add one more convolution kernel tuning candidate

Signed-off-by: Li Peng <peng.li@intel.com>
pull/10385/head
Li Peng 7 years ago
parent 1bc1f3d311
commit 181b448c4d
  1. 1
      modules/dnn/src/ocl4dnn/src/ocl4dnn_conv_spatial.cpp
  2. 246
      modules/dnn/src/opencl/conv_layer_spatial.cl

@ -1432,6 +1432,7 @@ void OCL4DNNConvSpatial<float>::generateTunerItems(std::vector< cv::Ptr<tunerPar
generate_gemmlike_tuneritems(tunerItems, 1, 8, 32);
generate_gemmlike_tuneritems(tunerItems, 2, 8, 32);
generate_gemmlike_tuneritems(tunerItems, 1, 16, 32);
generate_gemmlike_tuneritems(tunerItems, 2, 16, 32);
// idlf kernel
for (int simd_size = 8; simd_size <= 16; simd_size += 8)

@ -384,7 +384,6 @@ convolve_simd(
#elif defined KERNEL_GEMM_LIKE
#if APPLY_BIAS
// Dtype bias[4];
#define SUBGROUP_GET_BIAS(k, i) intel_sub_group_shuffle(bias[k], i)
#else
#define SUBGROUP_GET_BIAS(k, i) ((Dtype)0)
@ -446,9 +445,7 @@ typedef struct float0 { float s0; } float0; //never used but makes compiler happ
#define TILE_K KERNEL_WIDTH
#define TILE_N 32
#ifndef __BEIGNET__
__attribute__((intel_reqd_sub_group_size(8)))
#endif
__kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
{
const int group_x = get_group_id(0);
@ -608,6 +605,11 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
Dtype4 *bias_vec;
bias_vec = (Dtype4*)bias;
*bias_vec = as_Dtype4(SUB_GROUP_BLOCK_READ4((__global INT_TYPE *)biases_base + group_x * TILE_N));
if (group_x > 0xFFFFFFFEul) {
dst[0] = bias[0] + bias[1] + bias[2] + bias[3];
}
#else
const Dtype bias[4] = {0, 0, 0, 0};
#endif
if (global_y * TILE_M < output_width * output_height )
{
@ -768,6 +770,11 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
Dtype4 *bias_vec;
bias_vec = (Dtype4*)bias;
*bias_vec = as_Dtype4(SUB_GROUP_BLOCK_READ4((__global INT_TYPE *)biases_base + group_x * TILE_N));
if (group_x > 0xFFFFFFFEul) {
dst[0] = bias[0] + bias[1] + bias[2] + bias[3];
}
#else
const Dtype bias[4] = {0, 0, 0, 0};
#endif
if (global_y * TILE_M < output_width * output_height )
@ -813,9 +820,7 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
#define TILE_K KERNEL_WIDTH
#define TILE_N 32
#ifndef __BEIGNET__
__attribute__((intel_reqd_sub_group_size(8)))
#endif
__kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
{
const int group_x = get_group_id(0);
@ -1012,6 +1017,11 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
Dtype4 *bias_vec;
bias_vec = (Dtype4*)bias;
*bias_vec = as_Dtype4(SUB_GROUP_BLOCK_READ4((__global INT_TYPE *)biases_base + group_x * TILE_N));
if (group_x > 0xFFFFFFFEul) {
dst[0] = bias[0] + bias[1] + bias[2] + bias[3];
}
#else
const Dtype bias[4] = {0, 0, 0, 0};
#endif
if( global_y * TILE_M < output_width * output_height )
@ -1221,6 +1231,11 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
Dtype4 *bias_vec;
bias_vec = (Dtype4*)bias;
*bias_vec = as_Dtype4(SUB_GROUP_BLOCK_READ4((__global INT_TYPE *)biases_base + group_x * TILE_N));
if (group_x > 0xFFFFFFFEul) {
dst[0] = bias[0] + bias[1] + bias[2] + bias[3];
}
#else
const Dtype bias[4] = {0, 0, 0, 0};
#endif
if( global_y * TILE_M < output_width * output_height )
{
@ -1334,9 +1349,7 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
#define TILE_K KERNEL_WIDTH
#define TILE_N 32
#ifndef __BEIGNET__
__attribute__((intel_reqd_sub_group_size(16)))
#endif
__kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
{
const int group_x = get_group_id(0);
@ -1396,18 +1409,14 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
// Inner loop loads and FMADs one row (KERNEL_WIDTH) of each input patch
// and KERNEL_WIDTH/2 rows of interleaved filter.
int patch_depth = 0;
#ifndef __BEIGNET__
__attribute__((opencl_unroll_hint(1)))
#endif
do
{
int patch_row = 0;
#if INPUT_PAD_H != 0 || INPUT_PAD_W != 0 || DILATION_X != 1 || DILATION_Y != 1
curr_y = saved_y;
#endif
#ifndef __BEIGNET__
__attribute__((opencl_unroll_hint(1)))
#endif
do
{
// Load atile and btile.
