mirror of https://github.com/opencv/opencv.git
Merge pull request #1162 from jet47:cudev-integration
commit
18358521f2
14 changed files with 1080 additions and 1166 deletions
@ -0,0 +1,486 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include "opencv2/opencv_modules.hpp" |
||||
|
||||
#ifndef HAVE_OPENCV_CUDEV |
||||
|
||||
#error "opencv_cudev is required" |
||||
|
||||
#else |
||||
|
||||
#include "opencv2/core/gpu.hpp" |
||||
#include "opencv2/cudev.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace cv::cudev; |
||||
|
||||
///////////////////////////////////////////////////// |
||||
/// create |
||||
|
||||
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) |
||||
{ |
||||
CV_DbgAssert( _rows >= 0 && _cols >= 0 ); |
||||
|
||||
_type &= Mat::TYPE_MASK; |
||||
|
||||
if (rows == _rows && cols == _cols && type() == _type && data) |
||||
return; |
||||
|
||||
if (data) |
||||
release(); |
||||
|
||||
if (_rows > 0 && _cols > 0) |
||||
{ |
||||
flags = Mat::MAGIC_VAL + _type; |
||||
rows = _rows; |
||||
cols = _cols; |
||||
|
||||
size_t esz = elemSize(); |
||||
|
||||
void* devPtr; |
||||
|
||||
if (rows > 1 && cols > 1) |
||||
{ |
||||
CV_CUDEV_SAFE_CALL( cudaMallocPitch(&devPtr, &step, esz * cols, rows) ); |
||||
} |
||||
else |
||||
{ |
||||
// Single row or single column must be continuous |
||||
CV_CUDEV_SAFE_CALL( cudaMalloc(&devPtr, esz * cols * rows) ); |
||||
step = esz * cols; |
||||
} |
||||
|
||||
if (esz * cols == step) |
||||
flags |= Mat::CONTINUOUS_FLAG; |
||||
|
||||
int64 _nettosize = static_cast<int64>(step) * rows; |
||||
size_t nettosize = static_cast<size_t>(_nettosize); |
||||
|
||||
datastart = data = static_cast<uchar*>(devPtr); |
||||
dataend = data + nettosize; |
||||
|
||||
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount))); |
||||
*refcount = 1; |
||||
} |
||||
} |
||||
|
||||
///////////////////////////////////////////////////// |
||||
/// release |
||||
|
||||
void cv::gpu::GpuMat::release() |
||||
{ |
||||
if (refcount && CV_XADD(refcount, -1) == 1) |
||||
{ |
||||
cudaFree(datastart); |
||||
fastFree(refcount); |
||||
} |
||||
|
||||
data = datastart = dataend = 0; |
||||
step = rows = cols = 0; |
||||
refcount = 0; |
||||
} |
||||
|
||||
///////////////////////////////////////////////////// |
||||
/// upload |
||||
|
||||
void cv::gpu::GpuMat::upload(InputArray arr) |
||||
{ |
||||
Mat mat = arr.getMat(); |
||||
|
||||
CV_DbgAssert( !mat.empty() ); |
||||
|
||||
create(mat.size(), mat.type()); |
||||
|
||||
CV_CUDEV_SAFE_CALL( cudaMemcpy2D(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) ); |
||||
} |
||||
|
||||
void cv::gpu::GpuMat::upload(InputArray arr, Stream& _stream) |
||||
{ |
||||
Mat mat = arr.getMat(); |
||||
|
||||
CV_DbgAssert( !mat.empty() ); |
||||
|
||||
create(mat.size(), mat.type()); |
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(_stream); |
||||
CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice, stream) ); |
||||
} |
||||
|
||||
///////////////////////////////////////////////////// |
||||
/// download |
||||
|
||||
void cv::gpu::GpuMat::download(OutputArray _dst) const |
||||
{ |
||||
CV_DbgAssert( !empty() ); |
||||
|
||||
_dst.create(size(), type()); |
||||
Mat dst = _dst.getMat(); |
||||
|
||||
CV_CUDEV_SAFE_CALL( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) ); |
||||
} |
||||
|
||||
void cv::gpu::GpuMat::download(OutputArray _dst, Stream& _stream) const |
||||
{ |
