Merge pull request #16092 from YashasSamaga:cuda4dnn-conv-act-fuse

cuda4dnn: fuse activations with convolutions

* fuse ReLU, ReLU6, TanH, Sigmoid with conv

* fix OpenCL errors

* improve ReLU, add power, swish and mish

* fix missing fusion entries

* fix handling of unsetAttached

* remove whole file indentation

* optimize power = 1.0, use IDENTITY instead of NONE

* handle edge case: change backend and then clear
pull/16167/head
Yashas Samaga B L 5 years ago committed by Alexander Alekhin
parent 5b0b59ecfb
commit 17c485eb03
  1. 336
      modules/dnn/src/cuda/bias_activation.cu
  2. 38
      modules/dnn/src/cuda4dnn/kernels/bias_activation.hpp
  3. 89
      modules/dnn/src/cuda4dnn/primitives/convolution.hpp
  4. 15
      modules/dnn/src/dnn.cpp
  5. 71
      modules/dnn/src/layers/convolution_layer.cpp

@ -0,0 +1,336 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "types.hpp"
#include "math.hpp"
#include "vector_traits.hpp"
#include "grid_stride_range.hpp"
#include "execution.hpp"
#include "../cuda4dnn/csl/stream.hpp"
#include "../cuda4dnn/csl/span.hpp"
using namespace cv::dnn::cuda4dnn::csl;
using namespace cv::dnn::cuda4dnn::csl::device;
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
namespace raw {
template <class T, std::size_t N>
__global__ void biasN_relu_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias, T slope) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
vec.data[j] += bias[bias_idx];
vec.data[j] = vec.data[j] >= T(0) ? vec.data[j] : slope * vec.data[j];
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_clipped_relu_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias, T floor, T ceil) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::clamp;
vec.data[j] = clamp(vec.data[j] + bias[bias_idx], floor, ceil);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_power_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias, T power) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::pow;
vec.data[j] = pow(vec.data[j] + bias[bias_idx], power);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_tanh_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::tanh;
vec.data[j] = tanh(vec.data[j] + bias[bias_idx]);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_sigmoid_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::sigmoid;
vec.data[j] = sigmoid(vec.data[j] + bias[bias_idx]);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_swish_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::sigmoid;
vec.data[j] += bias[bias_idx];
vec.data[j] = vec.data[j] * sigmoid(vec.data[j]);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_mish_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::tanh;
using device::log1pexp;
vec.data[j] += bias[bias_idx];
vec.data[j] = vec.data[j] * tanh(log1pexp(vec.data[j]));
}
v_store(inplace_output_vPtr[i], vec);
}
}
}
template <class T, std::size_t N> static
void launch_biasN_relu_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T slope) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_relu_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias, slope);
}
template <class T>
void biasN_relu_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T slope) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_relu_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias, slope);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_relu_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias, slope);
} else {
launch_biasN_relu_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias, slope);
}
}
template void biasN_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half);
template void biasN_relu_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float);
template <class T, std::size_t N> static
void launch_biasN_clipped_relu_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T floor, T ceil) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_clipped_relu_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias, floor, ceil);
}
template <class T>
void biasN_clipped_relu_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T floor, T ceil) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_clipped_relu_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias, floor, ceil);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_clipped_relu_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias, floor, ceil);
} else {
launch_biasN_clipped_relu_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias, floor, ceil);
}
}
template void biasN_clipped_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half, __half);
template void biasN_clipped_relu_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float, float);
template <class T, std::size_t N> static
void launch_biasN_power_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T power) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_power_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias, power);
}
template <class T>
void biasN_power_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T power) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_power_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias, power);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_power_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias, power);
} else {
launch_biasN_power_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias, power);
}
}
template void biasN_power_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half);
template void biasN_power_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float);
template <class T, std::size_t N> static
void launch_biasN_tanh_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_tanh_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
}
template <class T>
void biasN_tanh_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_tanh_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_tanh_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_tanh_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
}
template void biasN_tanh_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
template void biasN_tanh_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template <class T, std::size_t N> static
void launch_biasN_sigmoid_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_sigmoid_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
}
template <class T>
void biasN_sigmoid_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_sigmoid_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_sigmoid_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_sigmoid_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
}
template void biasN_sigmoid_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
template void biasN_sigmoid_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template <class T, std::size_t N> static
void launch_biasN_swish_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_swish_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
}
template <class T>
void biasN_swish_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_swish_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_swish_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_swish_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
}
template void biasN_swish_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
template void biasN_swish_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template <class T, std::size_t N> static
void launch_biasN_mish_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_mish_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
}
template <class T>
void biasN_mish_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_mish_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_mish_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_mish_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
}
template void biasN_mish_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
template void biasN_mish_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */

