|
|
|
@ -326,42 +326,53 @@ void Regression::verify(cv::FileNode node, cv::Mat actual, double _eps, std::str |
|
|
|
|
double actual_min, actual_max; |
|
|
|
|
cv::minMaxLoc(actual, &actual_min, &actual_max); |
|
|
|
|
|
|
|
|
|
double eps = evalEps((double)node["min"], actual_min, _eps, err); |
|
|
|
|
ASSERT_NEAR((double)node["min"], actual_min, eps) |
|
|
|
|
<< " " << argname << " has unexpected minimal value"; |
|
|
|
|
double expect_min = (double)node["min"]; |
|
|
|
|
double eps = evalEps(expect_min, actual_min, _eps, err); |
|
|
|
|
ASSERT_NEAR(expect_min, actual_min, eps) |
|
|
|
|
<< argname << " has unexpected minimal value" << std::endl; |
|
|
|
|
|
|
|
|
|
eps = evalEps((double)node["max"], actual_max, _eps, err); |
|
|
|
|
ASSERT_NEAR((double)node["max"], actual_max, eps) |
|
|
|
|
<< " " << argname << " has unexpected maximal value"; |
|
|
|
|
double expect_max = (double)node["max"]; |
|
|
|
|
eps = evalEps(expect_max, actual_max, _eps, err); |
|
|
|
|
ASSERT_NEAR(expect_max, actual_max, eps) |
|
|
|
|
<< argname << " has unexpected maximal value" << std::endl; |
|
|
|
|
|
|
|
|
|
cv::FileNode last = node["last"]; |
|
|
|
|
double actualLast = getElem(actual, actual.rows - 1, actual.cols - 1, actual.channels() - 1); |
|
|
|
|
ASSERT_EQ((int)last["x"], actual.cols - 1) |
|
|
|
|
<< " " << argname << " has unexpected number of columns"; |
|
|
|
|
ASSERT_EQ((int)last["y"], actual.rows - 1) |
|
|
|
|
<< " " << argname << " has unexpected number of rows"; |
|
|
|
|
|
|
|
|
|
eps = evalEps((double)last["val"], actualLast, _eps, err); |
|
|
|
|
ASSERT_NEAR((double)last["val"], actualLast, eps) |
|
|
|
|
<< " " << argname << " has unexpected value of last element"; |
|
|
|
|
double actual_last = getElem(actual, actual.rows - 1, actual.cols - 1, actual.channels() - 1); |
|
|
|
|
int expect_cols = (int)last["x"] + 1; |
|
|
|
|
int expect_rows = (int)last["y"] + 1; |
|
|
|
|
ASSERT_EQ(expect_cols, actual.cols) |
|
|
|
|
<< argname << " has unexpected number of columns" << std::endl; |
|
|
|
|
ASSERT_EQ(expect_rows, actual.rows) |
|
|
|
|
<< argname << " has unexpected number of rows" << std::endl; |
|
|
|
|
|
|
|
|
|
double expect_last = (double)last["val"]; |
|
|
|
|
eps = evalEps(expect_last, actual_last, _eps, err); |
|
|
|
|
ASSERT_NEAR(expect_last, actual_last, eps) |
|
|
|
|
<< argname << " has unexpected value of the last element" << std::endl; |
|
|
|
|
|
|
|
|
|
cv::FileNode rng1 = node["rng1"]; |
|
|
|
|
int x1 = rng1["x"]; |
|
|
|
|
int y1 = rng1["y"]; |
|
|
|
|
int cn1 = rng1["cn"]; |
|
|
|
|
|
|
|
|
|
eps = evalEps((double)rng1["val"], getElem(actual, y1, x1, cn1), _eps, err); |
|
|
|
|
ASSERT_NEAR((double)rng1["val"], getElem(actual, y1, x1, cn1), eps) |
|
|
|
|
<< " " << argname << " has unexpected value of ["<< x1 << ":" << y1 << ":" << cn1 <<"] element"; |
|
|
|
|
double expect_rng1 = (double)rng1["val"]; |
|
|
|
|
double actual_rng1 = getElem(actual, y1, x1, cn1); |
|
|
|
|
|
|
|
|
|
eps = evalEps(expect_rng1, actual_rng1, _eps, err); |
|
|
|
|
ASSERT_NEAR(expect_rng1, actual_rng1, eps) |
|
|
|
|
<< argname << " has unexpected value of the ["<< x1 << ":" << y1 << ":" << cn1 <<"] element" << std::endl; |