||||
CV_DbgAssert( !empty() ); |
||||
|
||||
_dst.create(size(), type()); |
||||
Mat dst = _dst.getMat(); |
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(_stream); |
||||
CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost, stream) ); |
||||
} |
||||
|
||||
///////////////////////////////////////////////////// |
||||
/// copyTo |
||||
|
||||
void cv::gpu::GpuMat::copyTo(OutputArray _dst) const |
||||
{ |
||||
CV_DbgAssert( !empty() ); |
||||
|
||||
_dst.create(size(), type()); |
||||
GpuMat dst = _dst.getGpuMat(); |
||||
|
||||
CV_CUDEV_SAFE_CALL( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) ); |
||||
} |
||||
|
||||
void cv::gpu::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const |
||||
{ |
||||
CV_DbgAssert( !empty() ); |
||||
|
||||
_dst.create(size(), type()); |
||||
GpuMat dst = _dst.getGpuMat(); |
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(_stream); |
||||
CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice, stream) ); |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
template <size_t size> struct CopyToPolicy : DefaultTransformPolicy |
||||
{ |
||||
}; |
||||
template <> struct CopyToPolicy<4> : DefaultTransformPolicy |
||||
{ |
||||
enum { |
||||
shift = 2 |
||||
}; |
||||
}; |
||||
template <> struct CopyToPolicy<8> : DefaultTransformPolicy |
||||
{ |
||||
enum { |
||||
shift = 1 |
||||
}; |
||||
}; |
||||
|
||||
template <typename T> |
||||
void copyWithMask(const GpuMat& src, const GpuMat& dst, const GpuMat& mask, Stream& stream) |
||||
{ |
||||
gridTransform_< CopyToPolicy<sizeof(typename VecTraits<T>::elem_type)> >(globPtr<T>(src), globPtr<T>(dst), identity<T>(), globPtr<uchar>(mask), stream); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& stream) const |
||||
{ |
||||
CV_DbgAssert( !empty() ); |
||||
CV_DbgAssert( depth() <= CV_64F && channels() <= 4 ); |
||||
|
||||
GpuMat mask = _mask.getGpuMat(); |
||||
CV_DbgAssert( size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == channels()) ); |
||||
|
||||
_dst.create(size(), type()); |
||||
GpuMat dst = _dst.getGpuMat(); |
||||
|
||||
typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, const GpuMat& mask, Stream& stream); |
||||
static const func_t funcs[9][4] = |
||||
{ |
||||
{0,0,0,0}, |
||||
{copyWithMask<uchar>, copyWithMask<uchar2>, copyWithMask<uchar3>, copyWithMask<uchar4>}, |
||||
{copyWithMask<ushort>, copyWithMask<ushort2>, copyWithMask<ushort3>, copyWithMask<ushort4>}, |
||||
{0,0,0,0}, |
||||
{copyWithMask<int>, copyWithMask<int2>, copyWithMask<int3>, copyWithMask<int4>}, |
||||
{0,0,0,0}, |
||||
{0,0,0,0}, |
||||
{0,0,0,0}, |
||||
{copyWithMask<double>, copyWithMask<double2>, copyWithMask<double3>, copyWithMask<double4>} |
||||
}; |
||||
|
||||
if (mask.channels() == channels()) |
||||
{ |
||||
const func_t func = funcs[elemSize1()][0]; |
||||
CV_DbgAssert( func != 0 ); |
||||
func(reshape(1), dst.reshape(1), mask.reshape(1), stream); |
||||
} |
||||
else |
||||
{ |
||||
const func_t func = funcs[elemSize1()][channels() - 1]; |
||||
CV_DbgAssert( func != 0 ); |
||||
func(*this, dst, mask, stream); |
||||
} |
||||
} |
||||
|
||||
///////////////////////////////////////////////////// |
||||
/// setTo |
||||
|
||||
namespace |
||||
{ |
||||
template <typename T> |
||||
void setToWithOutMask(const GpuMat& mat, Scalar _scalar, Stream& stream) |
||||
{ |
||||
Scalar_<typename VecTraits<T>::elem_type> scalar = _scalar; |
||||