@ -0,0 +1,38 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void biasN_relu_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T slope);
template <class T>
void biasN_clipped_relu_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T floor, T ceiling);
template <class T>
void biasN_power_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T exp);
template <class T>
void biasN_tanh_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
template <class T>
void biasN_sigmoid_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
template <class T>
void biasN_swish_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
template <class T>
void biasN_mish_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_HPP */

@ -12,6 +12,8 @@
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/scale_shift.hpp"
#include "../kernels/activations.hpp"
#include "../kernels/bias_activation.hpp"
#include <opencv2/core.hpp>
@ -44,6 +46,20 @@ namespace cv { namespace dnn { namespace cuda4dnn {
/* group count for grouped convolution */
std::size_t groups;
enum class ActivationType {
IDENTITY,
RELU, /* uses value provided in `relu_negative_slope` */
CLIPPED_RELU, /* uses values provided in `crelu_floor` and `crelu_ceil` */
POWER, /* scale and shift fused beforehand (fuseWeights); only `power_exp` is handled by CUDA */
TANH,
SIGMOID,
SWISH,
MISH
};
ActivationType activation_type;
float relu_negative_slope, crelu_floor, crelu_ceil, power_exp;
};
template <class T>
@ -59,7 +75,7 @@ namespace cv { namespace dnn { namespace cuda4dnn {
const auto& strides = config.strides;
const auto convolution_order = kernel_size.size();
CV_Assert(convolution_order >= 1);
CV_Assert(convolution_order > 1);
CV_Assert(convolution_order == dilations.size());
CV_Assert(convolution_order == strides.size());
@ -72,7 +88,7 @@ namespace cv { namespace dnn { namespace cuda4dnn {
const auto groups = config.groups;
if (convolution_order > 3)
CV_Error(Error::StsNotImplemented, "Only 1D/2D/3D convolution is supported.");
CV_Error(Error::StsNotImplemented, "Only 2D/3D convolution is supported.");
const auto rank = input_shape.size();
const auto output_feature_maps = output_shape[1];
@ -190,6 +206,15 @@ namespace cv { namespace dnn { namespace cuda4dnn {
convoluter = csl::Convolution<T>(cudnnHandle, params);
activation = config.activation_type;
relu_negative_slope = config.relu_negative_slope;
crelu_floor = config.crelu_floor;
crelu_ceil = config.crelu_ceil;
power_exp = config.power_exp;
if (activation == ConvolutionConfiguration::ActivationType::POWER && power_exp == 1.0f)
activation = ConvolutionConfiguration::ActivationType::IDENTITY;
csl::WorkspaceBuilder builder;
if (!transformed_shape.empty()) {
auto& shape = transformed_shape;
@ -227,7 +252,62 @@ namespace cv { namespace dnn { namespace cuda4dnn {
if (!biasTensor.empty())
{
std::size_t inner_size = output.size_range(2, output.rank());
kernels::biasN<T>(stream, output, output, inner_size, biasTensor);
switch(activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
kernels::biasN<T>(stream, output, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::biasN_relu_inplace<T>(stream, output, inner_size, biasTensor, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::biasN_clipped_relu_inplace<T>(stream, output, inner_size, biasTensor, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::biasN_power_inplace<T>(stream, output, inner_size, biasTensor, power_exp);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::biasN_tanh_inplace<T>(stream, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::biasN_sigmoid_inplace<T>(stream, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::biasN_swish_inplace<T>(stream, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::biasN_mish_inplace<T>(stream, output, inner_size, biasTensor);
break;
}
}
else
{
switch(activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::relu<T>(stream, output, output, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::clipped_relu<T>(stream, output, output, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::power<T>(stream, output, output, power_exp, 1.0, 0.0);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::tanh<T>(stream, output, output);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::sigmoid<T>(stream, output, output);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::swish<T>(stream, output, output);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::mish<T>(stream, output, output);
break;
}
}
}
@ -243,6 +323,9 @@ namespace cv { namespace dnn { namespace cuda4dnn {
csl::TensorTransform<T> inputTransformer;
std::size_t scratch_mem_in_bytes;
ConvolutionConfiguration::ActivationType activation;
float relu_negative_slope, crelu_floor, crelu_ceil, power_exp;
};
}}} /* namespace cv::dnn::cuda4dnn */

