_8U)
return;
@ -367,7 +365,7 @@ TEST_P(CvtColor, BGR5652RGBA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, GRAY2BGR565)
GPU_TEST_P(CvtColor, GRAY2BGR565)
{
if (depth != CV_8U)
return;
@ -384,7 +382,7 @@ TEST_P(CvtColor, GRAY2BGR565)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5652GRAY)
GPU_TEST_P(CvtColor, BGR5652GRAY)
{
if (depth != CV_8U)
return;
@ -401,7 +399,7 @@ TEST_P(CvtColor, BGR5652GRAY)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR2BGR555)
GPU_TEST_P(CvtColor, BGR2BGR555)
{
if (depth != CV_8U)
return;
@ -417,7 +415,7 @@ TEST_P(CvtColor, BGR2BGR555)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, RGB2BGR555)
GPU_TEST_P(CvtColor, RGB2BGR555)
{
if (depth != CV_8U)
return;
@ -433,7 +431,7 @@ TEST_P(CvtColor, RGB2BGR555)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5552BGR)
GPU_TEST_P(CvtColor, BGR5552BGR)
{
if (depth != CV_8U)
return;
@ -450,7 +448,7 @@ TEST_P(CvtColor, BGR5552BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5552RGB)
GPU_TEST_P(CvtColor, BGR5552RGB)
{
if (depth != CV_8U)
return;
@ -467,7 +465,7 @@ TEST_P(CvtColor, BGR5552RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGRA2BGR555)
GPU_TEST_P(CvtColor, BGRA2BGR555)
{
if (depth != CV_8U)
return;
@ -484,7 +482,7 @@ TEST_P(CvtColor, BGRA2BGR555)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, RGBA2BGR555)
GPU_TEST_P(CvtColor, RGBA2BGR555)
{
if (depth != CV_8U)
return;
@ -501,7 +499,7 @@ TEST_P(CvtColor, RGBA2BGR555)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5552BGRA)
GPU_TEST_P(CvtColor, BGR5552BGRA)
{
if (depth != CV_8U)
return;
@ -518,7 +516,7 @@ TEST_P(CvtColor, BGR5552BGRA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5552RGBA)
GPU_TEST_P(CvtColor, BGR5552RGBA)
{
if (depth != CV_8U)
return;
@ -535,7 +533,7 @@ TEST_P(CvtColor, BGR5552RGBA)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, GRAY2BGR555)
GPU_TEST_P(CvtColor, GRAY2BGR555)
{
if (depth != CV_8U)
return;
@ -552,7 +550,7 @@ TEST_P(CvtColor, GRAY2BGR555)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR5552GRAY)
GPU_TEST_P(CvtColor, BGR5552GRAY)
{
if (depth != CV_8U)
return;
@ -569,7 +567,7 @@ TEST_P(CvtColor, BGR5552GRAY)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CvtColor, BGR2XYZ)
GPU_TEST_P(CvtColor, BGR2XYZ)
{
cv::Mat src = img;
@ -582,7 +580,7 @@ TEST_P(CvtColor, BGR2XYZ)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, RGB2XYZ)
GPU_TEST_P(CvtColor, RGB2XYZ)
{
cv::Mat src = img;
@ -595,7 +593,7 @@ TEST_P(CvtColor, RGB2XYZ)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, BGR2XYZ4)
GPU_TEST_P(CvtColor, BGR2XYZ4)
{
cv::Mat src = img;
@ -616,7 +614,7 @@ TEST_P(CvtColor, BGR2XYZ4)
EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
}
TEST_P(CvtColor, BGRA2XYZ4)
GPU_TEST_P(CvtColor, BGRA2XYZ4)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2BGRA);
@ -638,7 +636,7 @@ TEST_P(CvtColor, BGRA2XYZ4)
EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
}
TEST_P(CvtColor, XYZ2BGR)
GPU_TEST_P(CvtColor, XYZ2BGR)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@ -652,7 +650,7 @@ TEST_P(CvtColor, XYZ2BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, XYZ2RGB)
GPU_TEST_P(CvtColor, XYZ2RGB)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@ -666,7 +664,7 @@ TEST_P(CvtColor, XYZ2RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, XYZ42BGR)
GPU_TEST_P(CvtColor, XYZ42BGR)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@ -685,7 +683,7 @@ TEST_P(CvtColor, XYZ42BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, XYZ42BGRA)
GPU_TEST_P(CvtColor, XYZ42BGRA)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2XYZ);
@ -704,7 +702,7 @@ TEST_P(CvtColor, XYZ42BGRA)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, BGR2YCrCb)
GPU_TEST_P(CvtColor, BGR2YCrCb)
{
cv::Mat src = img;
@ -717,7 +715,7 @@ TEST_P(CvtColor, BGR2YCrCb)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, RGB2YCrCb)
GPU_TEST_P(CvtColor, RGB2YCrCb)
{
cv::Mat src = img;
@ -730,7 +728,7 @@ TEST_P(CvtColor, RGB2YCrCb)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, BGR2YCrCb4)
GPU_TEST_P(CvtColor, BGR2YCrCb4)
{
cv::Mat src = img;
@ -751,7 +749,7 @@ TEST_P(CvtColor, BGR2YCrCb4)
EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
}
TEST_P(CvtColor, RGBA2YCrCb4)
GPU_TEST_P(CvtColor, RGBA2YCrCb4)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2RGBA);
@ -773,7 +771,7 @@ TEST_P(CvtColor, RGBA2YCrCb4)
EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
}
TEST_P(CvtColor, YCrCb2BGR)
GPU_TEST_P(CvtColor, YCrCb2BGR)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@ -787,7 +785,7 @@ TEST_P(CvtColor, YCrCb2BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, YCrCb2RGB)
GPU_TEST_P(CvtColor, YCrCb2RGB)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@ -801,7 +799,7 @@ TEST_P(CvtColor, YCrCb2RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, YCrCb42RGB)
GPU_TEST_P(CvtColor, YCrCb42RGB)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@ -820,7 +818,7 @@ TEST_P(CvtColor, YCrCb42RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, YCrCb42RGBA)
GPU_TEST_P(CvtColor, YCrCb42RGBA)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2YCrCb);
@ -839,7 +837,7 @@ TEST_P(CvtColor, YCrCb42RGBA)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, BGR2HSV)
GPU_TEST_P(CvtColor, BGR2HSV)
{
if (depth == CV_16U)
return;
@ -855,7 +853,7 @@ TEST_P(CvtColor, BGR2HSV)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HSV)
GPU_TEST_P(CvtColor, RGB2HSV)
{
if (depth == CV_16U)
return;
@ -871,7 +869,7 @@ TEST_P(CvtColor, RGB2HSV)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HSV4)
GPU_TEST_P(CvtColor, RGB2HSV4)
{
if (depth == CV_16U)
return;
@ -895,7 +893,7 @@ TEST_P(CvtColor, RGB2HSV4)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGBA2HSV4)
GPU_TEST_P(CvtColor, RGBA2HSV4)
{
if (depth == CV_16U)
return;
@ -920,7 +918,7 @@ TEST_P(CvtColor, RGBA2HSV4)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, BGR2HLS)
GPU_TEST_P(CvtColor, BGR2HLS)
{
if (depth == CV_16U)
return;
@ -936,7 +934,7 @@ TEST_P(CvtColor, BGR2HLS)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HLS)
GPU_TEST_P(CvtColor, RGB2HLS)
{
if (depth == CV_16U)
return;
@ -952,7 +950,7 @@ TEST_P(CvtColor, RGB2HLS)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HLS4)
GPU_TEST_P(CvtColor, RGB2HLS4)
{
if (depth == CV_16U)
return;
@ -976,7 +974,7 @@ TEST_P(CvtColor, RGB2HLS4)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGBA2HLS4)
GPU_TEST_P(CvtColor, RGBA2HLS4)
{
if (depth == CV_16U)
return;
@ -1001,7 +999,7 @@ TEST_P(CvtColor, RGBA2HLS4)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV2BGR)
GPU_TEST_P(CvtColor, HSV2BGR)
{
if (depth == CV_16U)
return;
@ -1018,7 +1016,7 @@ TEST_P(CvtColor, HSV2BGR)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV2RGB)
GPU_TEST_P(CvtColor, HSV2RGB)
{
if (depth == CV_16U)
return;
@ -1035,7 +1033,7 @@ TEST_P(CvtColor, HSV2RGB)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV42BGR)
GPU_TEST_P(CvtColor, HSV42BGR)
{
if (depth == CV_16U)
return;
@ -1057,7 +1055,7 @@ TEST_P(CvtColor, HSV42BGR)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV42BGRA)
GPU_TEST_P(CvtColor, HSV42BGRA)
{
if (depth == CV_16U)
return;
@ -1079,7 +1077,7 @@ TEST_P(CvtColor, HSV42BGRA)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS2BGR)
GPU_TEST_P(CvtColor, HLS2BGR)
{
if (depth == CV_16U)
return;
@ -1096,7 +1094,7 @@ TEST_P(CvtColor, HLS2BGR)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS2RGB)
GPU_TEST_P(CvtColor, HLS2RGB)
{
if (depth == CV_16U)
return;
@ -1113,7 +1111,7 @@ TEST_P(CvtColor, HLS2RGB)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS42RGB)
GPU_TEST_P(CvtColor, HLS42RGB)
{
if (depth == CV_16U)
return;
@ -1135,7 +1133,7 @@ TEST_P(CvtColor, HLS42RGB)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS42RGBA)
GPU_TEST_P(CvtColor, HLS42RGBA)
{
if (depth == CV_16U)
return;
@ -1158,7 +1156,7 @@ TEST_P(CvtColor, HLS42RGBA)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, BGR2HSV_FULL)
GPU_TEST_P(CvtColor, BGR2HSV_FULL)
{
if (depth == CV_16U)
return;
@ -1174,7 +1172,7 @@ TEST_P(CvtColor, BGR2HSV_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HSV_FULL)
GPU_TEST_P(CvtColor, RGB2HSV_FULL)
{
if (depth == CV_16U)
return;
@ -1190,7 +1188,7 @@ TEST_P(CvtColor, RGB2HSV_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HSV4_FULL)
GPU_TEST_P(CvtColor, RGB2HSV4_FULL)
{
if (depth == CV_16U)
return;
@ -1214,7 +1212,7 @@ TEST_P(CvtColor, RGB2HSV4_FULL)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGBA2HSV4_FULL)
GPU_TEST_P(CvtColor, RGBA2HSV4_FULL)
{
if (depth == CV_16U)
return;
@ -1239,7 +1237,7 @@ TEST_P(CvtColor, RGBA2HSV4_FULL)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, BGR2HLS_FULL)
GPU_TEST_P(CvtColor, BGR2HLS_FULL)
{
if (depth == CV_16U)
return;
@ -1255,7 +1253,7 @@ TEST_P(CvtColor, BGR2HLS_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HLS_FULL)
GPU_TEST_P(CvtColor, RGB2HLS_FULL)
{
if (depth == CV_16U)
return;
@ -1271,7 +1269,7 @@ TEST_P(CvtColor, RGB2HLS_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGB2HLS4_FULL)
GPU_TEST_P(CvtColor, RGB2HLS4_FULL)
{
if (depth == CV_16U)
return;
@ -1295,7 +1293,7 @@ TEST_P(CvtColor, RGB2HLS4_FULL)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, RGBA2HLS4_FULL)
GPU_TEST_P(CvtColor, RGBA2HLS4_FULL)
{
if (depth == CV_16U)
return;
@ -1320,7 +1318,7 @@ TEST_P(CvtColor, RGBA2HLS4_FULL)
EXPECT_MAT_NEAR(dst_gold, h_dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV2BGR_FULL)
GPU_TEST_P(CvtColor, HSV2BGR_FULL)
{
if (depth == CV_16U)
return;
@ -1337,7 +1335,7 @@ TEST_P(CvtColor, HSV2BGR_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV2RGB_FULL)
GPU_TEST_P(CvtColor, HSV2RGB_FULL)
{
if (depth == CV_16U)
return;
@ -1354,7 +1352,7 @@ TEST_P(CvtColor, HSV2RGB_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV42RGB_FULL)
GPU_TEST_P(CvtColor, HSV42RGB_FULL)
{
if (depth == CV_16U)
return;
@ -1376,7 +1374,7 @@ TEST_P(CvtColor, HSV42RGB_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HSV42RGBA_FULL)
GPU_TEST_P(CvtColor, HSV42RGBA_FULL)
{
if (depth == CV_16U)
return;
@ -1398,7 +1396,7 @@ TEST_P(CvtColor, HSV42RGBA_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS2BGR_FULL)
GPU_TEST_P(CvtColor, HLS2BGR_FULL)
{
if (depth == CV_16U)
return;
@ -1415,7 +1413,7 @@ TEST_P(CvtColor, HLS2BGR_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS2RGB_FULL)
GPU_TEST_P(CvtColor, HLS2RGB_FULL)
{
if (depth == CV_16U)
return;
@ -1432,7 +1430,7 @@ TEST_P(CvtColor, HLS2RGB_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS42RGB_FULL)
GPU_TEST_P(CvtColor, HLS42RGB_FULL)
{
if (depth == CV_16U)
return;
@ -1454,7 +1452,7 @@ TEST_P(CvtColor, HLS42RGB_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, HLS42RGBA_FULL)
GPU_TEST_P(CvtColor, HLS42RGBA_FULL)
{
if (depth == CV_16U)
return;
@ -1476,7 +1474,7 @@ TEST_P(CvtColor, HLS42RGBA_FULL)
EXPECT_MAT_NEAR(dst_gold, dst, depth == CV_32F ? 1e-2 : 1);
}
TEST_P(CvtColor, BGR2YUV)
GPU_TEST_P(CvtColor, BGR2YUV)
{
cv::Mat src = img;
@ -1489,7 +1487,7 @@ TEST_P(CvtColor, BGR2YUV)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, RGB2YUV)
GPU_TEST_P(CvtColor, RGB2YUV)
{
cv::Mat src = img;
@ -1502,7 +1500,7 @@ TEST_P(CvtColor, RGB2YUV)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, YUV2BGR)
GPU_TEST_P(CvtColor, YUV2BGR)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2YUV);
@ -1516,7 +1514,7 @@ TEST_P(CvtColor, YUV2BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, YUV42BGR)
GPU_TEST_P(CvtColor, YUV42BGR)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2YUV);
@ -1535,7 +1533,7 @@ TEST_P(CvtColor, YUV42BGR)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, YUV42BGRA)
GPU_TEST_P(CvtColor, YUV42BGRA)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2YUV);
@ -1554,7 +1552,7 @@ TEST_P(CvtColor, YUV42BGRA)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, YUV2RGB)
GPU_TEST_P(CvtColor, YUV2RGB)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_RGB2YUV);
@ -1568,7 +1566,7 @@ TEST_P(CvtColor, YUV2RGB)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
TEST_P(CvtColor, BGR2YUV4)
GPU_TEST_P(CvtColor, BGR2YUV4)
{
cv::Mat src = img;
@ -1589,7 +1587,7 @@ TEST_P(CvtColor, BGR2YUV4)
EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
}
TEST_P(CvtColor, RGBA2YUV4)
GPU_TEST_P(CvtColor, RGBA2YUV4)
{
cv::Mat src;
cv::cvtColor(img, src, cv::COLOR_BGR2RGBA);
@ -1611,147 +1609,91 @@ TEST_P(CvtColor, RGBA2YUV4)
EXPECT_MAT_NEAR(dst_gold, h_dst, 1e-5);
}
TEST_P(CvtColor, BGR2Lab)
#if defined (CUDA_VERSION) && (CUDA_VERSION >= 5000)
GPU_TEST_P(CvtColor, BGR2Lab)
{
if (depth != CV_8U)
return;
try
{
cv::Mat src = readImage("stereobm/aloe-L.png");
cv::Mat src = readImage("stereobm/aloe-L.png");
cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_BGR2Lab);
cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_BGR2Lab);
cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2BGR);
cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2BGR);
EXPECT_MAT_NEAR(src, dst_bgr, 10);
}
catch (const cv::Exception& e)
{
(void)e;
#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
ASSERT_EQ(CV_StsBadFlag, e.code);
#else
FAIL();
#endif
}
EXPECT_MAT_NEAR(src, dst_bgr, 10);
}
TEST_P(CvtColor, RGB2Lab)
GPU_TEST_P(CvtColor, RGB2Lab)
{
if (depth != CV_8U)
return;
try
{
cv::Mat src = readImage("stereobm/aloe-L.png");
cv::Mat src = readImage("stereobm/aloe-L.png");
cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_RGB2Lab);
cv::gpu::GpuMat dst_lab = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_lab, cv::COLOR_RGB2Lab);
cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2RGB);
cv::gpu::GpuMat dst_bgr = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_lab, dst_bgr, cv::COLOR_Lab2RGB);
EXPECT_MAT_NEAR(src, dst_bgr, 10);
}
catch (const cv::Exception& e)
{
(void)e;
#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
ASSERT_EQ(CV_StsBadFlag, e.code);
#else
FAIL();
#endif
}
EXPECT_MAT_NEAR(src, dst_bgr, 10);
}
TEST_P(CvtColor, BGR2Luv)
GPU_TEST_P(CvtColor, BGR2Luv)
{
if (depth != CV_8U)
return;
try
{
cv::Mat src = img;
cv::Mat src = img;
cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_BGR2Luv);
cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_BGR2Luv);
cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2BGR);
cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2BGR);
EXPECT_MAT_NEAR(src, dst_rgb, 10);
}
catch (const cv::Exception& e)
{
(void)e;
#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
ASSERT_EQ(CV_StsBadFlag, e.code);
#else
FAIL();
#endif
}
EXPECT_MAT_NEAR(src, dst_rgb, 10);
}
TEST_P(CvtColor, RGB2Luv)
GPU_TEST_P(CvtColor, RGB2Luv)
{
if (depth != CV_8U)
return;
try
{
cv::Mat src = img;
cv::Mat src = img;
cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_RGB2Luv);
cv::gpu::GpuMat dst_luv = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst_luv, cv::COLOR_RGB2Luv);
cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2RGB);
cv::gpu::GpuMat dst_rgb = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(dst_luv, dst_rgb, cv::COLOR_Luv2RGB);
EXPECT_MAT_NEAR(src, dst_rgb, 10);
}
catch (const cv::Exception& e)
{
(void)e;
#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
ASSERT_EQ(CV_StsBadFlag, e.code);
#else
FAIL();
#endif
}
EXPECT_MAT_NEAR(src, dst_rgb, 10);
}
TEST_P(CvtColor, RGBA2mRGBA)
GPU_TEST_P(CvtColor, RGBA2mRGBA)
{
if (depth != CV_8U)
return;
try
{
cv::Mat src = randomMat(size, CV_MAKE_TYPE(depth, 4));
cv::Mat src = randomMat(size, CV_MAKE_TYPE(depth, 4));
cv::gpu::GpuMat dst = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst, cv::COLOR_RGBA2mRGBA);
cv::gpu::GpuMat dst = createMat(src.size(), src.type(), useRoi);
cv::gpu::cvtColor(loadMat(src, useRoi), dst, cv::COLOR_RGBA2mRGBA);
cv::Mat dst_gold;
cv::cvtColor(src, dst_gold, cv::COLOR_RGBA2mRGBA);
cv::Mat dst_gold;
cv::cvtColor(src, dst_gold, cv::COLOR_RGBA2mRGBA);
EXPECT_MAT_NEAR(dst_gold, dst, 1);
}
catch (const cv::Exception& e)
{
(void)e;
#if defined (CUDA_VERSION) && (CUDA_VERSION < 5000)
ASSERT_EQ(CV_StsBadFlag, e.code);
#else
FAIL();
#endif
}
EXPECT_MAT_NEAR(dst_gold, dst, 1);
}
TEST_P(CvtColor, BayerBG2BGR)
#endif // defined (CUDA_VERSION) && (CUDA_VERSION >= 5000)
GPU_TEST_P(CvtColor, BayerBG2BGR)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1767,7 +1709,7 @@ TEST_P(CvtColor, BayerBG2BGR)
EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
}
TEST_P(CvtColor, BayerBG2BGR4)
GPU_TEST_P(CvtColor, BayerBG2BGR4)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1790,7 +1732,7 @@ TEST_P(CvtColor, BayerBG2BGR4)
EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst3(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
}
TEST_P(CvtColor, BayerGB2BGR)
GPU_TEST_P(CvtColor, BayerGB2BGR)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1806,7 +1748,7 @@ TEST_P(CvtColor, BayerGB2BGR)
EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
}
TEST_P(CvtColor, BayerGB2BGR4)
GPU_TEST_P(CvtColor, BayerGB2BGR4)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1828,7 +1770,7 @@ TEST_P(CvtColor, BayerGB2BGR4)
EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst3(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
}
TEST_P(CvtColor, BayerRG2BGR)
GPU_TEST_P(CvtColor, BayerRG2BGR)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1844,7 +1786,7 @@ TEST_P(CvtColor, BayerRG2BGR)
EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
}
TEST_P(CvtColor, BayerRG2BGR4)
GPU_TEST_P(CvtColor, BayerRG2BGR4)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1866,7 +1808,7 @@ TEST_P(CvtColor, BayerRG2BGR4)
EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst3(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
}
TEST_P(CvtColor, BayerGR2BGR)
GPU_TEST_P(CvtColor, BayerGR2BGR)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1882,7 +1824,7 @@ TEST_P(CvtColor, BayerGR2BGR)
EXPECT_MAT_NEAR(dst_gold(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), dst(cv::Rect(1, 1, dst.cols - 2, dst.rows - 2)), 0);
}
TEST_P(CvtColor, BayerGR2BGR4)
GPU_TEST_P(CvtColor, BayerGR2BGR4)
{
if ((depth != CV_8U && depth != CV_16U) || useRoi)
return;
@ -1929,7 +1871,7 @@ PARAM_TEST_CASE(SwapChannels, cv::gpu::DeviceInfo, cv::Size, UseRoi)
}
};
TEST_P(SwapChannels, Accuracy)
GPU_TEST_P(SwapChannels, Accuracy)
{
cv::Mat src = readImageType("stereobm/aloe-L.png", CV_8UC4);
ASSERT_FALSE(src.empty());
@ -1950,6 +1892,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, SwapChannels, testing::Combine(
DIFFERENT_SIZES,
WHOLE_SUBMAT));
} // namespace
#endif // HAVE_CUDA