gridTransform(constantPtr(VecTraits<T>::make(scalar.val), mat.rows, mat.cols), globPtr<T>(mat), identity<T>(), stream); |
||||
} |
||||
|
||||
template <typename T> |
||||
void setToWithMask(const GpuMat& mat, const GpuMat& mask, Scalar _scalar, Stream& stream) |
||||
{ |
||||
Scalar_<typename VecTraits<T>::elem_type> scalar = _scalar; |
||||
gridTransform(constantPtr(VecTraits<T>::make(scalar.val), mat.rows, mat.cols), globPtr<T>(mat), identity<T>(), globPtr<uchar>(mask), stream); |
||||
} |
||||
} |
||||
|
||||
GpuMat& cv::gpu::GpuMat::setTo(Scalar value, Stream& stream) |
||||
{ |
||||
CV_DbgAssert( !empty() ); |
||||
CV_DbgAssert( depth() <= CV_64F && channels() <= 4 ); |
||||
|
||||
if (value[0] == 0.0 && value[1] == 0.0 && value[2] == 0.0 && value[3] == 0.0) |
||||
{ |
||||
// Zero fill |
||||
|
||||
if (stream) |
||||
CV_CUDEV_SAFE_CALL( cudaMemset2DAsync(data, step, 0, cols * elemSize(), rows, StreamAccessor::getStream(stream)) ); |
||||
else |
||||
CV_CUDEV_SAFE_CALL( cudaMemset2D(data, step, 0, cols * elemSize(), rows) ); |
||||
|
||||
return *this; |
||||
} |
||||
|
||||
if (depth() == CV_8U) |
||||
{ |
||||
const int cn = channels(); |
||||
|
||||
if (cn == 1 |
||||
|| (cn == 2 && value[0] == value[1]) |
||||
|| (cn == 3 && value[0] == value[1] && value[0] == value[2]) |
||||
|| (cn == 4 && value[0] == value[1] && value[0] == value[2] && value[0] == value[3])) |
||||
{ |
||||
const int val = cv::saturate_cast<uchar>(value[0]); |
||||
|
||||
if (stream) |
||||
CV_CUDEV_SAFE_CALL( cudaMemset2DAsync(data, step, val, cols * elemSize(), rows, StreamAccessor::getStream(stream)) ); |
||||
else |
||||
CV_CUDEV_SAFE_CALL( cudaMemset2D(data, step, val, cols * elemSize(), rows) ); |
||||
|
||||
return *this; |
||||
} |
||||
} |
||||
|
||||
typedef void (*func_t)(const GpuMat& mat, Scalar scalar, Stream& stream); |
||||
static const func_t funcs[7][4] = |
||||
{ |
||||
{setToWithOutMask<uchar>,setToWithOutMask<uchar2>,setToWithOutMask<uchar3>,setToWithOutMask<uchar4>}, |
||||
{setToWithOutMask<schar>,setToWithOutMask<char2>,setToWithOutMask<char3>,setToWithOutMask<char4>}, |
||||
{setToWithOutMask<ushort>,setToWithOutMask<ushort2>,setToWithOutMask<ushort3>,setToWithOutMask<ushort4>}, |
||||
{setToWithOutMask<short>,setToWithOutMask<short2>,setToWithOutMask<short3>,setToWithOutMask<short4>}, |
||||
{setToWithOutMask<int>,setToWithOutMask<int2>,setToWithOutMask<int3>,setToWithOutMask<int4>}, |
||||
{setToWithOutMask<float>,setToWithOutMask<float2>,setToWithOutMask<float3>,setToWithOutMask<float4>}, |
||||
{setToWithOutMask<double>,setToWithOutMask<double2>,setToWithOutMask<double3>,setToWithOutMask<double4>} |
||||
}; |
||||
|
||||
funcs[depth()][channels() - 1](*this, value, stream); |
||||
|
||||
return *this; |
||||
} |
||||
|
||||
GpuMat& cv::gpu::GpuMat::setTo(Scalar value, InputArray _mask, Stream& stream) |
||||
{ |
||||
CV_DbgAssert( !empty() ); |
||||
CV_DbgAssert( depth() <= CV_64F && channels() <= 4 ); |
||||
|
||||
GpuMat mask = _mask.getGpuMat(); |
||||
|
||||
CV_DbgAssert( size() == mask.size() && mask.type() == CV_8UC1 ); |
||||
|
||||
typedef void (*func_t)(const GpuMat& mat, const GpuMat& mask, Scalar scalar, Stream& stream); |
||||
static const func_t funcs[7][4] = |
||||
{ |
||||
{setToWithMask<uchar>,setToWithMask<uchar2>,setToWithMask<uchar3>,setToWithMask<uchar4>}, |
||||
{setToWithMask<schar>,setToWithMask<char2>,setToWithMask<char3>,setToWithMask<char4>}, |
||||