@ -2405,7 +2405,7 @@ struct Net::Impl
break;
}
if (preferableBackend != DNN_BACKEND_OPENCV)
if (preferableBackend != DNN_BACKEND_OPENCV && preferableBackend != DNN_BACKEND_CUDA)
continue; // Go to the next layer.
// TODO: OpenCL target support more fusion styles.
@ -2415,6 +2415,9 @@ struct Net::Impl
ld.layerInstance->type != "Concat")) )
continue;
if (preferableBackend == DNN_BACKEND_CUDA && IS_DNN_CUDA_TARGET(preferableTarget) && ld.layerInstance->type != "Convolution")
continue;
while (nextData)
{
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
@ -2426,6 +2429,16 @@ struct Net::Impl
nextData->type != "Power")
break;
if (IS_DNN_CUDA_TARGET(preferableTarget) &&
nextData->type != "ReLU" &&
nextData->type != "ReLU6" &&
nextData->type != "Power" &&
nextData->type != "TanH" &&
nextData->type != "Sigmoid" &&
nextData->type != "Swish" &&
nextData->type != "Mish")
break;
Ptr<ActivationLayer> nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
if (nextActivLayer.empty())
break;

@ -239,6 +239,12 @@ public:
ocl4dnnFusedActiv_t activType;
float power;
#endif
#ifdef HAVE_CUDA
cuda4dnn::ConvolutionConfiguration::ActivationType cudaActType;
float cuda_relu_slope, cuda_crelu_floor, cuda_crelu_ceil, cuda_power_exp;
#endif
ConvolutionLayerImpl(const LayerParams &params) : BaseConvolutionLayerImpl(params)
{
#ifdef HAVE_OPENCL
@ -246,6 +252,10 @@ public:
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
power = 0.f;
#endif
#ifdef HAVE_CUDA
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
#endif
}
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
@ -406,6 +416,61 @@ public:
}
}
#endif
#ifdef HAVE_CUDA
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
if(IS_DNN_CUDA_TARGET(preferableTarget))
{
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
if(!activ_relu.empty())
{
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::RELU;
cuda_relu_slope = activ_relu->negativeSlope;
}
Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
if(!activ_relu6.empty())
{
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::CLIPPED_RELU;
cuda_crelu_floor = activ_relu6->minValue;
cuda_crelu_ceil = activ_relu6->maxValue;
}
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
if (!activ_power.empty())
{
if (activ_power->scale != 1.f || activ_power->shift != 0.f)
{
const int outCh = blobs[0].size[0];
fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)),
Mat(1, outCh, CV_32F, Scalar(activ_power->shift)));
}
cuda_power_exp = activ_power->power;
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::POWER;
}
Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
if(!activ_tanh.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::TANH;
Ptr<SigmoidLayer> activ_sigmoid = activ.dynamicCast<SigmoidLayer>();
if(!activ_sigmoid.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SIGMOID;
Ptr<SwishLayer> activ_swish = activ.dynamicCast<SwishLayer>();
if(!activ_swish.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SWISH;
Ptr<MishLayer> activ_mish = activ.dynamicCast<MishLayer>();
if(!activ_mish.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::MISH;
if (cudaActType == cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY)
activ.reset();
}
#endif
return !activ.empty();
}
@ -1418,6 +1483,12 @@ public:
config.output_shape.assign(std::begin(output_shape), std::end(output_shape));
config.groups = groups;
config.activation_type = cudaActType;
config.relu_negative_slope = cuda_relu_slope;
config.crelu_floor = cuda_crelu_floor;
config.crelu_ceil = cuda_crelu_ceil;
config.power_exp = cuda_power_exp;
Mat filtersMat = fusedWeights ? weightsMat : blobs[0];
Mat biasMat = (hasBias() || fusedBias) ? Mat(output_feature_maps, 1, CV_32F, biasvec.data()) : Mat();
if (countNonZero(biasMat) == 0)

Loading…
Cancel
Save