@ -43,9 +43,10 @@
#ifdef HAVE_CUDA
namespace {
IMPLEMENT_PARAM_CLASS(Border, int)
namespace
{
IMPLEMENT_PARAM_CLASS(Border, int)
}
PARAM_TEST_CASE(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, Border, BorderType, UseRoi)
{
@ -69,7 +70,7 @@ PARAM_TEST_CASE(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, Border,
}
};
TEST_P(CopyMakeBorder, Accuracy)
GPU_TEST_P(CopyMakeBorder, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Scalar val = randomScalar(0, 255);
@ -99,6 +100,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CopyMakeBorder, testing::Combine(
ALL_BORDER_TYPES,
WHOLE_SUBMAT));
} // namespace
#endif // HAVE_CUDA

File diff suppressed because it is too large Load Diff

@ -69,7 +69,7 @@ PARAM_TEST_CASE(BilateralFilter, cv::gpu::DeviceInfo, cv::Size, MatType)
}
};
TEST_P(BilateralFilter, Accuracy)
GPU_TEST_P(BilateralFilter, Accuracy)
{
cv::Mat src = randomMat(size, type);
@ -105,7 +105,7 @@ struct BruteForceNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(BruteForceNonLocalMeans, Regression)
GPU_TEST_P(BruteForceNonLocalMeans, Regression)
{
using cv::gpu::GpuMat;
@ -134,8 +134,6 @@ TEST_P(BruteForceNonLocalMeans, Regression)
INSTANTIATE_TEST_CASE_P(GPU_Denoising, BruteForceNonLocalMeans, ALL_DEVICES);
////////////////////////////////////////////////////////
// Fast Force Non local means
@ -150,7 +148,7 @@ struct FastNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(FastNonLocalMeans, Regression)
GPU_TEST_P(FastNonLocalMeans, Regression)
{
using cv::gpu::GpuMat;
@ -167,8 +165,8 @@ TEST_P(FastNonLocalMeans, Regression)
fnlmd.labMethod(GpuMat(bgr), dbgr, 20, 10);
#if 0
//dumpImage("denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
//dumpImage("denoising/fnlm_denoised_lena_gray.png", cv::Mat(dgray));
dumpImage("denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
dumpImage("denoising/fnlm_denoised_lena_gray.png", cv::Mat(dgray));
#endif
cv::Mat bgr_gold = readImage("denoising/fnlm_denoised_lena_bgr.png", cv::IMREAD_COLOR);
@ -181,5 +179,4 @@ TEST_P(FastNonLocalMeans, Regression)
INSTANTIATE_TEST_CASE_P(GPU_Denoising, FastNonLocalMeans, ALL_DEVICES);
#endif // HAVE_CUDA