{setToWithMask<ushort>,setToWithMask<ushort2>,setToWithMask<ushort3>,setToWithMask<ushort4>}, |
||||
{setToWithMask<short>,setToWithMask<short2>,setToWithMask<short3>,setToWithMask<short4>}, |
||||
{setToWithMask<int>,setToWithMask<int2>,setToWithMask<int3>,setToWithMask<int4>}, |
||||
{setToWithMask<float>,setToWithMask<float2>,setToWithMask<float3>,setToWithMask<float4>}, |
||||
{setToWithMask<double>,setToWithMask<double2>,setToWithMask<double3>,setToWithMask<double4>} |
||||
}; |
||||
|
||||
funcs[depth()][channels() - 1](*this, mask, value, stream); |
||||
|
||||
return *this; |
||||
} |
||||
|
||||
///////////////////////////////////////////////////// |
||||
/// convertTo |
||||
|
||||
namespace |
||||
{ |
||||
template <typename T> struct ConvertToPolicy : DefaultTransformPolicy |
||||
{ |
||||
}; |
||||
template <> struct ConvertToPolicy<double> : DefaultTransformPolicy |
||||
{ |
||||
enum { |
||||
shift = 1 |
||||
}; |
||||
}; |
||||
|
||||
template <typename T, typename D> |
||||
void convertToNoScale(const GpuMat& src, const GpuMat& dst, Stream& stream) |
||||
{ |
||||
typedef typename VecTraits<T>::elem_type src_elem_type; |
||||
typedef typename VecTraits<D>::elem_type dst_elem_type; |
||||
typedef typename LargerType<src_elem_type, float>::type larger_elem_type; |
||||
typedef typename LargerType<float, dst_elem_type>::type scalar_type; |
||||
|
||||
gridTransform_< ConvertToPolicy<scalar_type> >(globPtr<T>(src), globPtr<D>(dst), saturate_cast_func<T, D>(), stream); |
||||
} |
||||
|
||||
template <typename T, typename D, typename S> struct Convertor : unary_function<T, D> |
||||
{ |
||||
S alpha; |
||||
S beta; |
||||
|
||||
__device__ __forceinline__ D operator ()(typename TypeTraits<T>::parameter_type src) const |
||||
{ |
||||
return cudev::saturate_cast<D>(alpha * src + beta); |
||||
} |
||||
}; |
||||
|
||||
template <typename T, typename D> |
||||
void convertToScale(const GpuMat& src, const GpuMat& dst, double alpha, double beta, Stream& stream) |
||||
{ |
||||
typedef typename VecTraits<T>::elem_type src_elem_type; |
||||
typedef typename VecTraits<D>::elem_type dst_elem_type; |
||||
typedef typename LargerType<src_elem_type, float>::type larger_elem_type; |
||||
typedef typename LargerType<float, dst_elem_type>::type scalar_type; |
||||
|
||||
Convertor<T, D, scalar_type> op; |
||||
op.alpha = cv::saturate_cast<scalar_type>(alpha); |
||||
op.beta = cv::saturate_cast<scalar_type>(beta); |
||||
|
||||
gridTransform_< ConvertToPolicy<scalar_type> >(globPtr<T>(src), globPtr<D>(dst), op, stream); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& stream) const |
||||
{ |
||||
if (rtype < 0) |
||||
rtype = type(); |
||||
else |
||||
rtype = CV_MAKE_TYPE(CV_MAT_DEPTH(rtype), channels()); |
||||
|
||||
const int sdepth = depth(); |
||||
const int ddepth = CV_MAT_DEPTH(rtype); |
||||
if (sdepth == ddepth) |
||||
{ |
||||
if (stream) |
||||
copyTo(_dst, stream); |
||||
else |
||||
copyTo(_dst); |
||||
|
||||
return; |
||||
} |
||||
|
||||
CV_DbgAssert( sdepth <= CV_64F && ddepth <= CV_64F ); |
||||
|
||||
GpuMat src = *this; |
||||
|
||||
_dst.create(size(), rtype); |
||||
GpuMat dst = _dst.getGpuMat(); |
||||
|
||||
typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, Stream& stream); |
||||
static const func_t funcs[7][7] = |
||||
{ |
||||
{0, convertToNoScale<uchar, schar>, convertToNoScale<uchar, ushort>, convertToNoScale<uchar, short>, convertToNoScale<uchar, int>, convertToNoScale<uchar, float>, convertToNoScale<uchar, double>}, |