@ -1495,11 +1504,226 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
Dtype2 *bias_vec;
bias_vec = (Dtype2*)bias;
*bias_vec = as_Dtype2(SUB_GROUP_BLOCK_READ2((__global INT_TYPE *)biases_base + group_x * TILE_N));
if (group_x > 0xFFFFFFFEul) {
dst[0] = bias[0] + bias[1];
}
#else
const Dtype bias[2] = {0, 0};
#endif
INTERLEAVED_SIMD16_OUTPUT(dst, out_offset, 0);
}
#endif
#ifdef GEMM_LIKE_CONV_32_2_SIMD16
//////////////////////////////////////////////////////////////////////////////
// Conv_Interleaved_32_2_SIMD16
//
// Convolution: each workitem computes 1 patch x 32 filters worth of output
// data.
#define TILE_M 2
#define TILE_K KERNEL_WIDTH
#define TILE_N 32
__attribute__((intel_reqd_sub_group_size(16)))
__kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
{
const int group_x = get_group_id(0);
const int group_y = get_group_id(1);
const int global_x = get_global_id(0);
const int global_y = get_global_id(1);
const int global_z = get_global_id(2);
int interleaved_y;
int kernel_y;
int kernel_idx;
#define DOT_PRODUCT_16( _result, _rowA, colB ) \
{ \
_result.s0 = mad( _rowA, sub_group_broadcast( colB, 0 ), _result.s0 ); \
_result.s1 = mad( _rowA, sub_group_broadcast( colB, 1 ), _result.s1 ); \
_result.s2 = mad( _rowA, sub_group_broadcast( colB, 2 ), _result.s2 ); \
_result.s3 = mad( _rowA, sub_group_broadcast( colB, 3 ), _result.s3 ); \
_result.s4 = mad( _rowA, sub_group_broadcast( colB, 4 ), _result.s4 ); \
_result.s5 = mad( _rowA, sub_group_broadcast( colB, 5 ), _result.s5 ); \
_result.s6 = mad( _rowA, sub_group_broadcast( colB, 6 ), _result.s6 ); \
_result.s7 = mad( _rowA, sub_group_broadcast( colB, 7 ), _result.s7 ); \
_result.s8 = mad( _rowA, sub_group_broadcast( colB, 8 ), _result.s8 ); \
_result.s9 = mad( _rowA, sub_group_broadcast( colB, 9 ), _result.s9 ); \
_result.sa = mad( _rowA, sub_group_broadcast( colB, 10 ), _result.sa ); \
_result.sb = mad( _rowA, sub_group_broadcast( colB, 11 ), _result.sb ); \
_result.sc = mad( _rowA, sub_group_broadcast( colB, 12 ), _result.sc ); \
_result.sd = mad( _rowA, sub_group_broadcast( colB, 13 ), _result.sd ); \
_result.se = mad( _rowA, sub_group_broadcast( colB, 14 ), _result.se ); \
_result.sf = mad( _rowA, sub_group_broadcast( colB, 15 ), _result.sf ); \
}
typedef CAT( Dtype, KERNEL_WIDTH ) Dtype_t;
// True for all threads if filter_width is multiple of TILE_N
// else, true for all but right-most column of threads.
{
// Result ctile (*dst) is M rows x N columns
// LWG size is 1x8. Thus each thread calculates 8*M rows x N cols of ctile.
Dtype16 blockC00 = 0.f;
Dtype16 blockC10 = 0.f;
Dtype16 blockC01 = 0.f;
Dtype16 blockC11 = 0.f;
// Src0 (patch input) is directly used as atile.
// Each work item points to the start of a different patch.