@ -43,118 +43,122 @@
#ifdef HAVE_CUDA
namespace {
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
namespace
{
const double maxPtDif = 1.0;
const double maxSizeDif = 1.0;
const double maxAngleDif = 2.0;
const double maxResponseDif = 0.1;
double dist = cv::norm(p1.pt - p2.pt);
if (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id)
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
{
return true;
}
const double maxPtDif = 1.0;
const double maxSizeDif = 1.0;
const double maxAngleDif = 2.0;
const double maxResponseDif = 0.1;
return false;
}
double dist = cv::norm(p1.pt - p2.pt);
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
{
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
{
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
}
};
if (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id)
{
return true;
}
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
{
if (gold.size() != actual.size())
{
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
<< "\"" << actual_expr << "\" : " << actual.size();
return false;
}
std::sort(actual.begin(), actual.end(), KeyPointLess());
std::sort(gold.begin(), gold.end(), KeyPointLess());
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
{
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
{
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
}
};
for (size_t i = 0; i < gold.size(); ++i)
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
{
const cv::KeyPoint& p1 = gold[i];
const cv::KeyPoint& p2 = actual[i];
if (gold.size() != actual.size())
{
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
<< "\"" << actual_expr << "\" : " << actual.size();
}
if (!keyPointsEquals(p1, p2))
std::sort(actual.begin(), actual.end(), KeyPointLess());
std::sort(gold.begin(), gold.end(), KeyPointLess());
for (size_t i = 0; i < gold.size(); ++i)
{
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
<< "size : " << p1.size << " vs " << p2.size << "\n"
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
<< "response : " << p1.response << " vs " << p2.response << "\n"
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
const cv::KeyPoint& p1 = gold[i];
const cv::KeyPoint& p2 = actual[i];
if (!keyPointsEquals(p1, p2))
{
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
<< "size : " << p1.size << " vs " << p2.size << "\n"
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
<< "response : " << p1.response << " vs " << p2.response << "\n"
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
}
}
return ::testing::AssertionSuccess();
}
return ::testing::AssertionSuccess();
}
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
{
std::sort(actual.begin(), actual.end(), KeyPointLess());
std::sort(gold.begin(), gold.end(), KeyPointLess());
int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
{
std::sort(actual.begin(), actual.end(), KeyPointLess());
std::sort(gold.begin(), gold.end(), KeyPointLess());
int validCount = 0;
int validCount = 0;
for (size_t i = 0; i < gold.size(); ++i)
{
const cv::KeyPoint& p1 = gold[i];
const cv::KeyPoint& p2 = actual[i];
for (size_t i = 0; i < gold.size(); ++i)
{
const cv::KeyPoint& p1 = gold[i];
const cv::KeyPoint& p2 = actual[i];
if (keyPointsEquals(p1, p2))
++validCount;
}
if (keyPointsEquals(p1, p2))
++validCount;
return validCount;
}
return validCount;
}
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
{
int validCount = 0;
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
{
int validCount = 0;
for (size_t i = 0; i < matches.size(); ++i)
{
const cv::DMatch& m = matches[i];
for (size_t i = 0; i < matches.size(); ++i)
{
const cv::DMatch& m = matches[i];
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
if (keyPointsEquals(p1, p2))
++validCount;
}
if (keyPointsEquals(p1, p2))
++validCount;
return validCount;
}
return validCount;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// SURF
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
namespace
{
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
}
PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
{
@ -178,7 +182,7 @@ PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves,
}
};
TEST_P(SURF, Detector)
GPU_TEST_P(SURF, Detector)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
@ -226,7 +230,7 @@ TEST_P(SURF, Detector)
}
}
TEST_P(SURF, Detector_Masked)
GPU_TEST_P(SURF, Detector_Masked)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
@ -277,7 +281,7 @@ TEST_P(SURF, Detector_Masked)
}
}
TEST_P(SURF, Descriptor)
GPU_TEST_P(SURF, Descriptor)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
@ -343,8 +347,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, SURF, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// FAST
IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
namespace
{
IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
}
PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression)
{
@ -362,7 +369,7 @@ PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression
}
};
TEST_P(FAST, Accuracy)
GPU_TEST_P(FAST, Accuracy)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
@ -402,14 +409,17 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, FAST, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// ORB
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
namespace
{
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
}
CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE)
@ -443,7 +453,7 @@ PARAM_TEST_CASE(ORB, cv::gpu::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, OR
}
};
TEST_P(ORB, Accuracy)
GPU_TEST_P(ORB, Accuracy)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
@ -505,8 +515,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, ORB, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// BruteForceMatcher
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
IMPLEMENT_PARAM_CLASS(UseMask, bool)
namespace
{
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
IMPLEMENT_PARAM_CLASS(UseMask, bool)
}
PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, NormCode, DescriptorSize, UseMask)
{
@ -568,7 +581,7 @@ PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, NormCode, DescriptorSize
}
};
TEST_P(BruteForceMatcher, Match_Single)
GPU_TEST_P(BruteForceMatcher, Match_Single)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -595,7 +608,7 @@ TEST_P(BruteForceMatcher, Match_Single)
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, Match_Collection)
GPU_TEST_P(BruteForceMatcher, Match_Collection)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -649,7 +662,7 @@ TEST_P(BruteForceMatcher, Match_Collection)
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, KnnMatch_2_Single)
GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -688,7 +701,7 @@ TEST_P(BruteForceMatcher, KnnMatch_2_Single)
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, KnnMatch_3_Single)
GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Single)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -727,7 +740,7 @@ TEST_P(BruteForceMatcher, KnnMatch_3_Single)
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -789,7 +802,7 @@ TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -851,7 +864,7 @@ TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, RadiusMatch_Single)
GPU_TEST_P(BruteForceMatcher, RadiusMatch_Single)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -900,7 +913,7 @@ TEST_P(BruteForceMatcher, RadiusMatch_Single)
}
}
TEST_P(BruteForceMatcher, RadiusMatch_Collection)
GPU_TEST_P(BruteForceMatcher, RadiusMatch_Collection)
{
cv::gpu::BFMatcher_GPU matcher(normCode);
@ -985,6 +998,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, BruteForceMatcher, testing::Combine(
testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)),
testing::Values(UseMask(false), UseMask(true))));
} // namespace
#endif // HAVE_CUDA

@ -43,27 +43,30 @@
#ifdef HAVE_CUDA
namespace {
IMPLEMENT_PARAM_CLASS(KSize, cv::Size)
cv::Mat getInnerROI(cv::InputArray m_, cv::Size ksize)
namespace
{
cv::Mat m = getMat(m_);
cv::Rect roi(ksize.width, ksize.height, m.cols - 2 * ksize.width, m.rows - 2 * ksize.height);
return m(roi);
}
IMPLEMENT_PARAM_CLASS(KSize, cv::Size)
IMPLEMENT_PARAM_CLASS(Anchor, cv::Point)
IMPLEMENT_PARAM_CLASS(Deriv_X, int)
IMPLEMENT_PARAM_CLASS(Deriv_Y, int)
IMPLEMENT_PARAM_CLASS(Iterations, int)
cv::Mat getInnerROI(cv::InputArray m, int ksize)
{
return getInnerROI(m, cv::Size(ksize, ksize));
cv::Mat getInnerROI(cv::InputArray m_, cv::Size ksize)
{
cv::Mat m = getMat(m_);
cv::Rect roi(ksize.width, ksize.height, m.cols - 2 * ksize.width, m.rows - 2 * ksize.height);
return m(roi);
}
cv::Mat getInnerROI(cv::InputArray m, int ksize)
{
return getInnerROI(m, cv::Size(ksize, ksize));
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Blur
IMPLEMENT_PARAM_CLASS(Anchor, cv::Point)
PARAM_TEST_CASE(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -86,7 +89,7 @@ PARAM_TEST_CASE(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor, Use
}
};
TEST_P(Blur, Accuracy)
GPU_TEST_P(Blur, Accuracy)
{
cv::Mat src = randomMat(size, type);
@ -110,9 +113,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Blur, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// Sobel
IMPLEMENT_PARAM_CLASS(Deriv_X, int)
IMPLEMENT_PARAM_CLASS(Deriv_Y, int)
PARAM_TEST_CASE(Sobel, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, KSize, Deriv_X, Deriv_Y, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -145,7 +145,7 @@ PARAM_TEST_CASE(Sobel, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, KSize,
}
};
TEST_P(Sobel, Accuracy)
GPU_TEST_P(Sobel, Accuracy)
{
if (dx == 0 && dy == 0)
return;
@ -208,7 +208,7 @@ PARAM_TEST_CASE(Scharr, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, Deriv
}
};
TEST_P(Scharr, Accuracy)
GPU_TEST_P(Scharr, Accuracy)
{
if (dx + dy != 1)
return;
@ -268,7 +268,7 @@ PARAM_TEST_CASE(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels,
}
};
TEST_P(GaussianBlur, Accuracy)
GPU_TEST_P(GaussianBlur, Accuracy)
{
cv::Mat src = randomMat(size, type);
double sigma1 = randomDouble(0.1, 1.0);
@ -347,7 +347,7 @@ PARAM_TEST_CASE(Laplacian, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, UseRoi
}
};
TEST_P(Laplacian, Accuracy)
GPU_TEST_P(Laplacian, Accuracy)
{
cv::Mat src = randomMat(size, type);
@ -370,8 +370,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Laplacian, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// Erode
IMPLEMENT_PARAM_CLASS(Iterations, int)
PARAM_TEST_CASE(Erode, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iterations, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -394,7 +392,7 @@ PARAM_TEST_CASE(Erode, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iteration
}
};
TEST_P(Erode, Accuracy)
GPU_TEST_P(Erode, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
@ -443,7 +441,7 @@ PARAM_TEST_CASE(Dilate, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iteratio
}
};
TEST_P(Dilate, Accuracy)
GPU_TEST_P(Dilate, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
@ -497,7 +495,7 @@ PARAM_TEST_CASE(MorphEx, cv::gpu::DeviceInfo, cv::Size, MatType, MorphOp, Anchor
}
};
TEST_P(MorphEx, Accuracy)
GPU_TEST_P(MorphEx, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
@ -551,7 +549,7 @@ PARAM_TEST_CASE(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor,
}
};
TEST_P(Filter2D, Accuracy)
GPU_TEST_P(Filter2D, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = randomMat(cv::Size(ksize.width, ksize.height), CV_32FC1, 0.0, 1.0);
@ -574,6 +572,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Filter2D, testing::Combine(
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT)),
WHOLE_SUBMAT));
} // namespace
#endif // HAVE_CUDA

@ -51,7 +51,7 @@ struct CompactPoints : testing::TestWithParam<gpu::DeviceInfo>
virtual void SetUp() { gpu::setDevice(GetParam().deviceID()); }
};
TEST_P(CompactPoints, CanCompactizeSmallInput)
GPU_TEST_P(CompactPoints, CanCompactizeSmallInput)
{
Mat src0(1, 3, CV_32FC2);
src0.at<Point2f>(0,0) = Point2f(0,0);