||||
{convertToNoScale<schar, uchar>, 0, convertToNoScale<schar, ushort>, convertToNoScale<schar, short>, convertToNoScale<schar, int>, convertToNoScale<schar, float>, convertToNoScale<schar, double>}, |
||||
{convertToNoScale<ushort, uchar>, convertToNoScale<ushort, schar>, 0, convertToNoScale<ushort, short>, convertToNoScale<ushort, int>, convertToNoScale<ushort, float>, convertToNoScale<ushort, double>}, |
||||
{convertToNoScale<short, uchar>, convertToNoScale<short, schar>, convertToNoScale<short, ushort>, 0, convertToNoScale<short, int>, convertToNoScale<short, float>, convertToNoScale<short, double>}, |
||||
{convertToNoScale<int, uchar>, convertToNoScale<int, schar>, convertToNoScale<int, ushort>, convertToNoScale<int, short>, 0, convertToNoScale<int, float>, convertToNoScale<int, double>}, |
||||
{convertToNoScale<float, uchar>, convertToNoScale<float, schar>, convertToNoScale<float, ushort>, convertToNoScale<float, short>, convertToNoScale<float, int>, 0, convertToNoScale<float, double>}, |
||||
{convertToNoScale<double, uchar>, convertToNoScale<double, schar>, convertToNoScale<double, ushort>, convertToNoScale<double, short>, convertToNoScale<double, int>, convertToNoScale<double, float>, 0} |
||||
}; |
||||
|
||||
funcs[sdepth][ddepth](reshape(1), dst.reshape(1), stream); |
||||
} |
||||
|
||||
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& stream) const |
||||
{ |
||||
if (rtype < 0) |
||||
rtype = type(); |
||||
else |
||||
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); |
||||
|
||||
const int sdepth = depth(); |
||||
const int ddepth = CV_MAT_DEPTH(rtype); |
||||
|
||||
GpuMat src = *this; |
||||
|
||||
_dst.create(size(), rtype); |
||||
GpuMat dst = _dst.getGpuMat(); |
||||
|
||||
typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, double alpha, double beta, Stream& stream); |
||||
static const func_t funcs[7][7] = |
||||
{ |
||||
{convertToScale<uchar, uchar>, convertToScale<uchar, schar>, convertToScale<uchar, ushort>, convertToScale<uchar, short>, convertToScale<uchar, int>, convertToScale<uchar, float>, convertToScale<uchar, double>}, |
||||
{convertToScale<schar, uchar>, convertToScale<schar, schar>, convertToScale<schar, ushort>, convertToScale<schar, short>, convertToScale<schar, int>, convertToScale<schar, float>, convertToScale<schar, double>}, |
||||
{convertToScale<ushort, uchar>, convertToScale<ushort, schar>, convertToScale<ushort, ushort>, convertToScale<ushort, short>, convertToScale<ushort, int>, convertToScale<ushort, float>, convertToScale<ushort, double>}, |
||||
{convertToScale<short, uchar>, convertToScale<short, schar>, convertToScale<short, ushort>, convertToScale<short, short>, convertToScale<short, int>, convertToScale<short, float>, convertToScale<short, double>}, |
||||
{convertToScale<int, uchar>, convertToScale<int, schar>, convertToScale<int, ushort>, convertToScale<int, short>, convertToScale<int, int>, convertToScale<int, float>, convertToScale<int, double>}, |
||||
{convertToScale<float, uchar>, convertToScale<float, schar>, convertToScale<float, ushort>, convertToScale<float, short>, convertToScale<float, int>, convertToScale<float, float>, convertToScale<float, double>}, |
||||
{convertToScale<double, uchar>, convertToScale<double, schar>, convertToScale<double, ushort>, convertToScale<double, short>, convertToScale<double, int>, convertToScale<double, float>, convertToScale<double, double>} |
