|
|
@ -38,6 +38,8 @@ aspect_ratios = [float(ar) for ar in grid_anchor_generator['aspect_ratios']] |
|
|
|
width_stride = float(grid_anchor_generator['width_stride'][0]) |
|
|
|
width_stride = float(grid_anchor_generator['width_stride'][0]) |
|
|
|
height_stride = float(grid_anchor_generator['height_stride'][0]) |
|
|
|
height_stride = float(grid_anchor_generator['height_stride'][0]) |
|
|
|
features_stride = float(config['feature_extractor'][0]['first_stage_features_stride'][0]) |
|
|
|
features_stride = float(config['feature_extractor'][0]['first_stage_features_stride'][0]) |
|
|
|
|
|
|
|
first_stage_nms_iou_threshold = float(config['first_stage_nms_iou_threshold'][0]) |
|
|
|
|
|
|
|
first_stage_max_proposals = int(config['first_stage_max_proposals'][0]) |
|
|
|
|
|
|
|
|
|
|
|
print('Number of classes: %d' % num_classes) |
|
|
|
print('Number of classes: %d' % num_classes) |
|
|
|
print('Scales: %s' % str(scales)) |
|
|
|
print('Scales: %s' % str(scales)) |
|
|
@ -53,7 +55,8 @@ graph_def = parseTextGraph(args.output) |
|
|
|
removeIdentity(graph_def) |
|
|
|
removeIdentity(graph_def) |
|
|
|
|
|
|
|
|
|
|
|
def to_remove(name, op): |
|
|
|
def to_remove(name, op): |
|
|
|
return name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep) |
|
|
|
return name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep) or \ |
|
|
|
|
|
|
|
(name.startswith('CropAndResize') and op != 'CropAndResize') |
|
|
|
|
|
|
|
|
|
|
|
removeUnusedNodesAndAttrs(to_remove, graph_def) |
|
|
|
removeUnusedNodesAndAttrs(to_remove, graph_def) |
|
|
|
|
|
|
|
|
|
|
@ -123,20 +126,22 @@ detectionOut.input.append('proposals') |
|
|
|
detectionOut.addAttr('num_classes', 2) |
|
|
|
detectionOut.addAttr('num_classes', 2) |
|
|
|
detectionOut.addAttr('share_location', True) |
|
|
|
detectionOut.addAttr('share_location', True) |
|
|
|
detectionOut.addAttr('background_label_id', 0) |
|
|
|
detectionOut.addAttr('background_label_id', 0) |
|
|
|
detectionOut.addAttr('nms_threshold', 0.7) |
|
|
|
detectionOut.addAttr('nms_threshold', first_stage_nms_iou_threshold) |
|
|
|
detectionOut.addAttr('top_k', 6000) |
|
|
|
detectionOut.addAttr('top_k', 6000) |
|
|
|
detectionOut.addAttr('code_type', "CENTER_SIZE") |
|
|
|
detectionOut.addAttr('code_type', "CENTER_SIZE") |
|
|
|
detectionOut.addAttr('keep_top_k', 100) |
|
|
|
detectionOut.addAttr('keep_top_k', first_stage_max_proposals) |
|
|
|
detectionOut.addAttr('clip', True) |
|
|
|
detectionOut.addAttr('clip', True) |
|
|
|
|
|
|
|
|
|
|
|
graph_def.node.extend([detectionOut]) |
|
|
|
graph_def.node.extend([detectionOut]) |
|
|
|
|
|
|
|
|
|
|
|
# Save as text. |
|
|
|
# Save as text. |
|
|
|
|
|
|
|
cropAndResizeNodesNames = [] |
|
|
|
for node in reversed(topNodes): |
|
|
|
for node in reversed(topNodes): |
|
|
|
if node.op != 'CropAndResize': |
|
|
|
if node.op != 'CropAndResize': |
|
|
|
graph_def.node.extend([node]) |
|
|
|
graph_def.node.extend([node]) |
|
|
|
topNodes.pop() |
|
|
|
topNodes.pop() |
|
|
|
else: |
|
|
|
else: |
|
|
|
|
|
|
|
cropAndResizeNodesNames.append(node.name) |
|
|
|
if numCropAndResize == 1: |
|
|
|
if numCropAndResize == 1: |