@ -44,8 +44,6 @@
#ifdef HAVE_CUDA
namespace {
////////////////////////////////////////////////////////////////////////////////
// SetTo
@ -67,7 +65,7 @@ PARAM_TEST_CASE(SetTo, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
}
};
TEST_P(SetTo, Zero)
GPU_TEST_P(SetTo, Zero)
{
cv::Scalar zero = cv::Scalar::all(0);
@ -77,7 +75,7 @@ TEST_P(SetTo, Zero)
EXPECT_MAT_NEAR(cv::Mat::zeros(size, type), mat, 0.0);
}
TEST_P(SetTo, SameVal)
GPU_TEST_P(SetTo, SameVal)
{
cv::Scalar val = cv::Scalar::all(randomDouble(0.0, 255.0));
@ -102,7 +100,7 @@ TEST_P(SetTo, SameVal)
}
}
TEST_P(SetTo, DifferentVal)
GPU_TEST_P(SetTo, DifferentVal)
{
cv::Scalar val = randomScalar(0.0, 255.0);
@ -127,7 +125,7 @@ TEST_P(SetTo, DifferentVal)
}
}
TEST_P(SetTo, Masked)
GPU_TEST_P(SetTo, Masked)
{
cv::Scalar val = randomScalar(0.0, 255.0);
cv::Mat mat_gold = randomMat(size, type);
@ -184,7 +182,7 @@ PARAM_TEST_CASE(CopyTo, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
}
};
TEST_P(CopyTo, WithOutMask)
GPU_TEST_P(CopyTo, WithOutMask)
{
cv::Mat src = randomMat(size, type);
@ -195,7 +193,7 @@ TEST_P(CopyTo, WithOutMask)
EXPECT_MAT_NEAR(src, dst, 0.0);
}
TEST_P(CopyTo, Masked)
GPU_TEST_P(CopyTo, Masked)
{
cv::Mat src = randomMat(size, type);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
@ -255,7 +253,7 @@ PARAM_TEST_CASE(ConvertTo, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth, Us
}
};
TEST_P(ConvertTo, WithOutScaling)
GPU_TEST_P(ConvertTo, WithOutScaling)
{
cv::Mat src = randomMat(size, depth1);
@ -285,7 +283,7 @@ TEST_P(ConvertTo, WithOutScaling)
}
}
TEST_P(ConvertTo, WithScaling)
GPU_TEST_P(ConvertTo, WithScaling)
{
cv::Mat src = randomMat(size, depth1);
double a = randomDouble(0.0, 1.0);
@ -336,7 +334,7 @@ struct EnsureSizeIsEnough : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(EnsureSizeIsEnough, BufferReuse)
GPU_TEST_P(EnsureSizeIsEnough, BufferReuse)
{
cv::gpu::GpuMat buffer(100, 100, CV_8U);
cv::gpu::GpuMat old = buffer;
@ -358,6 +356,4 @@ TEST_P(EnsureSizeIsEnough, BufferReuse)
INSTANTIATE_TEST_CASE_P(GPU_GpuMat, EnsureSizeIsEnough, ALL_DEVICES);
} // namespace
#endif // HAVE_CUDA

@ -43,8 +43,6 @@
#ifdef HAVE_CUDA
namespace {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughLines
@ -79,7 +77,7 @@ PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
}
};
TEST_P(HoughLines, Accuracy)
GPU_TEST_P(HoughLines, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
@ -88,7 +86,7 @@ TEST_P(HoughLines, Accuracy)
const float rho = 1.0f;
const float theta = (float) (1.5 * CV_PI / 180.0);
onst int threshold = 100;
const int threshold = 100;
cv::Mat src(size, CV_8UC1);
generateLines(src);
@ -124,7 +122,7 @@ PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
}
};
TEST_P(HoughCircles, Accuracy)
GPU_TEST_P(HoughCircles, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
@ -188,7 +186,7 @@ PARAM_TEST_CASE(GeneralizedHough, cv::gpu::DeviceInfo, UseRoi)
{
};
TEST_P(GeneralizedHough, POSITION)
GPU_TEST_P(GeneralizedHough, POSITION)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
@ -251,6 +249,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, GeneralizedHough, testing::Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
} // namespace
#endif // HAVE_CUDA

@ -43,8 +43,6 @@
#ifdef HAVE_CUDA
namespace {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Integral
@ -64,7 +62,7 @@ PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, cv::Size, UseRoi)
}
};
TEST_P(Integral, Accuracy)
GPU_TEST_P(Integral, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
@ -97,7 +95,7 @@ struct HistEven : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(HistEven, Accuracy)
GPU_TEST_P(HistEven, Accuracy)
{
cv::Mat img = readImage("stereobm/aloe-L.png");
ASSERT_FALSE(img.empty());
@ -132,18 +130,21 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HistEven, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// CalcHist
void calcHistGold(const cv::Mat& src, cv::Mat& hist)
namespace
{
hist.create(1, 256, CV_32SC1);
hist.setTo(cv::Scalar::all(0));
int* hist_row = hist.ptr<int>();
for (int y = 0; y < src.rows; ++y)
void calcHistGold(const cv::Mat& src, cv::Mat& hist)
{
const uchar* src_row = src.ptr(y);
hist.create(1, 256, CV_32SC1);
hist.setTo(cv::Scalar::all(0));
for (int x = 0; x < src.cols; ++x)
++hist_row[src_row[x]];
int* hist_row = hist.ptr<int>();
for (int y = 0; y < src.rows; ++y)
{
const uchar* src_row = src.ptr(y);
for (int x = 0; x < src.cols; ++x)
++hist_row[src_row[x]];
}
}
}
@ -162,7 +163,7 @@ PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size)
}
};
TEST_P(CalcHist, Accuracy)
GPU_TEST_P(CalcHist, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
@ -196,7 +197,7 @@ PARAM_TEST_CASE(EqualizeHist, cv::gpu::DeviceInfo, cv::Size)
}
};
TEST_P(EqualizeHist, Accuracy)
GPU_TEST_P(EqualizeHist, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
@ -230,7 +231,7 @@ PARAM_TEST_CASE(ColumnSum, cv::gpu::DeviceInfo, cv::Size)
}
};
TEST_P(ColumnSum, Accuracy)
GPU_TEST_P(ColumnSum, Accuracy)
{
cv::Mat src = randomMat(size, CV_32FC1);
@ -264,8 +265,11 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, ColumnSum, testing::Combine(
////////////////////////////////////////////////////////
// Canny
IMPLEMENT_PARAM_CLASS(AppertureSize, int);
IMPLEMENT_PARAM_CLASS(L2gradient, bool);
namespace
{
IMPLEMENT_PARAM_CLASS(AppertureSize, int);
IMPLEMENT_PARAM_CLASS(L2gradient, bool);
}
PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
{
@ -285,7 +289,7 @@ PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
}
};
TEST_P(Canny, Accuracy)
GPU_TEST_P(Canny, Accuracy)
{
cv::Mat img = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
@ -349,7 +353,7 @@ struct MeanShift : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(MeanShift, Filtering)
GPU_TEST_P(MeanShift, Filtering)
{
cv::Mat img_template;
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
@ -371,7 +375,7 @@ TEST_P(MeanShift, Filtering)
EXPECT_MAT_NEAR(img_template, result, 0.0);
}
TEST_P(MeanShift, Proc)
GPU_TEST_P(MeanShift, Proc)
{
cv::FileStorage fs;
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
@ -402,7 +406,10 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShift, ALL_DEVICES);
////////////////////////////////////////////////////////////////////////////////
// MeanShiftSegmentation
IMPLEMENT_PARAM_CLASS(MinSize, int);
namespace
{
IMPLEMENT_PARAM_CLASS(MinSize, int);
}
PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize)
{
@ -418,7 +425,7 @@ PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize)
}
};
TEST_P(MeanShiftSegmentation, Regression)
GPU_TEST_P(MeanShiftSegmentation, Regression)
{
cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4);
ASSERT_FALSE(img.empty());
@ -448,26 +455,29 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShiftSegmentation, testing::Combine(
////////////////////////////////////////////////////////////////////////////
// Blend
template <typename T>
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
namespace
{
result_gold.create(img1.size(), img1.type());
int cn = img1.channels();
for (int y = 0; y < img1.rows; ++y)
template <typename T>
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
{
const float* weights1_row = weights1.ptr<float>(y);
const float* weights2_row = weights2.ptr<float>(y);
const T* img1_row = img1.ptr<T>(y);
const T* img2_row = img2.ptr<T>(y);
T* result_gold_row = result_gold.ptr<T>(y);
result_gold.create(img1.size(), img1.type());
for (int x = 0; x < img1.cols * cn; ++x)
int cn = img1.channels();
for (int y = 0; y < img1.rows; ++y)
{
float w1 = weights1_row[x / cn];
float w2 = weights2_row[x / cn];
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
const float* weights1_row = weights1.ptr<float>(y);
const float* weights2_row = weights2.ptr<float>(y);
const T* img1_row = img1.ptr<T>(y);
const T* img2_row = img2.ptr<T>(y);
T* result_gold_row = result_gold.ptr<T>(y);
for (int x = 0; x < img1.cols * cn; ++x)
{
float w1 = weights1_row[x / cn];
float w2 = weights2_row[x / cn];
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
}
}
}
}
@ -490,7 +500,7 @@ PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
}
};
TEST_P(Blend, Accuracy)
GPU_TEST_P(Blend, Accuracy)
{
int depth = CV_MAT_DEPTH(type);
@ -520,47 +530,50 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, testing::Combine(
////////////////////////////////////////////////////////
// Convolve
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
namespace
{
// reallocate the output array if needed
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
cv::Size dftSize;
// compute the size of DFT transform
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0s
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
A.copyTo(roiA);
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
cv::dft(tempA, tempA, 0, A.rows);
cv::dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
}
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
{
// reallocate the output array if needed
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
cv::Size dftSize;
// compute the size of DFT transform
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0s
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
A.copyTo(roiA);
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
cv::dft(tempA, tempA, 0, A.rows);
cv::dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
}
IMPLEMENT_PARAM_CLASS(KSize, int);
IMPLEMENT_PARAM_CLASS(Ccorr, bool);
IMPLEMENT_PARAM_CLASS(KSize, int);
IMPLEMENT_PARAM_CLASS(Ccorr, bool);
}
PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
{
@ -580,7 +593,7 @@ PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
}
};
TEST_P(Convolve, Accuracy)
GPU_TEST_P(Convolve, Accuracy)
{
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
@ -606,7 +619,10 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Convolve, testing::Combine(
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED))
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
namespace
{
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
}
PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
{
@ -628,7 +644,7 @@ PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Ch
}
};
TEST_P(MatchTemplate8U, Accuracy)
GPU_TEST_P(MatchTemplate8U, Accuracy)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
@ -674,7 +690,7 @@ PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, C
}
};
TEST_P(MatchTemplate32F, Regression)
GPU_TEST_P(MatchTemplate32F, Regression)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
@ -712,7 +728,7 @@ PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod)
}
};
TEST_P(MatchTemplateBlackSource, Accuracy)
GPU_TEST_P(MatchTemplateBlackSource, Accuracy)
{
cv::Mat image = readImage("matchtemplate/black.png");
ASSERT_FALSE(image.empty());
@ -757,7 +773,7 @@ PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::
}
};
TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
{
cv::Mat image = readImage(imageName);
ASSERT_FALSE(image.empty());
@ -806,7 +822,7 @@ struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::gpu::Device
}
};
TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
{
cv::Mat scene = readImage("matchtemplate/scene.png");
ASSERT_FALSE(scene.empty());
@ -829,7 +845,7 @@ TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
ASSERT_EQ(0, minLoc.y);
}
TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
{
cv::Mat scene = readImage("matchtemplate/scene.png");
ASSERT_FALSE(scene.empty());
@ -879,7 +895,7 @@ PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags)
}
};
TEST_P(MulSpectrums, Simple)
GPU_TEST_P(MulSpectrums, Simple)
{
cv::gpu::GpuMat c;
cv::gpu::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
@ -890,7 +906,7 @@ TEST_P(MulSpectrums, Simple)
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
}
TEST_P(MulSpectrums, Scaled)
GPU_TEST_P(MulSpectrums, Scaled)
{
float scale = 1.f / size.area();
@ -924,31 +940,34 @@ struct Dft : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
namespace
{
SCOPED_TRACE(hint);
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
{
SCOPED_TRACE(hint);
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
cv::Mat b_gold;
cv::dft(a, b_gold, flags);
cv::Mat b_gold;
cv::dft(a, b_gold, flags);
cv::gpu::GpuMat d_b;
cv::gpu::GpuMat d_b_data;
if (inplace)
{
d_b_data.create(1, a.size().area(), CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
cv::gpu::GpuMat d_b;
cv::gpu::GpuMat d_b_data;
if (inplace)
{
d_b_data.create(1, a.size().area(), CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
ASSERT_EQ(CV_32F, d_b.depth());
ASSERT_EQ(2, d_b.channels());
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
ASSERT_EQ(CV_32F, d_b.depth());
ASSERT_EQ(2, d_b.channels());
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
}
}
TEST_P(Dft, C2C)
GPU_TEST_P(Dft, C2C)
{
int cols = randomInt(2, 100);
int rows = randomInt(2, 100);
@ -973,43 +992,46 @@ TEST_P(Dft, C2C)
}
}
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
namespace
{
SCOPED_TRACE(hint);
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
{
SCOPED_TRACE(hint);
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
cv::gpu::GpuMat d_b, d_c;
cv::gpu::GpuMat d_b_data, d_c_data;
if (inplace)
{
if (a.cols == 1)
{
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
else
cv::gpu::GpuMat d_b, d_c;
cv::gpu::GpuMat d_b_data, d_c_data;
if (inplace)
{
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
if (a.cols == 1)
{
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
else
{
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
}
d_c_data.create(1, a.size().area(), CV_32F);
d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
}
d_c_data.create(1, a.size().area(), CV_32F);
d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
}
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
ASSERT_EQ(CV_32F, d_c.depth());
ASSERT_EQ(1, d_c.channels());
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
ASSERT_EQ(CV_32F, d_c.depth());
ASSERT_EQ(1, d_c.channels());
cv::Mat c(d_c);
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
cv::Mat c(d_c);
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
}
}
TEST_P(Dft, R2CThenC2R)
GPU_TEST_P(Dft, R2CThenC2R)
{
int cols = randomInt(2, 100);
int rows = randomInt(2, 100);
@ -1036,8 +1058,11 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Dft, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// CornerHarris
IMPLEMENT_PARAM_CLASS(BlockSize, int);
IMPLEMENT_PARAM_CLASS(ApertureSize, int);
namespace
{
IMPLEMENT_PARAM_CLASS(BlockSize, int);
IMPLEMENT_PARAM_CLASS(ApertureSize, int);
}
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize)
{
@ -1059,7 +1084,7 @@ PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSiz
}
};
TEST_P(CornerHarris, Accuracy)
GPU_TEST_P(CornerHarris, Accuracy)
{
cv::Mat src = readImageType("stereobm/aloe-L.png", type);
ASSERT_FALSE(src.empty());
@ -1105,7 +1130,7 @@ PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, BlockS
}
};
TEST_P(CornerMinEigen, Accuracy)
GPU_TEST_P(CornerMinEigen, Accuracy)
{
cv::Mat src = readImageType("stereobm/aloe-L.png", type);
ASSERT_FALSE(src.empty());
@ -1126,6 +1151,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
} // namespace
#endif // HAVE_CUDA