||||
}; |
||||
|
||||
funcs[sdepth][ddepth](reshape(1), dst.reshape(1), alpha, beta, stream); |
||||
} |
||||
|
||||
#endif |
@ -1,296 +0,0 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include "opencv2/core/cuda/saturate_cast.hpp" |
||||
#include "opencv2/core/cuda/transform.hpp" |
||||
#include "opencv2/core/cuda/functional.hpp" |
||||
#include "opencv2/core/cuda/type_traits.hpp" |
||||
#include "opencv2/core/cuda/vec_traits.hpp" |
||||
|
||||
#include "matrix_operations.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
/////////////////////////////////////////////////////////////////////////// |
||||
// copyWithMask |
||||
|
||||
template <typename T> |
||||
void copyWithMask(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream) |
||||
{ |
||||
if (multiChannelMask) |
||||
cv::gpu::cudev::transform((PtrStepSz<T>) src, (PtrStepSz<T>) dst, identity<T>(), SingleMask(mask), stream); |
||||
else |
||||
cv::gpu::cudev::transform((PtrStepSz<T>) src, (PtrStepSz<T>) dst, identity<T>(), SingleMaskChannels(mask, cn), stream); |
||||
} |
||||
|
||||
void copyWithMask(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream) |
||||
{ |
||||
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream); |
||||
|
||||
static const func_t tab[] = |
||||
{ |
||||
0, |
||||
copyWithMask<uchar>, |
||||
copyWithMask<ushort>, |
||||
0, |
||||
copyWithMask<int>, |
||||
0, |
||||
0, |
||||
0, |
||||
copyWithMask<double> |
||||
}; |
||||
|
||||
const func_t func = tab[elemSize1]; |
||||
CV_DbgAssert( func != 0 ); |
||||
|
||||
func(src, dst, cn, mask, multiChannelMask, stream); |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////////////////// |
||||
// set |
||||
|
||||
template<typename T, class Mask> |
||||
__global__ void set(PtrStepSz<T> mat, const Mask mask, const int channels, const typename TypeVec<T, 4>::vec_type value) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= mat.cols * channels || y >= mat.rows) |
||||
return; |
||||
|
||||
const T scalar[4] = {value.x, value.y, value.z, value.w}; |
||||
|
||||
if (mask(y, x / channels)) |
||||
mat(y, x) = scalar[x % channels]; |
||||
} |
||||
|
||||
template <typename T> |
||||
void set(PtrStepSz<T> mat, const T* scalar, int channels, cudaStream_t stream) |
||||
{ |
||||
typedef typename TypeVec<T, 4>::vec_type scalar_t; |
||||
|
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(mat.cols * channels, block.x), divUp(mat.rows, block.y)); |
||||
|
||||
set<T><<<grid, block, 0, stream>>>(mat, WithOutMask(), channels, VecTraits<scalar_t>::make(scalar)); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall ( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
template void set<uchar >(PtrStepSz<uchar > mat, const uchar* scalar, int channels, cudaStream_t stream); |
||||
template void set<schar >(PtrStepSz<schar > mat, const schar* scalar, int channels, cudaStream_t stream); |
||||
template void set<ushort>(PtrStepSz<ushort> mat, const ushort* scalar, int channels, cudaStream_t stream); |
||||
template void set<short >(PtrStepSz<short > mat, const short* scalar, int channels, cudaStream_t stream); |
||||
template void set<int >(PtrStepSz<int > mat, const int* scalar, int channels, cudaStream_t stream); |
||||
template void set<float >(PtrStepSz<float > mat, const float* scalar, int channels, cudaStream_t stream); |
||||
