Merge pull request #631 from bitwangyaoyao:2.4_stereo

pull/644/merge
Andrey Kamaev 12 years ago committed by OpenCV Buildbot
commit 18ca645fd2
  1. 34
      modules/ocl/include/opencv2/ocl/ocl.hpp
  2. 427
      modules/ocl/src/kernels/stereobm.cl
  3. 263
      modules/ocl/src/stereobm.cpp
  4. 94
      modules/ocl/test/test_calib3d.cpp
  5. BIN
      samples/ocl/aloe-L.png
  6. BIN
      samples/ocl/aloe-R.png
  7. BIN
      samples/ocl/aloe-disp.png

@ -1806,6 +1806,40 @@ namespace cv
//! computes moments of the rasterized shape or a vector of points //! computes moments of the rasterized shape or a vector of points
CV_EXPORTS Moments ocl_moments(InputArray _array, bool binaryImage); CV_EXPORTS Moments ocl_moments(InputArray _array, bool binaryImage);
class CV_EXPORTS StereoBM_OCL
{
public:
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
//! the default constructor
StereoBM_OCL();
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
StereoBM_OCL(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
//! Output disparity has CV_8U type.
void operator() ( const oclMat &left, const oclMat &right, oclMat &disparity);
//! Some heuristics that tries to estmate
// if current GPU will be faster then CPU in this algorithm.
// It queries current active device.
static bool checkIfGpuCallReasonable();
int preset;
int ndisp;
int winSize;
// If avergeTexThreshold == 0 => post procesing is disabled
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
// i.e. input left image is low textured.
float avergeTexThreshold;
private:
oclMat minSSD, leBuf, riBuf;
};
} }
} }
#if defined _MSC_VER && _MSC_VER >= 1200 #if defined _MSC_VER && _MSC_VER >= 1200

@ -0,0 +1,427 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define ROWSperTHREAD 21 // the number of rows a thread will process
#define BLOCK_W 128 // the thread block width (464)
#define N_DISPARITIES 8
#define STEREO_MIND 0 // The minimum d range to check
#define STEREO_DISP_STEP N_DISPARITIES // the d step, must be <= 1 to avoid aliasing
int SQ(int a)
{
return a * a;
}
unsigned int CalcSSD(volatile __local unsigned int *col_ssd_cache,
volatile __local unsigned int *col_ssd, int radius)
{
unsigned int cache = 0;
unsigned int cache2 = 0;
for(int i = 1; i <= radius; i++)
cache += col_ssd[i];
col_ssd_cache[0] = cache;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < BLOCK_W - radius)
cache2 = col_ssd_cache[radius];
else
for(int i = radius + 1; i < (2 * radius + 1); i++)
cache2 += col_ssd[i];
return col_ssd[0] + cache + cache2;
}
uint2 MinSSD(volatile __local unsigned int *col_ssd_cache,
volatile __local unsigned int *col_ssd, int radius)
{
unsigned int ssd[N_DISPARITIES];
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * radius)
ssd[0] = CalcSSD(col_ssd_cache, col_ssd + 0 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
ssd[1] = CalcSSD(col_ssd_cache, col_ssd + 1 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
ssd[2] = CalcSSD(col_ssd_cache, col_ssd + 2 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
ssd[3] = CalcSSD(col_ssd_cache, col_ssd + 3 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
ssd[4] = CalcSSD(col_ssd_cache, col_ssd + 4 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
ssd[5] = CalcSSD(col_ssd_cache, col_ssd + 5 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
ssd[6] = CalcSSD(col_ssd_cache, col_ssd + 6 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
ssd[7] = CalcSSD(col_ssd_cache, col_ssd + 7 * (BLOCK_W + 2 * radius), radius);
barrier(CLK_LOCAL_MEM_FENCE);