|
|
|
|
|
|
|
|
|
cv::FileNode rng2 = node["rng2"]; |
|
|
|
|
int x2 = rng2["x"]; |
|
|
|
|
int y2 = rng2["y"]; |
|
|
|
|
int cn2 = rng2["cn"]; |
|
|
|
|
|
|
|
|
|
eps = evalEps((double)rng2["val"], getElem(actual, y2, x2, cn2), _eps, err); |
|
|
|
|
ASSERT_NEAR((double)rng2["val"], getElem(actual, y2, x2, cn2), eps) |
|
|
|
|
<< " " << argname << " has unexpected value of ["<< x2 << ":" << y2 << ":" << cn2 <<"] element"; |
|
|
|
|
double expect_rng2 = (double)rng2["val"]; |
|
|
|
|
double actual_rng2 = getElem(actual, y2, x2, cn2); |
|
|
|
|
|
|
|
|
|
eps = evalEps(expect_rng2, actual_rng2, _eps, err); |
|
|
|
|
ASSERT_NEAR(expect_rng2, actual_rng2, eps) |
|
|
|
|
<< argname << " has unexpected value of the ["<< x2 << ":" << y2 << ":" << cn2 <<"] element" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void Regression::write(cv::InputArray array) |
|
|
|
@ -417,13 +428,16 @@ static int countViolations(const cv::Mat& expected, const cv::Mat& actual, const |
|
|
|
|
|
|
|
|
|
void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err) |
|
|
|
|
{ |
|
|
|
|
ASSERT_EQ((int)node["kind"], array.kind()) << " Argument \"" << node.name() << "\" has unexpected kind"; |
|
|
|
|
ASSERT_EQ((int)node["type"], array.type()) << " Argument \"" << node.name() << "\" has unexpected type"; |
|
|
|
|
int expected_kind = (int)node["kind"]; |
|
|
|
|
int expected_type = (int)node["type"]; |
|
|
|
|
ASSERT_EQ(expected_kind, array.kind()) << " Argument \"" << node.name() << "\" has unexpected kind"; |
|
|
|
|
ASSERT_EQ(expected_type, array.type()) << " Argument \"" << node.name() << "\" has unexpected type"; |
|
|
|
|
|
|
|
|
|
cv::FileNode valnode = node["val"]; |
|
|
|
|
if (isVector(array)) |
|
|
|
|
{ |
|
|
|
|
ASSERT_EQ((int)node["len"], (int)array.total()) << " Vector \"" << node.name() << "\" has unexpected length"; |
|
|
|
|
int expected_length = (int)node["len"]; |
|
|
|
|
ASSERT_EQ(expected_length, (int)array.total()) << " Vector \"" << node.name() << "\" has unexpected length"; |
|
|
|
|
int idx = node["idx"]; |
|
|
|
|
|
|
|
|
|
cv::Mat actual = array.getMat(idx); |
|
|
|
@ -485,7 +499,7 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERR |
|
|
|
|
{ |
|
|
|
|
ASSERT_LE((size_t)26, array.total() * (size_t)array.channels()) |
|
|
|
|
<< " Argument \"" << node.name() << "\" has unexpected number of elements"; |
|
|
|
|
verify(node, array.getMat(), eps, "Argument " + node.name(), err); |
|
|
|
|
verify(node, array.getMat(), eps, "Argument \"" + node.name() + "\"", err); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
@ -537,6 +551,9 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERR |
|
|
|
|
|
|
|
|
|
Regression& Regression::operator() (const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err) |
|
|
|
|
{ |
|
|
|
|
// exit if current test is already failed
|
|
|
|
|
if(::testing::UnitTest::GetInstance()->current_test_info()->result()->Failed()) return *this; |
|
|
|
|
|
|
|
|
|
if(!array.empty() && array.depth() == CV_USRTYPE1) |
|
|
|
|
{ |
|
|
|
|
ADD_FAILURE() << " Can not check regression for CV_USRTYPE1 data type for " << name; |
|
|
|
|