|
|
|
@ -7,49 +7,101 @@ |
|
|
|
|
#include "opencv2/highgui/highgui.hpp" |
|
|
|
|
#include "opencv2/imgproc/imgproc.hpp" |
|
|
|
|
#include <iostream> |
|
|
|
|
#include <stdio.h> |
|
|
|
|
|
|
|
|
|
using namespace cv; |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @function main |
|
|
|
|
*/ |
|
|
|
|
int main(int, char** argv) |
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
// windows and trackbars name
|
|
|
|
|
const std::string windowName = "Hough Circle Detection Demo"; |
|
|
|
|
const std::string cannyThresholdTrackbarName = "Canny threshold"; |
|
|
|
|
const std::string accumulatorThresholdTrackbarName = "Accumulator Threshold"; |
|
|
|
|
const std::string usage = "Usage : tutorial_HoughCircle_Demo <path_to_input_image>\n"; |
|
|
|
|
|
|
|
|
|
// initial and max values of the parameters of interests.
|
|
|
|
|
const int cannyThresholdInitialValue = 200; |
|
|
|
|
const int accumulatorThresholdInitialValue = 50; |
|
|
|
|
const int maxAccumulatorThreshold = 200; |
|
|
|
|
const int maxCannyThreshold = 255; |
|
|
|
|
|
|
|
|
|
void HoughDetection(const Mat& src_gray, const Mat& src_display, int cannyThreshold, int accumulatorThreshold) |
|
|
|
|
{ |
|
|
|
|
// will hold the results of the detection
|
|
|
|
|
std::vector<Vec3f> circles; |
|
|
|
|
// runs the actual detection
|
|
|
|
|
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, cannyThreshold, accumulatorThreshold, 0, 0 ); |
|
|
|
|
|
|
|
|
|
// clone the colour, input image for displaying purposes
|
|
|
|
|
Mat display = src_display.clone(); |
|
|
|
|
for( size_t i = 0; i < circles.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); |
|
|
|
|
int radius = cvRound(circles[i][2]); |
|
|
|
|
// circle center
|
|
|
|
|
circle( display, center, 3, Scalar(0,255,0), -1, 8, 0 ); |
|
|
|
|
// circle outline
|
|
|
|
|
circle( display, center, radius, Scalar(0,0,255), 3, 8, 0 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// shows the results
|
|
|
|
|
imshow( windowName, display); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int main(int argc, char** argv) |
|
|
|
|
{ |
|
|
|
|
Mat src, src_gray; |
|
|
|
|
Mat src, src_gray; |
|
|
|
|
|
|
|
|
|
if (argc < 2) |
|
|
|
|
{ |
|
|
|
|
std::cerr<<"No input image specified\n"; |
|
|
|
|
std::cout<<usage; |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/// Read the image
|
|
|
|
|
src = imread( argv[1], 1 ); |
|
|
|
|
// Read the image
|
|
|
|
|
src = imread( argv[1], 1 ); |
|
|
|
|
|
|
|
|
|
if( !src.data ) |
|
|
|
|
{ return -1; } |
|
|
|
|
if( !src.data ) |
|
|
|
|
{ |
|
|
|
|
std::cerr<<"Invalid input image\n"; |
|
|
|
|
std::cout<<usage; |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/// Convert it to gray
|
|
|
|
|
// Convert it to gray
|
|
|
|
|
cvtColor( src, src_gray, COLOR_BGR2GRAY ); |
|
|
|
|
|
|
|
|
|
/// Reduce the noise so we avoid false circle detection
|
|
|
|
|
// Reduce the noise so we avoid false circle detection
|
|
|
|
|
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 ); |
|
|
|
|
|
|
|
|
|
vector<Vec3f> circles; |
|
|
|
|
//declare and initialize both parameters that are subjects to change
|
|
|
|
|
int cannyThreshold = cannyThresholdInitialValue; |
|
|
|
|
int accumulatorThreshold = accumulatorThresholdInitialValue; |
|
|
|
|
|
|
|
|
|
/// Apply the Hough Transform to find the circles
|
|
|
|
|
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 ); |
|
|
|
|
// create the main window, and attach the trackbars
|
|
|
|
|
namedWindow( windowName, WINDOW_AUTOSIZE ); |
|
|
|
|
createTrackbar(cannyThresholdTrackbarName, windowName, &cannyThreshold,maxCannyThreshold); |
|
|
|
|
createTrackbar(accumulatorThresholdTrackbarName, windowName, &accumulatorThreshold, maxAccumulatorThreshold); |
|
|
|
|
|
|
|
|
|
/// Draw the circles detected
|
|
|
|
|
for( size_t i = 0; i < circles.size(); i++ ) |
|
|
|
|
// infinite loop to display
|
|
|
|
|
// and refresh the content of the output image
|
|
|
|
|
// until the user presses q or Q
|
|
|
|
|
int key = 0; |
|
|
|
|
while(key != 'q' && key != 'Q') |
|
|
|
|
{ |
|
|
|
|
Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); |
|
|
|
|
int radius = cvRound(circles[i][2]); |
|
|
|
|
// circle center
|
|
|
|
|
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 ); |
|
|
|
|
// circle outline
|
|
|
|
|
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 ); |
|
|
|
|
} |
|
|
|
|
// those paramaters cannot be =0
|
|
|
|
|
// so we must check here
|
|
|
|
|
cannyThreshold = std::max(cannyThreshold, 1); |
|
|
|
|
accumulatorThreshold = std::max(accumulatorThreshold, 1); |
|
|
|
|
|
|
|
|
|
/// Show your results
|
|
|
|
|
namedWindow( "Hough Circle Transform Demo", WINDOW_AUTOSIZE ); |
|
|
|
|
imshow( "Hough Circle Transform Demo", src ); |
|
|
|
|
//runs the detection, and update the display
|
|
|
|
|
HoughDetection(src_gray, src, cannyThreshold, accumulatorThreshold); |
|
|
|
|
|
|
|
|
|
// get user key
|
|
|
|
|
key = waitKey(10); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
waitKey(0); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|