unsigned int mssd = min(min(min(ssd[0], ssd[1]), min(ssd[4], ssd[5])), min(min(ssd[2], ssd[3]), min(ssd[6], ssd[7])));
int bestIdx = 0;
for (int i = 0; i < N_DISPARITIES; i++)
{
if (mssd == ssd[i])
bestIdx = i;
}
return (uint2)(mssd, bestIdx);
}
void StepDown(int idx1, int idx2, __global unsigned char* imageL,
__global unsigned char* imageR, int d, volatile __local unsigned int *col_ssd, int radius)
{
unsigned char leftPixel1;
unsigned char leftPixel2;
unsigned char rightPixel1[8];
unsigned char rightPixel2[8];
unsigned int diff1, diff2;
leftPixel1 = imageL[idx1];
leftPixel2 = imageL[idx2];
idx1 = idx1 - d;
idx2 = idx2 - d;
rightPixel1[7] = imageR[idx1 - 7];
rightPixel1[0] = imageR[idx1 - 0];
rightPixel1[1] = imageR[idx1 - 1];
rightPixel1[2] = imageR[idx1 - 2];
rightPixel1[3] = imageR[idx1 - 3];
rightPixel1[4] = imageR[idx1 - 4];
rightPixel1[5] = imageR[idx1 - 5];
rightPixel1[6] = imageR[idx1 - 6];
rightPixel2[7] = imageR[idx2 - 7];
rightPixel2[0] = imageR[idx2 - 0];
rightPixel2[1] = imageR[idx2 - 1];
rightPixel2[2] = imageR[idx2 - 2];
rightPixel2[3] = imageR[idx2 - 3];
rightPixel2[4] = imageR[idx2 - 4];
rightPixel2[5] = imageR[idx2 - 5];
rightPixel2[6] = imageR[idx2 - 6];
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * radius)
diff1 = leftPixel1 - rightPixel1[0];
diff2 = leftPixel2 - rightPixel2[0];
col_ssd[0 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[1];
diff2 = leftPixel2 - rightPixel2[1];
col_ssd[1 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[2];
diff2 = leftPixel2 - rightPixel2[2];
col_ssd[2 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[3];
diff2 = leftPixel2 - rightPixel2[3];
col_ssd[3 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[4];
diff2 = leftPixel2 - rightPixel2[4];
col_ssd[4 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[5];
diff2 = leftPixel2 - rightPixel2[5];
col_ssd[5 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[6];
diff2 = leftPixel2 - rightPixel2[6];
col_ssd[6 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[7];
diff2 = leftPixel2 - rightPixel2[7];
col_ssd[7 * (BLOCK_W + 2 * radius)] += SQ(diff2) - SQ(diff1);
}
void InitColSSD(int x_tex, int y_tex, int im_pitch, __global unsigned char* imageL,
__global unsigned char* imageR, int d,
volatile __local unsigned int *col_ssd, int radius)
{
unsigned char leftPixel1;
int idx;
unsigned int diffa[] = {0, 0, 0, 0, 0, 0, 0, 0};
for(int i = 0; i < (2 * radius + 1); i++)
{
idx = y_tex * im_pitch + x_tex;
leftPixel1 = imageL[idx];
idx = idx - d;
diffa[0] += SQ(leftPixel1 - imageR[idx - 0]);
diffa[1] += SQ(leftPixel1 - imageR[idx - 1]);
diffa[2] += SQ(leftPixel1 - imageR[idx - 2]);
diffa[3] += SQ(leftPixel1 - imageR[idx - 3]);
diffa[4] += SQ(leftPixel1 - imageR[idx - 4]);
diffa[5] += SQ(leftPixel1 - imageR[idx - 5]);
diffa[6] += SQ(leftPixel1 - imageR[idx - 6]);
diffa[7] += SQ(leftPixel1 - imageR[idx - 7]);
y_tex += 1;
}
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * radius)
col_ssd[0 * (BLOCK_W + 2 * radius)] = diffa[0];
col_ssd[1 * (BLOCK_W + 2 * radius)] = diffa[1];
col_ssd[2 * (BLOCK_W + 2 * radius)] = diffa[2];
col_ssd[3 * (BLOCK_W + 2 * radius)] = diffa[3];
col_ssd[4 * (BLOCK_W + 2 * radius)] = diffa[4];
col_ssd[5 * (BLOCK_W + 2 * radius)] = diffa[5];
col_ssd[6 * (BLOCK_W + 2 * radius)] = diffa[6];
col_ssd[7 * (BLOCK_W + 2 * radius)] = diffa[7];
}
__kernel void stereoKernel(__global unsigned char *left, __global unsigned char *right,
__global unsigned int *cminSSDImage, int cminSSD_step,
__global unsigned char *disp, int disp_step,int cwidth, int cheight,
int img_step, int maxdisp, int radius,