@ -43,8 +43,8 @@
#ifdef HAVE_CUDA
namespace {
namespace
{
struct GreedyLabeling
{
struct dot
@ -166,7 +166,7 @@ struct Labeling : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(Labeling, ConnectedComponents)
GPU_TEST_P(Labeling, ConnectedComponents)
{
cv::Mat image;
cvtColor(loat_image(), image, CV_BGR2GRAY);
@ -191,6 +191,6 @@ TEST_P(Labeling, ConnectedComponents)
host.checkCorrectness(cv::Mat(components));
}
INSTANTIATE_TEST_CASE_P(ConnectedComponents, Labeling, ALL_DEVICES);
INSTANTIATE_TEST_CASE_P(GPU_ConnectedComponents, Labeling, ALL_DEVICES);
#endif // HAVE_CUDA

@ -41,11 +41,9 @@
#include "test_precomp.hpp"
#if defined HAVE_CUDA
OutputLevel nvidiaTestOutputLevel = OutputLevelNone;
#endif
#ifdef HAVE_CUDA
#if defined HAVE_CUDA && !defined(CUDA_DISABLER)
OutputLevel nvidiaTestOutputLevel = OutputLevelNone;
using namespace cvtest;
using namespace testing;
@ -69,77 +67,77 @@ struct NVidiaTest : TestWithParam<cv::gpu::DeviceInfo>
struct NPPST : NVidiaTest {};
struct NCV : NVidiaTest {};
//TEST_P(NPPST, Integral)
//{
// bool res = nvidia_NPPST_Integral_Image(path, nvidiaTestOutputLevel);
GPU_TEST_P(NPPST, Integral)
{
bool res = nvidia_NPPST_Integral_Image(_path, nvidiaTestOutputLevel);
// ASSERT_TRUE(res);
//}
ASSERT_TRUE(res);
}
TEST_P(NPPST, SquaredIntegral)
GPU_TEST_P(NPPST, SquaredIntegral)
{
bool res = nvidia_NPPST_Squared_Integral_Image(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NPPST, RectStdDev)
GPU_TEST_P(NPPST, RectStdDev)
{
bool res = nvidia_NPPST_RectStdDev(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NPPST, Resize)
GPU_TEST_P(NPPST, Resize)
{
bool res = nvidia_NPPST_Resize(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NPPST, VectorOperations)
GPU_TEST_P(NPPST, VectorOperations)
{
bool res = nvidia_NPPST_Vector_Operations(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NPPST, Transpose)
GPU_TEST_P(NPPST, Transpose)
{
bool res = nvidia_NPPST_Transpose(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NCV, VectorOperations)
GPU_TEST_P(NCV, VectorOperations)
{
bool res = nvidia_NCV_Vector_Operations(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NCV, HaarCascadeLoader)
GPU_TEST_P(NCV, HaarCascadeLoader)
{
bool res = nvidia_NCV_Haar_Cascade_Loader(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NCV, HaarCascadeApplication)
GPU_TEST_P(NCV, HaarCascadeApplication)
{
bool res = nvidia_NCV_Haar_Cascade_Application(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NCV, HypothesesFiltration)
GPU_TEST_P(NCV, HypothesesFiltration)
{
bool res = nvidia_NCV_Hypotheses_Filtration(_path, nvidiaTestOutputLevel);
ASSERT_TRUE(res);
}
TEST_P(NCV, Visualization)
GPU_TEST_P(NCV, Visualization)
{
// this functionality doesn't used in gpu module
bool res = nvidia_NCV_Visualization(_path, nvidiaTestOutputLevel);

@ -43,8 +43,6 @@
#ifdef HAVE_CUDA
namespace {
//#define DUMP
struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
@ -176,7 +174,7 @@ struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
};
// desabled while resize does not fixed
TEST_P(HOG, DISABLED_Detect)
GPU_TEST_P(HOG, Detect)
{
cv::Mat img_rgb = readImage("hog/road.png");
ASSERT_FALSE(img_rgb.empty());
@ -201,7 +199,7 @@ TEST_P(HOG, DISABLED_Detect)
f.close();
}
TEST_P(HOG, GetDescriptors)
GPU_TEST_P(HOG, GetDescriptors)
{
// Load image (e.g. train data, composed from windows)
cv::Mat img_rgb = readImage("hog/train_data.png");
@ -288,6 +286,7 @@ TEST_P(HOG, GetDescriptors)
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, ALL_DEVICES);
//============== caltech hog tests =====================//
struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string> >
{
cv::gpu::DeviceInfo devInfo;
@ -303,7 +302,7 @@ struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::gpu::Device
}
};
TEST_P(CalTech, HOG)
GPU_TEST_P(CalTech, HOG)
{
cv::gpu::GpuMat d_img(img);
cv::Mat markedImage(img.clone());
@ -350,7 +349,7 @@ PARAM_TEST_CASE(LBP_Read_classifier, cv::gpu::DeviceInfo, int)
}
};
TEST_P(LBP_Read_classifier, Accuracy)
GPU_TEST_P(LBP_Read_classifier, Accuracy)
{
cv::gpu::CascadeClassifier_GPU classifier;
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
@ -372,7 +371,7 @@ PARAM_TEST_CASE(LBP_classify, cv::gpu::DeviceInfo, int)
}
};
TEST_P(LBP_classify, Accuracy)
GPU_TEST_P(LBP_classify, Accuracy)
{
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png";
@ -422,6 +421,4 @@ TEST_P(LBP_classify, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify,
testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
} // namespace
#endif // HAVE_CUDA