// atile is M rows x K columns.
int curr_x0 = ( ( global_y * TILE_M + 0 ) % output_width ) * STRIDE_X;
int curr_x1 = ( ( global_y * TILE_M + 1 ) % output_width ) * STRIDE_X;
int curr_y0 = ( ( global_y * TILE_M + 0 ) / output_width ) * STRIDE_Y;
int curr_y1 = ( ( global_y * TILE_M + 1 ) / output_width ) * STRIDE_Y;
#if INPUT_PAD_H != 0 || INPUT_PAD_W != 0 || DILATION_X != 1 || DILATION_Y != 1
int saved_y0 = curr_y0;
int saved_y1 = curr_y1;
#endif
const __global Dtype *src0_read0 = src0
+ aligned_input_size * global_z // batch offset
+ (curr_y0 - INPUT_PAD_H) * ROW_PITCH // y offset
+ curr_x0 - INPUT_PAD_W; // x offset
const __global Dtype *src0_read1 = src0
+ aligned_input_size * global_z // batch offset
+ (curr_y1 - INPUT_PAD_H) * ROW_PITCH // y offset
+ curr_x1 - INPUT_PAD_W; // x offset
// Src1 (filter) is directly used as btile.
// It starts at the top of src1 and walks down.
// btile is K rows x N columns.
const __global Dtype *src1_read = src1 + ( global_x * TILE_N * 2);
// Walk DOWN src0 (patch 0, 1, 2, ...) and DOWN src1.
// Inner loop loads and FMADs one row (KERNEL_WIDTH) of each input patch
// and KERNEL_WIDTH/2 rows of interleaved filter.
int patch_depth = 0;
do
{
int patch_row = 0;
do
{
// Load atile and btile.
// Kernel data is partially interleaved. Every 2 rows are interleaved at Dtype8 granularity.
// The exception is that if KERNEL_WIDTH is odd the last row is not interleaved. The non
// interleaved row is padded with zero to ensure same size as interleaved rows. This
// interleaving is done to ensure 0% GDR bank conflicts. For example, this is how the
// kernel data would be arranged before/after interleaving for KERNEL_WIDTH=3.
// (0, 0) (8, 0) (16, 0) (24, 0) ... (0, 0) (0, 1) (8, 0) (0, 1) (16, 0) (0, 1) (24, 0) ..
// (0, 1) (8, 1) (16, 1) (24, 1) ... => (0, 2) (8, 2) (16, 2) (24, 2) ...
// (0, 2) (8, 2) (16, 2) (24, 2) ... ...
// ...
const bool kernel_width_is_odd = KERNEL_WIDTH % 2 == 1;
#if INPUT_PAD_H == 0 && INPUT_PAD_W == 0 && DILATION_X == 1 && DILATION_Y == 1
Dtype_t blockA00 = ( (const __global Dtype_t*)src0_read0 )[ 0 ]; src0_read0 += ROW_PITCH;
Dtype_t blockA01 = ( (const __global Dtype_t*)src0_read1 )[ 0 ]; src0_read1 += ROW_PITCH;
Dtype* pblockA00 = (Dtype*)(&blockA00);
Dtype* pblockA01 = (Dtype*)(&blockA01);
#else
Dtype_t blockA00;
Dtype* pblockA00 = (Dtype*)(&blockA00);
int pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y0 >= INPUT_PAD_H && curr_y0 < input_height + INPUT_PAD_H && curr_x0 + pos * DILATION_X >= INPUT_PAD_W && curr_x0 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA00[pos] = src0_read0[pos * DILATION_X];
else
pblockA00[pos] = 0;
})
curr_y0 += DILATION_Y;
Dtype_t blockA01;
Dtype* pblockA01 = (Dtype*)(&blockA01);
pos = 0;
LOOP(KERNEL_WIDTH, pos,
{
if (curr_y1 >= INPUT_PAD_H && curr_y1 < input_height + INPUT_PAD_H && curr_x1 + pos * DILATION_X >= INPUT_PAD_W && curr_x1 + pos * DILATION_X < input_width + INPUT_PAD_W)
pblockA01[pos] = src0_read1[pos * DILATION_X];
else
pblockA01[pos] = 0;
})
curr_y1 += DILATION_Y;
src0_read0 += (ROW_PITCH * DILATION_Y);
src0_read1 += (ROW_PITCH * DILATION_Y);
#endif
Dtype blockB00[KERNEL_WIDTH*2];
Dtype4* p4BlockB00 = (Dtype4*)blockB00;
Dtype2* p2BlockB00 = (Dtype2*)blockB00;