__local unsigned int *col_ssd_cache)
{
volatile __local unsigned int *col_ssd = col_ssd_cache + BLOCK_W + get_local_id(0);
volatile __local unsigned int *col_ssd_extra = get_local_id(0) < (2 * radius) ? col_ssd + BLOCK_W : 0;
int X = get_group_id(0) * BLOCK_W + get_local_id(0) + maxdisp + radius;
// int Y = get_group_id(1) * ROWSperTHREAD + radius;
#define Y (get_group_id(1) * ROWSperTHREAD + radius)
volatile __global unsigned int* minSSDImage = cminSSDImage + X + Y * cminSSD_step;
__global unsigned char* disparImage = disp + X + Y * disp_step;
int end_row = ROWSperTHREAD < (cheight - Y) ? ROWSperTHREAD:(cheight - Y);
int y_tex;
int x_tex = X - radius;
if (x_tex >= cwidth)
return;
for(int d = STEREO_MIND; d < maxdisp; d += STEREO_DISP_STEP)
{
y_tex = Y - radius;
InitColSSD(x_tex, y_tex, img_step, left, right, d, col_ssd, radius);
if (col_ssd_extra > 0)
if (x_tex + BLOCK_W < cwidth)
InitColSSD(x_tex + BLOCK_W, y_tex, img_step, left, right, d, col_ssd_extra, radius);
barrier(CLK_LOCAL_MEM_FENCE); //before MinSSD function
if (X < cwidth - radius && Y < cheight - radius)
{
uint2 minSSD = MinSSD(col_ssd_cache + get_local_id(0), col_ssd, radius);
if (minSSD.x < minSSDImage[0])
{
disparImage[0] = (unsigned char)(d + minSSD.y);
minSSDImage[0] = minSSD.x;
}
}
for(int row = 1; row < end_row; row++)
{
int idx1 = y_tex * img_step + x_tex;
int idx2 = (y_tex + (2 * radius + 1)) * img_step + x_tex;
barrier(CLK_GLOBAL_MEM_FENCE);
barrier(CLK_LOCAL_MEM_FENCE);
StepDown(idx1, idx2, left, right, d, col_ssd, radius);
if (col_ssd_extra > 0)
if (x_tex + BLOCK_W < cwidth)
StepDown(idx1, idx2, left + BLOCK_W, right + BLOCK_W, d, col_ssd_extra, radius);
y_tex += 1;
barrier(CLK_LOCAL_MEM_FENCE);
if (X < cwidth - radius && row < cheight - radius - Y)
{
int idx = row * cminSSD_step;
uint2 minSSD = MinSSD(col_ssd_cache + get_local_id(0), col_ssd, radius);
if (minSSD.x < minSSDImage[idx])
{
disparImage[disp_step * row] = (unsigned char)(d + minSSD.y);
minSSDImage[idx] = minSSD.x;
}
}
} // for row loop
} // for d loop
}
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////// Sobel Prefiler (signal channel)//////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
__kernel void prefilter_xsobel(__global unsigned char *input, __global unsigned char *output,
int rows, int cols, int prefilterCap)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(x < cols && y < rows)
{
int cov = input[(y-1) * cols + (x-1)] * (-1) + input[(y-1) * cols + (x+1)] * (1) +
input[(y) * cols + (x-1)] * (-2) + input[(y) * cols + (x+1)] * (2) +
input[(y+1) * cols + (x-1)] * (-1) + input[(y+1) * cols + (x+1)] * (1);
cov = min(min(max(-prefilterCap, cov), prefilterCap) + prefilterCap, 255);
output[y * cols + x] = cov & 0xFF;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// Textureness filtering ////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
float sobel(__global unsigned char *input, int x, int y, int rows, int cols)
{
float conv = 0;
int y1 = y==0? 0 : y-1;
int x1 = x==0? 0 : x-1;
if(x < cols && y < rows)
{
conv = (float)input[(y1) * cols + (x1)] * (-1) + (float)input[(y1) * cols + (x+1)] * (1) +
(float)input[(y) * cols + (x1)] * (-2) + (float)input[(y) * cols + (x+1)] * (2) +
(float)input[(y+1) * cols + (x1)] * (-1) + (float)input[(y+1) * cols + (x+1)] * (1);
}
return fabs(conv);
}
float CalcSums(__local float *cols, __local float *cols_cache, int winsz)
{
float cache = 0;
float cache2 = 0;
int winsz2 = winsz/2;
int x = get_local_id(0);
int group_size_x = get_local_size(0);
for(int i = 1; i <= winsz2; i++)
cache += cols[i];
cols_cache[0] = cache;