@ -68,7 +68,7 @@ PARAM_TEST_CASE(GlBuffer, cv::Size, MatType)
}
};
TEST_P(GlBuffer, Constructor1)
GPU_TEST_P(GlBuffer, Constructor1)
{
cv::GlBuffer buf(size.height, size.width, type, cv::GlBuffer::ARRAY_BUFFER, true);
@ -77,7 +77,7 @@ TEST_P(GlBuffer, Constructor1)
EXPECT_EQ(type, buf.type());
}
TEST_P(GlBuffer, Constructor2)
GPU_TEST_P(GlBuffer, Constructor2)
{
cv::GlBuffer buf(size, type, cv::GlBuffer::ARRAY_BUFFER, true);
@ -86,7 +86,7 @@ TEST_P(GlBuffer, Constructor2)
EXPECT_EQ(type, buf.type());
}
TEST_P(GlBuffer, ConstructorFromMat)
GPU_TEST_P(GlBuffer, ConstructorFromMat)
{
cv::Mat gold = randomMat(size, type);
@ -98,7 +98,7 @@ TEST_P(GlBuffer, ConstructorFromMat)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, ConstructorFromGpuMat)
GPU_TEST_P(GlBuffer, ConstructorFromGpuMat)
{
cv::Mat gold = randomMat(size, type);
cv::gpu::GpuMat d_gold(gold);
@ -111,7 +111,7 @@ TEST_P(GlBuffer, ConstructorFromGpuMat)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, ConstructorFromGlBuffer)
GPU_TEST_P(GlBuffer, ConstructorFromGlBuffer)
{
cv::GlBuffer buf_gold(size, type, cv::GlBuffer::ARRAY_BUFFER, true);
@ -123,7 +123,7 @@ TEST_P(GlBuffer, ConstructorFromGlBuffer)
EXPECT_EQ(buf_gold.type(), buf.type());
}
TEST_P(GlBuffer, ConstructorFromGlTexture2D)
GPU_TEST_P(GlBuffer, ConstructorFromGlTexture2D)
{
const int depth = CV_MAT_DEPTH(type);
const int cn = CV_MAT_CN(type);
@ -142,7 +142,7 @@ TEST_P(GlBuffer, ConstructorFromGlTexture2D)
EXPECT_MAT_NEAR(gold, bufData, 1e-2);
}
TEST_P(GlBuffer, Create)
GPU_TEST_P(GlBuffer, Create)
{
cv::GlBuffer buf;
buf.create(size.height, size.width, type, cv::GlBuffer::ARRAY_BUFFER, true);
@ -152,7 +152,7 @@ TEST_P(GlBuffer, Create)
EXPECT_EQ(type, buf.type());
}
TEST_P(GlBuffer, CopyFromMat)
GPU_TEST_P(GlBuffer, CopyFromMat)
{
cv::Mat gold = randomMat(size, type);
@ -165,7 +165,7 @@ TEST_P(GlBuffer, CopyFromMat)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, CopyFromGpuMat)
GPU_TEST_P(GlBuffer, CopyFromGpuMat)
{
cv::Mat gold = randomMat(size, type);
cv::gpu::GpuMat d_gold(gold);
@ -179,7 +179,7 @@ TEST_P(GlBuffer, CopyFromGpuMat)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, CopyFromGlBuffer)
GPU_TEST_P(GlBuffer, CopyFromGlBuffer)
{
cv::Mat gold = randomMat(size, type);
cv::GlBuffer buf_gold(gold, cv::GlBuffer::ARRAY_BUFFER, true);
@ -195,7 +195,7 @@ TEST_P(GlBuffer, CopyFromGlBuffer)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, CopyFromGlTexture2D)
GPU_TEST_P(GlBuffer, CopyFromGlTexture2D)
{
const int depth = CV_MAT_DEPTH(type);
const int cn = CV_MAT_CN(type);
@ -215,7 +215,7 @@ TEST_P(GlBuffer, CopyFromGlTexture2D)
EXPECT_MAT_NEAR(gold, bufData, 1e-2);
}
TEST_P(GlBuffer, CopyToGpuMat)
GPU_TEST_P(GlBuffer, CopyToGpuMat)
{
cv::Mat gold = randomMat(size, type);
@ -227,7 +227,7 @@ TEST_P(GlBuffer, CopyToGpuMat)
EXPECT_MAT_NEAR(gold, dst, 0);
}
TEST_P(GlBuffer, CopyToGlBuffer)
GPU_TEST_P(GlBuffer, CopyToGlBuffer)
{
cv::Mat gold = randomMat(size, type);
@ -244,7 +244,7 @@ TEST_P(GlBuffer, CopyToGlBuffer)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, CopyToGlTexture2D)
GPU_TEST_P(GlBuffer, CopyToGlTexture2D)
{
const int depth = CV_MAT_DEPTH(type);
const int cn = CV_MAT_CN(type);
@ -265,7 +265,7 @@ TEST_P(GlBuffer, CopyToGlTexture2D)
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
TEST_P(GlBuffer, Clone)
GPU_TEST_P(GlBuffer, Clone)
{
cv::Mat gold = randomMat(size, type);
@ -281,7 +281,7 @@ TEST_P(GlBuffer, Clone)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, MapHostRead)
GPU_TEST_P(GlBuffer, MapHostRead)
{
cv::Mat gold = randomMat(size, type);
@ -294,7 +294,7 @@ TEST_P(GlBuffer, MapHostRead)
buf.unmapHost();
}
TEST_P(GlBuffer, MapHostWrite)
GPU_TEST_P(GlBuffer, MapHostWrite)
{
cv::Mat gold = randomMat(size, type);
@ -311,7 +311,7 @@ TEST_P(GlBuffer, MapHostWrite)
EXPECT_MAT_NEAR(gold, bufData, 0);
}
TEST_P(GlBuffer, MapDevice)
GPU_TEST_P(GlBuffer, MapDevice)
{
cv::Mat gold = randomMat(size, type);
@ -358,7 +358,7 @@ PARAM_TEST_CASE(GlTexture2D, cv::Size, MatType)
}
};
TEST_P(GlTexture2D, Constructor1)
GPU_TEST_P(GlTexture2D, Constructor1)
{
cv::GlTexture2D tex(size.height, size.width, format, true);
@ -367,7 +367,7 @@ TEST_P(GlTexture2D, Constructor1)
EXPECT_EQ(format, tex.format());
}
TEST_P(GlTexture2D, Constructor2)
GPU_TEST_P(GlTexture2D, Constructor2)
{
cv::GlTexture2D tex(size, format, true);
@ -376,7 +376,7 @@ TEST_P(GlTexture2D, Constructor2)
EXPECT_EQ(format, tex.format());
}
TEST_P(GlTexture2D, ConstructorFromMat)
GPU_TEST_P(GlTexture2D, ConstructorFromMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
@ -388,7 +388,7 @@ TEST_P(GlTexture2D, ConstructorFromMat)
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
TEST_P(GlTexture2D, ConstructorFromGpuMat)
GPU_TEST_P(GlTexture2D, ConstructorFromGpuMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::gpu::GpuMat d_gold(gold);
@ -401,7 +401,7 @@ TEST_P(GlTexture2D, ConstructorFromGpuMat)
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
TEST_P(GlTexture2D, ConstructorFromGlBuffer)
GPU_TEST_P(GlTexture2D, ConstructorFromGlBuffer)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::GlBuffer buf_gold(gold, cv::GlBuffer::PIXEL_UNPACK_BUFFER, true);
@ -414,7 +414,7 @@ TEST_P(GlTexture2D, ConstructorFromGlBuffer)
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
TEST_P(GlTexture2D, ConstructorFromGlTexture2D)
GPU_TEST_P(GlTexture2D, ConstructorFromGlTexture2D)
{
cv::GlTexture2D tex_gold(size, format, true);
cv::GlTexture2D tex(tex_gold);
@ -425,7 +425,7 @@ TEST_P(GlTexture2D, ConstructorFromGlTexture2D)
EXPECT_EQ(tex_gold.format(), tex.format());
}
TEST_P(GlTexture2D, Create)
GPU_TEST_P(GlTexture2D, Create)
{
cv::GlTexture2D tex;
tex.create(size.height, size.width, format, true);
@ -435,7 +435,7 @@ TEST_P(GlTexture2D, Create)
EXPECT_EQ(format, tex.format());
}
TEST_P(GlTexture2D, CopyFromMat)
GPU_TEST_P(GlTexture2D, CopyFromMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
@ -448,7 +448,7 @@ TEST_P(GlTexture2D, CopyFromMat)
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
TEST_P(GlTexture2D, CopyFromGpuMat)
GPU_TEST_P(GlTexture2D, CopyFromGpuMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::gpu::GpuMat d_gold(gold);
@ -462,7 +462,7 @@ TEST_P(GlTexture2D, CopyFromGpuMat)
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
TEST_P(GlTexture2D, CopyFromGlBuffer)
GPU_TEST_P(GlTexture2D, CopyFromGlBuffer)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
cv::GlBuffer buf_gold(gold, cv::GlBuffer::PIXEL_UNPACK_BUFFER, true);
@ -476,7 +476,7 @@ TEST_P(GlTexture2D, CopyFromGlBuffer)
EXPECT_MAT_NEAR(gold, texData, 1e-2);
}
TEST_P(GlTexture2D, CopyToGpuMat)
GPU_TEST_P(GlTexture2D, CopyToGpuMat)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);
@ -488,7 +488,7 @@ TEST_P(GlTexture2D, CopyToGpuMat)
EXPECT_MAT_NEAR(gold, dst, 1e-2);
}
TEST_P(GlTexture2D, CopyToGlBuffer)
GPU_TEST_P(GlTexture2D, CopyToGlBuffer)
{
cv::Mat gold = randomMat(size, type, 0, depth == CV_8U ? 255 : 1);

@ -0,0 +1,623 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
//////////////////////////////////////////////////////
// BroxOpticalFlow
//#define BROX_DUMP
struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(BroxOpticalFlow, Regression)
{
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
ASSERT_FALSE(frame1.empty());
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
cv::gpu::GpuMat u;
cv::gpu::GpuMat v;
brox(loadMat(frame0), loadMat(frame1), u, v);
std::string fname(cvtest::TS::ptr()->get_data_path());
if (devInfo.majorVersion() >= 2)
fname += "opticalflow/brox_optical_flow_cc20.bin";
else
fname += "opticalflow/brox_optical_flow.bin";
#ifndef BROX_DUMP
std::ifstream f(fname.c_str(), std::ios_base::binary);
int rows, cols;
f.read((char*) &rows, sizeof(rows));
f.read((char*) &cols, sizeof(cols));
cv::Mat u_gold(rows, cols, CV_32FC1);
for (int i = 0; i < u_gold.rows; ++i)
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
cv::Mat v_gold(rows, cols, CV_32FC1);
for (int i = 0; i < v_gold.rows; ++i)
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
EXPECT_MAT_NEAR(u_gold, u, 0);
EXPECT_MAT_NEAR(v_gold, v, 0);
#else
std::ofstream f(fname.c_str(), std::ios_base::binary);
f.write((char*) &u.rows, sizeof(u.rows));
f.write((char*) &u.cols, sizeof(u.cols));
cv::Mat h_u(u);
cv::Mat h_v(v);
for (int i = 0; i < u.rows; ++i)
f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
for (int i = 0; i < v.rows; ++i)
f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
#endif
}
GPU_TEST_P(BroxOpticalFlow, OpticalFlowNan)
{
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
ASSERT_FALSE(frame1.empty());
cv::Mat r_frame0, r_frame1;
cv::resize(frame0, r_frame0, cv::Size(1380,1000));
cv::resize(frame1, r_frame1, cv::Size(1380,1000));
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/);
cv::gpu::GpuMat u;
cv::gpu::GpuMat v;
brox(loadMat(r_frame0), loadMat(r_frame1), u, v);
cv::Mat h_u, h_v;
u.download(h_u);
v.download(h_v);
EXPECT_TRUE(cv::checkRange(h_u));
EXPECT_TRUE(cv::checkRange(h_v));
};
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
//////////////////////////////////////////////////////
// GoodFeaturesToTrack
namespace
{
IMPLEMENT_PARAM_CLASS(MinDistance, double)
}
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
{
cv::gpu::DeviceInfo devInfo;
double minDistance;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
minDistance = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(GoodFeaturesToTrack, Accuracy)
{
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
int maxCorners = 1000;
double qualityLevel = 0.01;
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
cv::gpu::GpuMat d_pts;
detector(loadMat(image), d_pts);
ASSERT_FALSE(d_pts.empty());
std::vector<cv::Point2f> pts(d_pts.cols);
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*) &pts[0]);
d_pts.download(pts_mat);
std::vector<cv::Point2f> pts_gold;
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
ASSERT_EQ(pts_gold.size(), pts.size());
size_t mistmatch = 0;
for (size_t i = 0; i < pts.size(); ++i)
{
cv::Point2i a = pts_gold[i];
cv::Point2i b = pts[i];
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
if (!eq)
++mistmatch;
}
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
ASSERT_LE(bad_ratio, 0.01);
}
GPU_TEST_P(GoodFeaturesToTrack, EmptyCorners)
{
int maxCorners = 1000;
double qualityLevel = 0.01;
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
cv::gpu::GpuMat src(100, 100, CV_8UC1, cv::Scalar::all(0));
cv::gpu::GpuMat corners(1, maxCorners, CV_32FC2);
detector(src, corners);
ASSERT_TRUE(corners.empty());
}
INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
ALL_DEVICES,
testing::Values(MinDistance(0.0), MinDistance(3.0))));
//////////////////////////////////////////////////////
// PyrLKOpticalFlow
namespace
{
IMPLEMENT_PARAM_CLASS(UseGray, bool)
}
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
{
cv::gpu::DeviceInfo devInfo;
bool useGray;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useGray = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(PyrLKOpticalFlow, Sparse)
{
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
if (useGray)
gray_frame = frame0;
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
std::vector<cv::Point2f> pts;
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
cv::gpu::GpuMat d_pts;
cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
d_pts.upload(pts_mat);
cv::gpu::PyrLKOpticalFlow pyrLK;
cv::gpu::GpuMat d_nextPts;
cv::gpu::GpuMat d_status;
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]);
d_nextPts.download(nextPts_mat);
std::vector<unsigned char> status(d_status.cols);
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]);
d_status.download(status_mat);
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
ASSERT_EQ(status_gold.size(), status.size());
size_t mistmatch = 0;
for (size_t i = 0; i < nextPts.size(); ++i)
{
cv::Point2i a = nextPts[i];
cv::Point2i b = nextPts_gold[i];
if (status[i] != status_gold[i])
{
++mistmatch;
continue;
}
if (status[i])
{
bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
if (!eq)
++mistmatch;
}
}
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
ASSERT_LE(bad_ratio, 0.01);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(UseGray(true), UseGray(false))));
//////////////////////////////////////////////////////
// FarnebackOpticalFlow
namespace
{
IMPLEMENT_PARAM_CLASS(PyrScale, double)
IMPLEMENT_PARAM_CLASS(PolyN, int)
CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN)
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
}
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
{
cv::gpu::DeviceInfo devInfo;
double pyrScale;
int polyN;
int flags;
bool useInitFlow;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
pyrScale = GET_PARAM(1);
polyN = GET_PARAM(2);
flags = GET_PARAM(3);
useInitFlow = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(FarnebackOpticalFlow, Accuracy)
{
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
double polySigma = polyN <= 5 ? 1.1 : 1.5;
cv::gpu::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
cv::gpu::GpuMat d_flowx, d_flowy;
farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
cv::Mat flow;
if (useInitFlow)
{
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
cv::merge(flowxy, 2, flow);
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
}
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
std::vector<cv::Mat> flowxy;
cv::split(flow, flowxy);
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
testing::Values(PolyN(5), PolyN(7)),
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
testing::Values(UseInitFlow(false), UseInitFlow(true))));
//////////////////////////////////////////////////////
// OpticalFlowDual_TVL1
PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(OpticalFlowDual_TVL1, Accuracy)
{
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::gpu::OpticalFlowDual_TVL1_GPU d_alg;
cv::gpu::GpuMat d_flowx = createMat(frame0.size(), CV_32FC1, useRoi);
cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi);
d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy);
cv::OpticalFlowDual_TVL1 alg;
cv::Mat flow;
alg(frame0, frame1, flow);
cv::Mat gold[2];
cv::split(flow, gold);
EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3);
EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// OpticalFlowBM
namespace
{
void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
cv::Mat& velx, cv::Mat& vely)
{
cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
velx.create(sz, CV_32FC1);
vely.create(sz, CV_32FC1);
CvMat cvprev = prev;
CvMat cvcurr = curr;
CvMat cvvelx = velx;
CvMat cvvely = vely;
cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
}
}
struct OpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
{
};
GPU_TEST_P(OpticalFlowBM, Accuracy)
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size block_size(16, 16);
cv::Size shift_size(1, 1);
cv::Size max_range(16, 16);
cv::gpu::GpuMat d_velx, d_vely, buf;
cv::gpu::calcOpticalFlowBM(loadMat(frame0), loadMat(frame1),
block_size, shift_size, max_range, false,
d_velx, d_vely, buf);
cv::Mat velx, vely;
calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
EXPECT_MAT_NEAR(velx, d_velx, 0);
EXPECT_MAT_NEAR(vely, d_vely, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowBM, ALL_DEVICES);
//////////////////////////////////////////////////////
// FastOpticalFlowBM
namespace
{
void FastOpticalFlowBM_gold(const cv::Mat_<uchar>& I0, const cv::Mat_<uchar>& I1, cv::Mat_<float>& velx, cv::Mat_<float>& vely, int search_window, int block_window)
{
velx.create(I0.size());
vely.create(I0.size());
int search_radius = search_window / 2;
int block_radius = block_window / 2;
for (int y = 0; y < I0.rows; ++y)
{
for (int x = 0; x < I0.cols; ++x)
{
int bestDist = std::numeric_limits<int>::max();
int bestDx = 0;
int bestDy = 0;
for (int dy = -search_radius; dy <= search_radius; ++dy)
{
for (int dx = -search_radius; dx <= search_radius; ++dx)
{
int dist = 0;
for (int by = -block_radius; by <= block_radius; ++by)
{
for (int bx = -block_radius; bx <= block_radius; ++bx)
{
int I0_val = I0(cv::borderInterpolate(y + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + bx, I0.cols, cv::BORDER_DEFAULT));
int I1_val = I1(cv::borderInterpolate(y + dy + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + dx + bx, I0.cols, cv::BORDER_DEFAULT));
dist += std::abs(I0_val - I1_val);
}
}
if (dist < bestDist)
{
bestDist = dist;
bestDx = dx;
bestDy = dy;
}
}
}
velx(y, x) = (float) bestDx;
vely(y, x) = (float) bestDy;
}
}
}
double calc_rmse(const cv::Mat_<float>& flow1, const cv::Mat_<float>& flow2)
{
double sum = 0.0;
for (int y = 0; y < flow1.rows; ++y)
{
for (int x = 0; x < flow1.cols; ++x)
{
double diff = flow1(y, x) - flow2(y, x);
sum += diff * diff;
}
}
return std::sqrt(sum / flow1.size().area());
}
}
struct FastOpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
{
};
GPU_TEST_P(FastOpticalFlowBM, Accuracy)
{
const double MAX_RMSE = 0.6;
int search_window = 15;
int block_window = 5;
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size smallSize(320, 240);
cv::Mat frame0_small;
cv::Mat frame1_small;
cv::resize(frame0, frame0_small, smallSize);
cv::resize(frame1, frame1_small, smallSize);
cv::gpu::GpuMat d_flowx;
cv::gpu::GpuMat d_flowy;
cv::gpu::FastOpticalFlowBM fastBM;
fastBM(loadMat(frame0_small), loadMat(frame1_small), d_flowx, d_flowy, search_window, block_window);
cv::Mat_<float> flowx;
cv::Mat_<float> flowy;
FastOpticalFlowBM_gold(frame0_small, frame1_small, flowx, flowy, search_window, block_window);
double err;
err = calc_rmse(flowx, cv::Mat(d_flowx));
EXPECT_LE(err, MAX_RMSE);
err = calc_rmse(flowy, cv::Mat(d_flowy));
EXPECT_LE(err, MAX_RMSE);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, FastOpticalFlowBM, ALL_DEVICES);
#endif // HAVE_CUDA