template void set<double>(PtrStepSz<double> mat, const double* scalar, int channels, cudaStream_t stream); |
||||
|
||||
template <typename T> |
||||
void set(PtrStepSz<T> mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream) |
||||
{ |
||||
typedef typename TypeVec<T, 4>::vec_type scalar_t; |
||||
|
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(mat.cols * channels, block.x), divUp(mat.rows, block.y)); |
||||
|
||||
set<T><<<grid, block, 0, stream>>>(mat, SingleMask(mask), channels, VecTraits<scalar_t>::make(scalar)); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall ( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
template void set<uchar >(PtrStepSz<uchar > mat, const uchar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
template void set<schar >(PtrStepSz<schar > mat, const schar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
template void set<ushort>(PtrStepSz<ushort> mat, const ushort* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
template void set<short >(PtrStepSz<short > mat, const short* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
template void set<int >(PtrStepSz<int > mat, const int* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
template void set<float >(PtrStepSz<float > mat, const float* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
template void set<double>(PtrStepSz<double> mat, const double* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
|
||||
/////////////////////////////////////////////////////////////////////////// |
||||
// convert |
||||
|
||||
template <typename T, typename D, typename S> struct Convertor : unary_function<T, D> |
||||
{ |
||||
Convertor(S alpha_, S beta_) : alpha(alpha_), beta(beta_) {} |
||||
|
||||
__device__ __forceinline__ D operator()(typename TypeTraits<T>::ParameterType src) const |
||||
{ |
||||
return saturate_cast<D>(alpha * src + beta); |
||||
} |
||||
|
||||
S alpha, beta; |
||||
}; |
||||
|
||||
namespace detail |
||||
{ |
||||
template <size_t src_size, size_t dst_size, typename F> struct ConvertTraitsDispatcher : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
}; |
||||
template <typename F> struct ConvertTraitsDispatcher<1, 1, F> : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
enum { smart_shift = 8 }; |
||||
}; |
||||
template <typename F> struct ConvertTraitsDispatcher<1, 2, F> : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
enum { smart_shift = 4 }; |
||||
}; |
||||
template <typename F> struct ConvertTraitsDispatcher<1, 4, F> : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
enum { smart_block_dim_y = 8 }; |
||||
enum { smart_shift = 4 }; |
||||
}; |
||||
|
||||
template <typename F> struct ConvertTraitsDispatcher<2, 2, F> : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
enum { smart_shift = 4 }; |
||||
}; |
||||
template <typename F> struct ConvertTraitsDispatcher<2, 4, F> : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
enum { smart_shift = 2 }; |
||||
}; |
||||
|
||||
template <typename F> struct ConvertTraitsDispatcher<4, 2, F> : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
enum { smart_block_dim_y = 8 }; |
||||
enum { smart_shift = 4 }; |
||||
}; |
||||
template <typename F> struct ConvertTraitsDispatcher<4, 4, F> : DefaultTransformFunctorTraits<F> |
||||
{ |
||||
enum { smart_block_dim_y = 8 }; |
||||
enum { smart_shift = 2 }; |
||||
}; |
||||
|
||||
template <typename F> struct ConvertTraits : ConvertTraitsDispatcher<sizeof(typename F::argument_type), sizeof(typename F::result_type), F> |