barrier(CLK_LOCAL_MEM_FENCE);
if (x < group_size_x - winsz2)
cache2 = cols_cache[winsz2];
else
for(int i = winsz2 + 1; i < winsz; i++)
cache2 += cols[i];
return cols[0] + cache + cache2;
}
#define RpT (2 * ROWSperTHREAD) // got experimentally
__kernel void textureness_kernel(__global unsigned char *disp, int disp_rows, int disp_cols,
int disp_step, __global unsigned char *input, int input_rows,
int input_cols,int winsz, float threshold,
__local float *cols_cache)
{
int winsz2 = winsz/2;
int n_dirty_pixels = (winsz2) * 2;
int local_id_x = get_local_id(0);
int group_size_x = get_local_size(0);
int group_id_y = get_group_id(1);
__local float *cols = cols_cache + group_size_x + local_id_x;
__local float *cols_extra = local_id_x < n_dirty_pixels ? cols + group_size_x : 0;
int x = get_global_id(0);
int beg_row = group_id_y * RpT;
int end_row = min(beg_row + RpT, disp_rows);
// if (x < disp_cols)
// {
int y = beg_row;
float sum = 0;
float sum_extra = 0;
for(int i = y - winsz2; i <= y + winsz2; ++i)
{
sum += sobel(input, x - winsz2, i, input_rows, input_cols);
if (cols_extra)
sum_extra += sobel(input, x + group_size_x - winsz2, i, input_rows, input_cols);
}
*cols = sum;
if (cols_extra)
*cols_extra = sum_extra;
barrier(CLK_LOCAL_MEM_FENCE);
float sum_win = CalcSums(cols, cols_cache + local_id_x, winsz) * 255;
if (sum_win < threshold)
disp[y * disp_step + x] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
for(int y = beg_row + 1; y < end_row; ++y)
{
sum = sum - sobel(input, x - winsz2, y - winsz2 - 1, input_rows, input_cols) +
sobel(input, x - winsz2, y + winsz2, input_rows, input_cols);
*cols = sum;
if (cols_extra)
{
sum_extra = sum_extra - sobel(input, x + group_size_x - winsz2, y - winsz2 - 1,input_rows, input_cols)
+ sobel(input, x + group_size_x - winsz2, y + winsz2, input_rows, input_cols);
*cols_extra = sum_extra;
}
barrier(CLK_LOCAL_MEM_FENCE);
float sum_win = CalcSums(cols, cols_cache + local_id_x, winsz) * 255;
if (sum_win < threshold)
disp[y * disp_step + x] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
}
// }
}

@ -0,0 +1,263 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
// Xiaopeng Fu, xiaopeng@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
using namespace cv;
using namespace cv::ocl;
using namespace std;
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *stereobm;
}
}
namespace cv
{
namespace ocl
{
namespace stereoBM
{
/////////////////////////////////////////////////////////////////////////
//////////////////////////prefilter_xsbel////////////////////////////////
////////////////////////////////////////////////////////////////////////
static void prefilter_xsobel(const oclMat &input, oclMat &output, int prefilterCap)
{
Context *clCxt = input.clCxt;
string kernelName = "prefilter_xsobel";
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobm, kernelName);
size_t blockSize = 1;
size_t globalThreads[3] = { input.cols, input.rows, 1 };
size_t localThreads[3] = { blockSize, blockSize, 1 };
openCLVerifyKernel(clCxt, kernel, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&input.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&output.data));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&input.rows));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_int), (void *)&input.cols));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_int), (void *)&prefilterCap));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 3, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////common////////////////////////////////////