@ -51,6 +51,7 @@
#define __OPENCV_TEST_PRECOMP_HPP__
#include <cmath>
#include <ctime>
#include <cstdio>
#include <iostream>
#include <fstream>

@ -64,7 +64,7 @@ PARAM_TEST_CASE(PyrDown, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
}
};
TEST_P(PyrDown, Accuracy)
GPU_TEST_P(PyrDown, Accuracy)
{
cv::Mat src = randomMat(size, type);
@ -104,7 +104,7 @@ PARAM_TEST_CASE(PyrUp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
}
};
TEST_P(PyrUp, Accuracy)
GPU_TEST_P(PyrUp, Accuracy)
{
cv::Mat src = randomMat(size, type);

@ -152,7 +152,7 @@ PARAM_TEST_CASE(Remap, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, Bo
}
};
TEST_P(Remap, Accuracy)
GPU_TEST_P(Remap, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Scalar val = randomScalar(0.0, 255.0);

@ -136,7 +136,7 @@ PARAM_TEST_CASE(Resize, cv::gpu::DeviceInfo, cv::Size, MatType, double, Interpol
}
};
TEST_P(Resize, Accuracy)
GPU_TEST_P(Resize, Accuracy)
{
cv::Mat src = randomMat(size, type);
@ -157,8 +157,8 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Resize, testing::Combine(
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
WHOLE_SUBMAT));
/////////////////
PARAM_TEST_CASE(ResizeSameAsHost, cv::gpu::DeviceInfo, cv::Size, MatType, double, Interpolation, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -182,7 +182,7 @@ PARAM_TEST_CASE(ResizeSameAsHost, cv::gpu::DeviceInfo, cv::Size, MatType, double
};
// downscaling only: used for classifiers
TEST_P(ResizeSameAsHost, Accuracy)
GPU_TEST_P(ResizeSameAsHost, Accuracy)
{
cv::Mat src = randomMat(size, type);
@ -224,7 +224,7 @@ PARAM_TEST_CASE(ResizeNPP, cv::gpu::DeviceInfo, MatType, double, Interpolation)
}
};
TEST_P(ResizeNPP, Accuracy)
GPU_TEST_P(ResizeNPP, Accuracy)
{
cv::Mat src = readImageType("stereobp/aloe-L.png", type);
ASSERT_FALSE(src.empty());

@ -40,14 +40,14 @@
//
//M*/
#include <test_precomp.hpp>
#include <time.h>
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
using cv::gpu::GpuMat;
// show detection results on input image with cv::imshow
// #define SHOW_DETECTIONS
//#define SHOW_DETECTIONS
#if defined SHOW_DETECTIONS
# define SHOW(res) \
@ -57,22 +57,22 @@ using cv::gpu::GpuMat;
# define SHOW(res)
#endif
#define GPU_TEST_P(fixture, name, params) \
class fixture##_##name : public fixture { \
public: \
fixture##_##name() {} \
protected: \
virtual void body(); \
}; \
TEST_P(fixture##_##name, name /*none*/){ body();} \
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \
void fixture##_##name::body()
TEST(SCascadeTest, readCascade)
{
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
cv::gpu::SCascade cascade;
namespace {
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
}
namespace
{
typedef cv::gpu::SCascade::Detection Detection;
static cv::Rect getFromTable(int idx)
cv::Rect getFromTable(int idx)
{
static const cv::Rect rois[] =
{
@ -92,16 +92,16 @@ namespace {
return rois[idx];
}
static std::string itoa(long i)
std::string itoa(long i)
{
static char s[65];
sprintf(s, "%ld", i);
return std::string(s);
}
static void print(std::ostream &out, const Detection& d)
void print(std::ostream &out, const Detection& d)
{
#if defined SHOW_DETECTIONS
#if defined SHOW_DETECTIONS
out << "\x1b[32m[ detection]\x1b[0m ("
<< std::setw(4) << d.x
<< " "
@ -113,22 +113,22 @@ namespace {
<< ") "
<< std::setw(12) << d.confidence
<< std::endl;
#else
#else
(void)out; (void)d;
#endif
#endif
}
static void printTotal(std::ostream &out, int detbytes)
void printTotal(std::ostream &out, int detbytes)
{
#if defined SHOW_DETECTIONS
#if defined SHOW_DETECTIONS
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(Detection)) << std::endl;
#else
#else
(void)out; (void)detbytes;
#endif
#endif
}
#if defined SHOW_DETECTIONS
static std::string getImageName(int level)
std::string getImageName(int level)
{
time_t rawtime;
struct tm * timeinfo;
@ -141,7 +141,7 @@ namespace {
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
}
static void writeResult(const cv::Mat& result, const int level)
void writeResult(const cv::Mat& result, const int level)
{
std::string path = cv::tempfile(getImageName(level).c_str());
cv::imwrite(path, result);
@ -150,13 +150,11 @@ namespace {
#endif
}
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestRoi;
GPU_TEST_P(SCascadeTestRoi, detect,
testing::Combine(
ALL_DEVICES,
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 5)))
PARAM_TEST_CASE(SCascadeTestRoi, cv::gpu::DeviceInfo, std::string, std::string, int)
{
};
GPU_TEST_P(SCascadeTestRoi, Detect)
{
cv::gpu::setDevice(GET_PARAM(0).deviceID());
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
@ -202,26 +200,24 @@ GPU_TEST_P(SCascadeTestRoi, detect,
}
SHOW(result);
}
TEST(SCascadeTest, readCascade)
{
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
cv::gpu::SCascade cascade;
cv::FileStorage fs(xml, cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
INSTANTIATE_TEST_CASE_P(GPU_SoftCascade, SCascadeTestRoi, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 5)));
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
}
struct SCascadeTestAll : testing::TestWithParam<cv::gpu::DeviceInfo>
{
virtual void SetUp()
{
cv::gpu::setDevice(GetParam().deviceID());
}
};
typedef ::testing::TestWithParam<cv::gpu::DeviceInfo > SCascadeTestAll;
GPU_TEST_P(SCascadeTestAll, detect,
ALL_DEVICES
)
GPU_TEST_P(SCascadeTestAll, detect)
{
cv::gpu::setDevice(GetParam().deviceID());
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
cv::gpu::SCascade cascade;
@ -239,20 +235,16 @@ GPU_TEST_P(SCascadeTestAll, detect,
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2));
sub.setTo(cv::Scalar::all(1));
objectBoxes.setTo(0);
cascade.detect(colored, rois, objectBoxes);
typedef cv::gpu::SCascade::Detection Detection;
cv::Mat detections(objectBoxes);
int a = *(detections.ptr<int>(0));
ASSERT_EQ(a ,2448);
ASSERT_EQ(a, 2448);
}
GPU_TEST_P(SCascadeTestAll, detectOnIntegral,
ALL_DEVICES
)
GPU_TEST_P(SCascadeTestAll, detectOnIntegral)
{
cv::gpu::setDevice(GetParam().deviceID());
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
cv::gpu::SCascade cascade;
@ -283,15 +275,11 @@ GPU_TEST_P(SCascadeTestAll, detectOnIntegral,
typedef cv::gpu::SCascade::Detection Detection;
cv::Mat detections(objectBoxes);
int a = *(detections.ptr<int>(0));
ASSERT_EQ( a ,1024);
ASSERT_EQ(a, 1024);
}
GPU_TEST_P(SCascadeTestAll, detectStream,
ALL_DEVICES
)
GPU_TEST_P(SCascadeTestAll, detectStream)
{
cv::gpu::setDevice(GetParam().deviceID());
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
cv::gpu::SCascade cascade;
@ -318,8 +306,9 @@ GPU_TEST_P(SCascadeTestAll, detectStream,
typedef cv::gpu::SCascade::Detection Detection;
cv::Mat detections(objectBoxes);
int a = *(detections.ptr<int>(0));
ASSERT_EQ(a ,2448);
ASSERT_EQ(a, 2448);
}
INSTANTIATE_TEST_CASE_P(GPU_SoftCascade, SCascadeTestAll, ALL_DEVICES);
#endif
#endif