|
|
|
break |
|
|
|
break |
|
|
|
else: |
|
|
|
else: |
|
|
@ -166,11 +171,15 @@ for i in reversed(range(len(graph_def.node))): |
|
|
|
|
|
|
|
|
|
|
|
if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape', |
|
|
|
if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape', |
|
|
|
'SecondStageBoxPredictor/Flatten/flatten/strided_slice', |
|
|
|
'SecondStageBoxPredictor/Flatten/flatten/strided_slice', |
|
|
|
'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape']: |
|
|
|
'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape', |
|
|
|
|
|
|
|
'SecondStageBoxPredictor/Flatten_1/flatten/Shape', |
|
|
|
|
|
|
|
'SecondStageBoxPredictor/Flatten_1/flatten/strided_slice', |
|
|
|
|
|
|
|
'SecondStageBoxPredictor/Flatten_1/flatten/Reshape/shape']: |
|
|
|
del graph_def.node[i] |
|
|
|
del graph_def.node[i] |
|
|
|
|
|
|
|
|
|
|
|
for node in graph_def.node: |
|
|
|
for node in graph_def.node: |
|
|
|
if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape': |
|
|
|
if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape' or \ |
|
|
|
|
|
|
|
node.name == 'SecondStageBoxPredictor/Flatten_1/flatten/Reshape': |
|
|
|
node.op = 'Flatten' |
|
|
|
node.op = 'Flatten' |
|
|
|
node.input.pop() |
|
|
|
node.input.pop() |
|
|
|
|
|
|
|
|
|
|
@ -178,6 +187,12 @@ for node in graph_def.node: |
|
|
|
'SecondStageBoxPredictor/BoxEncodingPredictor/MatMul']: |
|
|
|
'SecondStageBoxPredictor/BoxEncodingPredictor/MatMul']: |
|
|
|
node.addAttr('loc_pred_transposed', True) |
|
|
|
node.addAttr('loc_pred_transposed', True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if node.name.startswith('MaxPool2D'): |
|
|
|
|
|
|
|
assert(node.op == 'MaxPool') |
|
|
|
|
|
|
|
assert(len(cropAndResizeNodesNames) == 2) |
|
|
|
|
|
|
|
node.input = [cropAndResizeNodesNames[0]] |
|
|
|
|
|
|
|
del cropAndResizeNodesNames[0] |
|
|
|
|
|
|
|
|
|
|
|
################################################################################ |
|
|
|
################################################################################ |
|
|
|
### Postprocessing |
|
|
|
### Postprocessing |
|
|
|
################################################################################ |
|
|
|
################################################################################ |
|
|
@ -223,6 +238,11 @@ graph_def.node.extend([detectionOut]) |
|
|
|
for node in reversed(topNodes): |
|
|
|
for node in reversed(topNodes): |
|
|
|
graph_def.node.extend([node]) |
|
|
|
graph_def.node.extend([node]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if node.name.startswith('MaxPool2D'): |
|
|
|
|
|
|
|
assert(node.op == 'MaxPool') |
|
|
|
|
|
|
|
assert(len(cropAndResizeNodesNames) == 1) |
|
|
|
|
|
|
|
node.input = [cropAndResizeNodesNames[0]] |
|
|
|
|
|
|
|
|
|
|
|
for i in reversed(range(len(graph_def.node))): |
|
|
|
for i in reversed(range(len(graph_def.node))): |
|
|
|
if graph_def.node[i].op == 'CropAndResize': |
|
|
|
if graph_def.node[i].op == 'CropAndResize': |
|
|
|
graph_def.node[i].input.insert(1, 'detection_out_final') |
|
|
|
graph_def.node[i].input.insert(1, 'detection_out_final') |
|
|
|