Dtype* pBlockB00 = (Dtype* )blockB00;
interleaved_y = 0;
LOOP(KERNEL_WIDTH_DIV2, interleaved_y,
{
p4BlockB00[interleaved_y] = as_Dtype4( SUB_GROUP_BLOCK_READ4( (const __global INT_TYPE*)src1_read ) );
src1_read += WIDTH1 * 2;
} )
if ( kernel_width_is_odd )
{
p2BlockB00[KERNEL_WIDTH - 1] = as_Dtype2( SUB_GROUP_BLOCK_READ2( (const __global INT_TYPE*)src1_read ) );
src1_read += WIDTH1 * 2;
}
// Perform MADs
kernel_idx = 0;
interleaved_y = 0;
LOOP(KERNEL_WIDTH_DIV2, interleaved_y,
{
kernel_y = interleaved_y * 2;
DOT_PRODUCT_16( blockC00, pblockA00[kernel_y ], pBlockB00[kernel_idx] );
DOT_PRODUCT_16( blockC01, pblockA01[kernel_y ], pBlockB00[kernel_idx] ); kernel_idx++;
DOT_PRODUCT_16( blockC00, pblockA00[kernel_y + 1], pBlockB00[kernel_idx] );
DOT_PRODUCT_16( blockC01, pblockA01[kernel_y + 1], pBlockB00[kernel_idx] ); kernel_idx++;
DOT_PRODUCT_16( blockC10, pblockA00[kernel_y ], pBlockB00[kernel_idx] );
DOT_PRODUCT_16( blockC11, pblockA01[kernel_y ], pBlockB00[kernel_idx] ); kernel_idx++;
DOT_PRODUCT_16( blockC10, pblockA00[kernel_y + 1], pBlockB00[kernel_idx] );
DOT_PRODUCT_16( blockC11, pblockA01[kernel_y + 1], pBlockB00[kernel_idx] ); kernel_idx++;
} )
if ( kernel_width_is_odd )
{
kernel_y = interleaved_y * 2;
DOT_PRODUCT_16( blockC00, pblockA00[kernel_y], pBlockB00[kernel_idx] );
DOT_PRODUCT_16( blockC01, pblockA01[kernel_y], pBlockB00[kernel_idx] ); kernel_idx++;
DOT_PRODUCT_16( blockC10, pblockA00[kernel_y], pBlockB00[kernel_idx] );
DOT_PRODUCT_16( blockC11, pblockA01[kernel_y], pBlockB00[kernel_idx] ); kernel_idx++;
}
}
//while( ++patch_row < 1 ); //debug
while( ++patch_row < KERNEL_HEIGHT );
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || DILATION_X != 1 || DILATION_Y != 1
curr_y0 = saved_y0;
curr_y1 = saved_y1;
#endif
src0_read0 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y); // reset to start of next slice of patch
src0_read1 += slice_pitch - ( KERNEL_HEIGHT * ROW_PITCH * DILATION_Y);
}
//while ( ++patch_depth < 1 ); //debug
while ( ++patch_depth < INPUT_DEPTH );
// Dst resembles a cube of width x height x (output channel * batches). Each tile writes:
// (SIMD * TILE_M) x 1 x TILE_N. Partial writes most likely generated if padding used.
int out0_offset = global_z * out_pitch_z // batch offset
+ ( group_x * TILE_N ) * out_pitch_y // channel offset
+ ( ( global_y * TILE_M + 0 ) / output_width + OUT_PADDING_HEIGHT ) * OUT_PITCH_X // y offset
+ ( ( global_y * TILE_M + 0 ) % output_width ) + OUT_PADDING_LEFT; // x offset
int out1_offset = global_z * out_pitch_z // batch offset
+ ( group_x * TILE_N ) * out_pitch_y // channel offset
+ ( ( global_y * TILE_M + 1 ) / output_width + OUT_PADDING_HEIGHT ) * OUT_PITCH_X // y offset
+ ( ( global_y * TILE_M + 1 ) % output_width ) + OUT_PADDING_LEFT; // x offset
#if APPLY_BIAS
Dtype bias[2];
Dtype2 *bias_vec;
bias_vec = (Dtype2*)bias;
*bias_vec = as_Dtype2(SUB_GROUP_BLOCK_READ2((__global INT_TYPE *)biases_base + group_x * TILE_N));
if (group_x > 0xFFFFFFFEul) {
dst[0] = bias[0] + bias[1];
}
#else
const Dtype bias[2] = {0, 0};
#endif
INTERLEAVED_SIMD16_OUTPUT(dst, out0_offset, 0);
INTERLEAVED_SIMD16_OUTPUT(dst, out1_offset, 1);
}
}
#endif
#elif defined KERNEL_DWCONV
__kernel void DWCONV(

Loading…
Cancel
Save