@ -66,7 +66,7 @@ PARAM_TEST_CASE(Threshold, cv::gpu::DeviceInfo, cv::Size, MatType, ThreshOp, Use
}
};
TEST_P(Threshold, Accuracy)
GPU_TEST_P(Threshold, Accuracy)
{
cv::Mat src = randomMat(size, type);
double maxVal = randomDouble(20.0, 127.0);

File diff suppressed because it is too large Load Diff

@ -48,6 +48,7 @@ namespace
cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
{
cv::Mat M(2, 3, CV_64FC1);
M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) = std::cos(angle); M.at<double>(1, 2) = 0.0;
@ -74,22 +75,23 @@ PARAM_TEST_CASE(BuildWarpAffineMaps, cv::gpu::DeviceInfo, cv::Size, Inverse)
}
};
TEST_P(BuildWarpAffineMaps, Accuracy)
GPU_TEST_P(BuildWarpAffineMaps, Accuracy)
{
cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
cv::gpu::GpuMat xmap, ymap;
cv::gpu::buildWarpAffineMaps(M, inverse, size, xmap, ymap);
int interpolation = cv::INTER_NEAREST;
int borderMode = cv::BORDER_CONSTANT;
int flags = interpolation;
if (inverse)
flags |= cv::WARP_INVERSE_MAP;
cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
cv::Mat dst;
cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
int flags = interpolation;
if (inverse)
flags |= cv::WARP_INVERSE_MAP;
cv::Mat dst_gold;
cv::warpAffine(src, dst_gold, M, size, flags, borderMode);
@ -199,7 +201,7 @@ PARAM_TEST_CASE(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Int
}
};
TEST_P(WarpAffine, Accuracy)
GPU_TEST_P(WarpAffine, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
@ -247,7 +249,7 @@ PARAM_TEST_CASE(WarpAffineNPP, cv::gpu::DeviceInfo, MatType, Inverse, Interpolat
}
};
TEST_P(WarpAffineNPP, Accuracy)
GPU_TEST_P(WarpAffineNPP, Accuracy)
{
cv::Mat src = readImageType("stereobp/aloe-L.png", type);
cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);

@ -48,6 +48,7 @@ namespace
cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
{
cv::Mat M(3, 3, CV_64FC1);
M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) = std::cos(angle); M.at<double>(1, 2) = 0.0;
M.at<double>(2, 0) = 0.0 ; M.at<double>(2, 1) = 0.0 ; M.at<double>(2, 2) = 1.0;
@ -75,21 +76,25 @@ PARAM_TEST_CASE(BuildWarpPerspectiveMaps, cv::gpu::DeviceInfo, cv::Size, Inverse
}
};
TEST_P(BuildWarpPerspectiveMaps, Accuracy)
GPU_TEST_P(BuildWarpPerspectiveMaps, Accuracy)
{
cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
cv::gpu::GpuMat xmap, ymap;
cv::gpu::buildWarpPerspectiveMaps(M, inverse, size, xmap, ymap);
cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
cv::Mat dst;
cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), cv::INTER_NEAREST, cv::BORDER_CONSTANT);
int flags = cv::INTER_NEAREST;
int interpolation = cv::INTER_NEAREST;
int borderMode = cv::BORDER_CONSTANT;
int flags = interpolation;
if (inverse)
flags |= cv::WARP_INVERSE_MAP;
cv::Mat dst;
cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
cv::Mat dst_gold;
cv::warpPerspective(src, dst_gold, M, size, flags, cv::BORDER_CONSTANT);
cv::warpPerspective(src, dst_gold, M, size, flags, borderMode);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
@ -199,7 +204,7 @@ PARAM_TEST_CASE(WarpPerspective, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse
}
};
TEST_P(WarpPerspective, Accuracy)
GPU_TEST_P(WarpPerspective, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
@ -247,7 +252,7 @@ PARAM_TEST_CASE(WarpPerspectiveNPP, cv::gpu::DeviceInfo, MatType, Inverse, Inter
}
};
TEST_P(WarpPerspectiveNPP, Accuracy)
GPU_TEST_P(WarpPerspectiveNPP, Accuracy)
{
cv::Mat src = readImageType("stereobp/aloe-L.png", type);
cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);

@ -67,7 +67,7 @@ double randomDouble(double minVal, double maxVal)
Size randomSize(int minVal, int maxVal)
{
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
}
Scalar randomScalar(double minVal, double maxVal)
@ -83,7 +83,7 @@ Mat randomMat(Size size, int type, double minVal, double maxVal)
//////////////////////////////////////////////////////////////////////
// GpuMat create
cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi)
GpuMat createMat(Size size, int type, bool useRoi)
{
Size size0 = size;
@ -122,21 +122,13 @@ Mat readImageType(const std::string& fname, int type)
if (CV_MAT_CN(type) == 4)
{
Mat temp;
cvtColor(src, temp, cv::COLOR_BGR2BGRA);
cvtColor(src, temp, COLOR_BGR2BGRA);
swap(src, temp);
}
src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
return src;
}
//////////////////////////////////////////////////////////////////////
// Image dumping
void dumpImage(const std::string& fileName, const cv::Mat& image)
{
cv::imwrite(TS::ptr()->get_data_path() + fileName, image);
}
//////////////////////////////////////////////////////////////////////
// Gpu devices
@ -156,7 +148,7 @@ void DeviceManager::load(int i)
devices_.clear();
devices_.reserve(1);
ostringstream msg;
std::ostringstream msg;
if (i < 0 || i >= getCudaEnabledDeviceCount())
{
@ -195,21 +187,39 @@ void DeviceManager::loadAll()
//////////////////////////////////////////////////////////////////////
// Additional assertion
Mat getMat(InputArray arr)
namespace
{
if (arr.kind() == _InputArray::GPU_MAT)
template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
{
Mat m;
arr.getGpuMat().download(m);
return m;
const int cn = m.channels();
std::ostringstream ostr;
ostr << "(";
p.x /= cn;
ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
for (int c = 1; c < m.channels(); ++c)
{
ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
}
ostr << ")";
return ostr.str();
}
return arr.getMat();
}
std::string printMatVal(const Mat& m, Point p)
{
typedef std::string (*func_t)(const Mat& m, Point p);
double checkNorm(InputArray m1, InputArray m2)
{
return norm(getMat(m1), getMat(m2), NORM_INF);
static const func_t funcs[] =
{
printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
};
return funcs[m.depth()](m, p);
}
}
void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
@ -229,8 +239,8 @@ void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minL
for (int y = 0; y < src.rows; ++y)
{
const schar* src_row = src.ptr<signed char>(y);
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<unsigned char>(y);
const schar* src_row = src.ptr<schar>(y);
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);
for (int x = 0; x < src.cols; ++x)
{
@ -260,42 +270,19 @@ void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minL
if (maxLoc_) *maxLoc_ = maxLoc;
}
namespace
Mat getMat(InputArray arr)
{
template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
if (arr.kind() == _InputArray::GPU_MAT)
{
const int cn = m.channels();
ostringstream ostr;
ostr << "(";
p.x /= cn;
ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
for (int c = 1; c < m.channels(); ++c)
{
ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
}
ostr << ")";
return ostr.str();
Mat m;
arr.getGpuMat().download(m);
return m;
}
std::string printMatVal(const Mat& m, Point p)
{
typedef std::string (*func_t)(const Mat& m, Point p);
static const func_t funcs[] =
{
printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
};
return funcs[m.depth()](m, p);
}
return arr.getMat();
}
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1_, cv::InputArray m2_, double eps)
AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
{
Mat m1 = getMat(m1_);
Mat m2 = getMat(m2_);
@ -344,18 +331,6 @@ double checkSimilarity(InputArray m1, InputArray m2)
//////////////////////////////////////////////////////////////////////
// Helper structs for value-parameterized tests
vector<MatDepth> depths(int depth_start, int depth_end)
{
vector<MatDepth> v;
v.reserve((depth_end - depth_start + 1));
for (int depth = depth_start; depth <= depth_end; ++depth)
v.push_back(depth);
return v;
}
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
vector<MatType> v;
@ -366,7 +341,7 @@ vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
for (int cn = cn_start; cn <= cn_end; ++cn)
{
v.push_back(CV_MAKETYPE(depth, cn));
v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
}
}
@ -401,6 +376,14 @@ void PrintTo(const Inverse& inverse, std::ostream* os)
(*os) << "direct";
}
//////////////////////////////////////////////////////////////////////
// Other
void dumpImage(const std::string& fileName, const Mat& image)
{
imwrite(TS::ptr()->get_data_path() + fileName, image);
}
void showDiff(InputArray gold_, InputArray actual_, double eps)
{
Mat gold = getMat(gold_);

@ -39,8 +39,14 @@
//
//M*/
#ifndef __OPENCV_TEST_UTILITY_HPP__
#define __OPENCV_TEST_UTILITY_HPP__
#ifndef __OPENCV_GPU_TEST_UTILITY_HPP__
#define __OPENCV_GPU_TEST_UTILITY_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/core/gpumat.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
//////////////////////////////////////////////////////////////////////
// random generators
@ -66,11 +72,6 @@ cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
//! read image from testdata folder and convert it to specified type
cv::Mat readImageType(const std::string& fname, int type);
//////////////////////////////////////////////////////////////////////
// Image dumping
void dumpImage(const std::string& fileName, const cv::Mat& image);
//////////////////////////////////////////////////////////////////////
// Gpu devices
@ -96,12 +97,10 @@ private:
//////////////////////////////////////////////////////////////////////
// Additional assertion
cv::Mat getMat(cv::InputArray arr);
double checkNorm(cv::InputArray m1, cv::InputArray m2);
void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat());
cv::Mat getMat(cv::InputArray arr);
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1, cv::InputArray m2, double eps);
#define EXPECT_MAT_NEAR(m1, m2, eps) EXPECT_PRED_FORMAT3(assertMatNear, m1, m2, eps)
@ -164,6 +163,45 @@ double checkSimilarity(cv::InputArray m1, cv::InputArray m2);
//////////////////////////////////////////////////////////////////////
// Helper structs for value-parameterized tests
#define GPU_TEST_P(test_case_name, test_name) \
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
: public test_case_name { \
public: \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {} \
virtual void TestBody(); \
private: \
void UnsafeTestBody(); \
static int AddToRegistry() { \
::testing::UnitTest::GetInstance()->parameterized_test_registry(). \
GetTestCasePatternHolder<test_case_name>(\
#test_case_name, __FILE__, __LINE__)->AddTestPattern(\
#test_case_name, \
#test_name, \
new ::testing::internal::TestMetaFactory< \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \
return 0; \
} \
static int gtest_registering_dummy_; \
GTEST_DISALLOW_COPY_AND_ASSIGN_(\
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
}; \
int GTEST_TEST_CLASS_NAME_(test_case_name, \
test_name)::gtest_registering_dummy_ = \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \
{ \
try \
{ \
UnsafeTestBody(); \
} \
catch (...) \
{ \
cv::gpu::resetDevice(); \
throw; \
} \
} \
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::UnsafeTestBody()
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
@ -178,11 +216,8 @@ namespace cv { namespace gpu
using perf::MatDepth;
//! return vector with depths from specified range.
std::vector<MatDepth> depths(int depth_start, int depth_end);
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F))
#define DEPTHS(depth_start, depth_end) testing::ValuesIn(depths(depth_start, depth_end))
#define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)), \
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)), \
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)), \
@ -237,8 +272,6 @@ private:
void PrintTo(const UseRoi& useRoi, std::ostream* os);
#define WHOLE testing::Values(UseRoi(false))
#define SUBMAT testing::Values(UseRoi(true))
#define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true))
// Direct/Inverse
@ -253,7 +286,9 @@ public:
private:
bool val_;
};
void PrintTo(const Inverse& useRoi, std::ostream* os);
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))
// Param class
@ -291,6 +326,7 @@ CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WA
//////////////////////////////////////////////////////////////////////
// Other
void dumpImage(const std::string& fileName, const cv::Mat& image);
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
#endif // __OPENCV_TEST_UTILITY_HPP__
#endif // __OPENCV_GPU_TEST_UTILITY_HPP__

Loading…
Cancel
Save