||||
{ |
||||
}; |
||||
} |
||||
|
||||
template <typename T, typename D, typename S> struct TransformFunctorTraits< Convertor<T, D, S> > : detail::ConvertTraits< Convertor<T, D, S> > |
||||
{ |
||||
}; |
||||
|
||||
template<typename T, typename D, typename S> |
||||
void cvt_(PtrStepSzb src, PtrStepSzb dst, double alpha, double beta, cudaStream_t stream) |
||||
{ |
||||
Convertor<T, D, S> op(static_cast<S>(alpha), static_cast<S>(beta)); |
||||
cv::gpu::cudev::transform((PtrStepSz<T>)src, (PtrStepSz<D>)dst, op, WithOutMask(), stream); |
||||
} |
||||
|
||||
void convert(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream) |
||||
{ |
||||
typedef void (*caller_t)(PtrStepSzb src, PtrStepSzb dst, double alpha, double beta, cudaStream_t stream); |
||||
|
||||
static const caller_t tab[7][7] = |
||||
{ |
||||
{ |
||||
cvt_<uchar, uchar, float>, |
||||
cvt_<uchar, schar, float>, |
||||
cvt_<uchar, ushort, float>, |
||||
cvt_<uchar, short, float>, |
||||
cvt_<uchar, int, float>, |
||||
cvt_<uchar, float, float>, |
||||
cvt_<uchar, double, double> |
||||
}, |
||||
{ |
||||
cvt_<schar, uchar, float>, |
||||
cvt_<schar, schar, float>, |
||||
cvt_<schar, ushort, float>, |
||||
cvt_<schar, short, float>, |
||||
cvt_<schar, int, float>, |
||||
cvt_<schar, float, float>, |
||||
cvt_<schar, double, double> |
||||
}, |
||||
{ |
||||
cvt_<ushort, uchar, float>, |
||||
cvt_<ushort, schar, float>, |
||||
cvt_<ushort, ushort, float>, |
||||
cvt_<ushort, short, float>, |
||||
cvt_<ushort, int, float>, |
||||
cvt_<ushort, float, float>, |
||||
cvt_<ushort, double, double> |
||||
}, |
||||
{ |
||||
cvt_<short, uchar, float>, |
||||
cvt_<short, schar, float>, |
||||
cvt_<short, ushort, float>, |
||||
cvt_<short, short, float>, |
||||
cvt_<short, int, float>, |
||||
cvt_<short, float, float>, |
||||
cvt_<short, double, double> |
||||
}, |
||||
{ |
||||
cvt_<int, uchar, float>, |
||||
cvt_<int, schar, float>, |
||||
cvt_<int, ushort, float>, |
||||
cvt_<int, short, float>, |
||||
cvt_<int, int, double>, |
||||
cvt_<int, float, double>, |
||||
cvt_<int, double, double> |
||||
}, |
||||
{ |
||||
cvt_<float, uchar, float>, |
||||
cvt_<float, schar, float>, |
||||
cvt_<float, ushort, float>, |
||||
cvt_<float, short, float>, |
||||
cvt_<float, int, float>, |
||||
cvt_<float, float, float>, |
||||
cvt_<float, double, double> |
||||
}, |
||||
{ |
||||
cvt_<double, uchar, double>, |
||||
cvt_<double, schar, double>, |
||||
cvt_<double, ushort, double>, |
||||
cvt_<double, short, double>, |
||||
cvt_<double, int, double>, |
||||
cvt_<double, float, double>, |
||||
cvt_<double, double, double> |
||||
} |
||||
}; |
||||
|
||||
const caller_t func = tab[sdepth][ddepth]; |
||||
func(src, dst, alpha, beta, stream); |
||||
} |
||||
}}} // namespace cv { namespace gpu { namespace cudev |
@ -1,57 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "opencv2/core/cuda/common.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
void copyWithMask(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream); |
||||
|
||||
template <typename T> |
||||
void set(PtrStepSz<T> mat, const T* scalar, int channels, cudaStream_t stream); |
||||
|
||||
template <typename T> |
||||
void set(PtrStepSz<T> mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
||||
|
||||
void convert(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream); |
||||
}}} |
Loading…
Reference in new issue