////////////////////////////////////////////////////////////////////////
#define N_DISPARITIES 8
#define ROWSperTHREAD 21
#define BLOCK_W 128
static inline int divUp(int total, int grain)
{
return (total + grain - 1) / grain;
}
////////////////////////////////////////////////////////////////////////////
///////////////////////////////stereoBM_GPU////////////////////////////////
////////////////////////////////////////////////////////////////////////////
static void stereo_bm(const oclMat &left, const oclMat &right, oclMat &disp,
int maxdisp, int winSize, oclMat &minSSD_buf)
{
int winsz2 = winSize >> 1;
//if(winsz2 == 0 || winsz2 >= calles_num)
//cv::ocl:error("Unsupported window size", __FILE__, __LINE__, __FUNCTION__);
Context *clCxt = left.clCxt;
string kernelName = "stereoKernel";
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobm, kernelName);
disp.setTo(Scalar_<unsigned char>::all(0));
minSSD_buf.setTo(Scalar_<unsigned int>::all(0xFFFFFFFF));
size_t minssd_step = minSSD_buf.step / minSSD_buf.elemSize();
size_t local_mem_size = (BLOCK_W + N_DISPARITIES * (BLOCK_W + 2 * winsz2)) *
sizeof(cl_uint);
//size_t blockSize = 1;
size_t localThreads[] = { BLOCK_W, 1,1};
size_t globalThreads[] = { divUp(left.cols - maxdisp - 2 * winsz2, BLOCK_W) *BLOCK_W,
divUp(left.rows - 2 * winsz2, ROWSperTHREAD),
1
};
openCLVerifyKernel(clCxt, kernel, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&left.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&right.data));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&minSSD_buf.data));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_int), (void *)&minssd_step));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_mem), (void *)&disp.data));
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(cl_int), (void *)&disp.step));
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(cl_int), (void *)&left.cols));
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(cl_int), (void *)&left.rows));
openCLSafeCall(clSetKernelArg(kernel, 8, sizeof(cl_int), (void *)&left.step));
openCLSafeCall(clSetKernelArg(kernel, 9, sizeof(cl_int), (void *)&maxdisp));
openCLSafeCall(clSetKernelArg(kernel, 10, sizeof(cl_int), (void *)&winsz2));
openCLSafeCall(clSetKernelArg(kernel, 11, local_mem_size, (void *)NULL));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
////////////////////////////////////////////////////////////////////////////
///////////////////////////////postfilter_textureness///////////////////////
////////////////////////////////////////////////////////////////////////////
static void postfilter_textureness(oclMat &left, int winSize,
float avergeTexThreshold, oclMat &disparity)
{
Context *clCxt = left.clCxt;
string kernelName = "textureness_kernel";
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobm, kernelName);
size_t blockSize = 1;
size_t localThreads[] = { BLOCK_W, blockSize ,1};
size_t globalThreads[] = { divUp(left.cols, BLOCK_W) *BLOCK_W,
divUp(left.rows, 2 * ROWSperTHREAD),
1
};
size_t local_mem_size = (localThreads[0] + localThreads[0] + (winSize / 2) * 2) * sizeof(float);
openCLVerifyKernel(clCxt, kernel, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&disparity.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_int), (void *)&disparity.rows));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&disparity.cols));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_int), (void *)&disparity.step));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_mem), (void *)&left.data));
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(cl_int), (void *)&left.rows));
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(cl_int), (void *)&left.cols));
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(cl_int), (void *)&winSize));
openCLSafeCall(clSetKernelArg(kernel, 8, sizeof(cl_float), (void *)&avergeTexThreshold));
openCLSafeCall(clSetKernelArg(kernel, 9, local_mem_size, NULL));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
//////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////operator/////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
static void operator_(oclMat &minSSD, oclMat &leBuf, oclMat &riBuf, int preset, int ndisp,
int winSize, float avergeTexThreshold, const oclMat &left,
const oclMat &right, oclMat &disparity)
{
CV_DbgAssert(left.rows == right.rows && left.cols == right.cols);
CV_DbgAssert(left.type() == CV_8UC1);
CV_DbgAssert(right.type() == CV_8UC1);
disparity.create(left.size(), CV_8UC1);
minSSD.create(left.size(), CV_32SC1);
oclMat le_for_bm = left;
oclMat ri_for_bm = right;
if (preset == cv::ocl::StereoBM_OCL::PREFILTER_XSOBEL)
{
leBuf.create( left.size(), left.type());
riBuf.create(right.size(), right.type());
prefilter_xsobel( left, leBuf, 31);
prefilter_xsobel(right, riBuf, 31);
le_for_bm = leBuf;
ri_for_bm = riBuf;
}
stereo_bm(le_for_bm, ri_for_bm, disparity, ndisp, winSize, minSSD);
if (avergeTexThreshold)
{
postfilter_textureness(le_for_bm, winSize, avergeTexThreshold, disparity);
}
}
}
}
}
const float defaultAvgTexThreshold = 3;
cv::ocl::StereoBM_OCL::StereoBM_OCL()
: preset(BASIC_PRESET), ndisp(DEFAULT_NDISP), winSize(DEFAULT_WINSZ),
avergeTexThreshold(defaultAvgTexThreshold) {}
cv::ocl::StereoBM_OCL::StereoBM_OCL(int preset_, int ndisparities_, int winSize_)
: preset(preset_), ndisp(ndisparities_), winSize(winSize_),
avergeTexThreshold(defaultAvgTexThreshold)
{
const int max_supported_ndisp = 1 << (sizeof(unsigned char) * 8);
CV_Assert(0 < ndisp && ndisp <= max_supported_ndisp);
CV_Assert(ndisp % 8 == 0);
CV_Assert(winSize % 2 == 1);
}
bool cv::ocl::StereoBM_OCL::checkIfGpuCallReasonable()
{
return true;
}
void cv::ocl::StereoBM_OCL::operator() ( const oclMat &left, const oclMat &right,
oclMat &disparity)
{
cv::ocl::stereoBM::operator_(minSSD, leBuf, riBuf, preset, ndisp, winSize, avergeTexThreshold, left, right, disparity);
}

@ -0,0 +1,94 @@
///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <iomanip>
#ifdef HAVE_OPENCL
using namespace cv;
extern std::string workdir;
PARAM_TEST_CASE(StereoMatchBM, int, int)
{
int n_disp;
int winSize;
virtual void SetUp()
{
n_disp = GET_PARAM(0);
winSize = GET_PARAM(1);
}
};
TEST_P(StereoMatchBM, Accuracy)
{
Mat left_image = readImage(workdir + "../ocl/aloe-L.png", IMREAD_GRAYSCALE);
Mat right_image = readImage(workdir + "../ocl/aloe-R.png", IMREAD_GRAYSCALE);
Mat disp_gold = readImage(workdir + "../ocl/aloe-disp.png", IMREAD_GRAYSCALE);
ocl::oclMat d_left, d_right;
ocl::oclMat d_disp(left_image.size(), CV_8U);
Mat disp;
ASSERT_FALSE(left_image.empty());
ASSERT_FALSE(right_image.empty());
ASSERT_FALSE(disp_gold.empty());
d_left.upload(left_image);
d_right.upload(right_image);
ocl::StereoBM_OCL bm(0, n_disp, winSize);
bm(d_left, d_right, d_disp);
d_disp.download(disp);
EXPECT_MAT_SIMILAR(disp_gold, disp, 1e-3);
}
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoMatchBM, testing::Combine(testing::Values(128),
testing::Values(19)));
#endif // HAVE_OPENCL

Binary file not shown.

After

Width:  |  Height:  |  Size: 720 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 722 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Loading…
Cancel
Save